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Abstract

In contrast to the extensive use of Instant Mes-
saging, traffic characteristics have not been the focus
of research for a long time, perhaps because of the
extremely low bandwidth which they require. When
taking the use of IM in mobile or ad-hoc networks
into consideration, the importance of bandwidth is an
inherent question. Current major IM networks are
client/server based with predictable processing and
transmission times, but when operating IM on top of
a peer-to-peer overlay network, the transmission time
(relaying through many nodes) has to be considered.
In order to study efficient routing algorithms in ad-
hoc or peer-to-peer networks, a realistic user behavior
is needed. Although selected aspects of traffic char-
acteristics of IM have been investigated in the past,
none of them resulted in a modelling framework. We
propose such a framework to model the user behavior
in large Instant Messaging networks.

1 Introduction

Instant Messaging (IM) became popular at the
end of the 90s and still has a large and ever increas-
ing usage. In a study carried out by IDC it was es-
timated that approximately 12 · 109 instant messages
are sent worldwide each day [1]. While traffic charac-
teristic of IM have not been the focus of research in
the past few years, the first aspects of IM or computer-
mediated communication ever to be investigated, were
social psychological aspects. Long before IM became
popular, models like the reduced social cues [10] or
the social identity deindividuation model [14] had been
proposed and widely accepted to explain social behav-
iors with this type of communication.

In section 2 we will present related work, followed
by a description of our data records for simulation and
directly derived characteristics in section 3. Section 4
will describe additional characteristics for our simula-
tion and the simulation environment itself. We will
summarize and evaluate the outcomes in section 5.

2 Related Work

Early studies of IM traffic characteristics consists
mainly of limited observation of a small network or in-
terviews with a few users of IM systems. A different
social behavior of school and college students was dis-
covered in [8] by interviewing 16 teenagers, revealing
a daily usage of mainly below 2 hours and an averaged
number of contacted buddies between 2 and 5. About
20 people were interviewed in addition to some log file
analysis in [13] to establish that IM is mainly used
to check the presence status of a conversational part-
ner and arrange the ongoing discussion in another way
(personal meeting or telephone). The conversational
data of 8271 messages in 175 conversations were an-
alyzed in [20] concentrating on the coordination and
collaboration of tasks in a distributed team which cal-
culated a median conservation length of 6 minutes.

The amount of analyzed data increased in [9]
where logfiles of 437 users were analyzed to catego-
rize specific social behavior. A web-based (HTML)
chat system is investigated at packet level in [6] and
characteristics of TCP session durations, inter-arrival
times and packet sizes are explored and compared be-
tween the web-based chat system and Internet Relay
Chat (IRC) coming to the conclusion of similar packet
inter-arrival times, but different distribution of packet
sizes.

Full access to traffic information of a large organi-
zation led to detailed statistics [21] of about 900 users
using the AOL Instant Messenger or the Windows Live
Messenger (formerly known as MSN Messenger). As
one of the first studies with a lager user group, Smith
[16] investigated a XMPP1 Network with 50.000 users
and demonstrated the scale-free property of a buddy2

network and high clustering coefficient, the local clus-
tering coefficient ci represents the ratio between the
connection of all neighbors of node i to all possible

1The IETF Standard Extensible Messaging and Presence
Protocol [15] was formerly known as Jabber

2Contacts of each IM user are called buddies, the network is
created by all users (vertices), an edge from user i to j is created
if j is in the buddy list of i.



connections among each other [19]. A high ci in a so-
cial network suggests that people with common friends
tend to be friends too.

An impressive study was presented in [11]: the
complete MSN network both in size and activity for
one month (June 2006) was analyzed. The communi-
cation data as well as the presence data and demo-
graphic information of nearly 240 · 106 people were
collected, resulting in approximately 7 · 109 messages
and 64 · 106 users each day. The demographic charac-
teristics the users between 15-35 are strongly overrep-
resented (compared to the age pyramid of the world
population) and that communication is preferably be-
tween different genders, but in the same age group and
country. The distribution of the shortest path lengths
show an average length of 6.6, which is a little bit
longer than in the famous study of Travers and Mil-
gram [17] (6 Degrees of Separation) and many articles
which followed.

In this paper we present a modular modeling
framework for user behavior in Instant Messaging,
parametrize the identified modeling functions and
compare our results with literature (if available). As
far as we know this is the first comprehensive simula-
tion model for IM.

3 Traffic Characteristics

We are faced, like many others, with the lack
of comprehensive data of IM usage or log files of IM
server. Due to the great similarity between computer-
mediated communication using IRC and other chat
systems [6], we use amply available IRC data for our
modeling. The trace collection for our model is done
by capturing four channels on different IRC servers.
Table 1 shows an overview of channels, number of
users, number of messages and distinct sessions. The
number of messages is plotted in figure 1 for all four
channels and the capturing time of 94 days, each 24
hours. The peak for the channel #ubuntu is based on
a new release (7.10) on October 18th 2007. The time-
dependence of events are shown in figure 2, all dates
are given in GMT+2, thus the minimum of occurrence
for all event types of the english spoken channels can
be assumed at night for U.S. timezones EST to PST.

Channel Messages User Sessions

#iphone 724.872 9.435 158.109
#debian 402.271 8.310 98.268
#ubuntu 1.076.392 36.983 312.274
#xbox360 392.597 3.353 43.131

Table 1: Overview of captured events
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Figure 1: Message Overview
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Figure 2: Time-dependence of events

For different characteristics we propose approxi-
mations, but renounce using common goodness-of-fit
tests like the χ2 test or Kolmogorov-Smirnov test, be-
cause the huge number of samples means that the
model hypothesis would be overly rejected too often
[5]. Instead of the numerical goodness-of-fit tests we
will refer to a QQ-Plot in figure 10.

3.1 Session duration

We have analyzed the login and logoff events and
determined more than half a million distinct sessions,
which we define as the time between login and logoff.
The cdf of the session duration is shown for all four
channels in figure 3.
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Figure 3: Cdf of session duration



The Weibull distribution was identified in [21] to
be best suited to describe the distribution of the ses-
sion duration. In the generalized form the Weibull
distribution is described using three parameters, the
scale parameter ϑ, the location parameter τ and the
shape parameter α. With ϑ > 0, α > 0 and τ ∈ R the
cumulative distribution function (cdf) is defined as 0
for x < τ and otherwise

Fϑ,α,τ (x) = 1 − e−(x−τ
ϑ )α

(1)

We have investigated a couple of other distributions
(see table 2), which are not described in detail here.
Although we approve [21] of the Weibull distribution
as a very good fit, we discovered the Dagum is slightly
better. Table 2 shows the sum of the quadratic error
for each distribution, normalized to the mean error of
the best fit.

The Dagum distribution is parametrized by
β, ϑ, δ > 0 and [7] proved special characteristics like
UBT (upside-down bathtub curve) or DFR (decreas-
ing failure rate) for certain relations of these parame-
ters characterizing this distribution as a very flexible
hazard function.

Fβ,ϑ,δ(x) =







0 für x ≤ 0
1

(1+ ϑ

xδ )β für x > 0 (2)

e1 e2 e3 e4 e

Weibull 1,11 0,97 1,31 0,65 1,01
Exponential 4,61 3,83 6,27 2,04 4,19
Hjorth 2,52 2,2 3,41 1,52 2,41
Burr 16,47 19,7 24,42 9,58 17,54
Logistic 6,22 6,27 8,58 3,09 6,04
Dagum 1,08 1,07 1,42 0,43 1
Extr. Value 5,5 5,26 7,58 2,64 5,24
Laplace 4,66 4,86 6,33 2,4 4,56
Lognormal 2,63 3,05 4,08 2,35 3,03

Table 2: Goodness-of-Fit for session duration

These calculations for all listed distributions are
implicitly done for every further fit, but not mentioned
in the text anymore.

The churn rate is implicitly given by the length
of the session, reconnection will be available after an
offline duration which can be described with a Weibull
distribution, having a marginal better error than the
the Dagum distribution (e = 1.0015).

3.2 Message Length

In contrast to [11] where no access to the mes-
sages was possible or [21], where only the total message

10
0

10
1

10
2

10
3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

l [characters]

p(
l) 

(p
ro

ba
bi

lit
y)

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l [characters]

F
(l)

CDF

 

 

Empirical
Dagum

Figure 4: Distribution of Message Length

sizes, including HTML formatting or encoding infor-
mation are considered, we had access to the content of
all messages and the exact text length.

We studied the message length of about 2.5 · 106

unique messages to derive a suitable distribution for it.
Figure 4 shows the probability distribution on the left
and the corresponding cdf on the right side. This cdf is
similar to [21], but there is overhead information like
message header and HTML formatting included and
only the total number of bytes considered.

The peaks seen in the probability distribution are
remarkable, but this effect can be explained by the ex-
cessive use of abbreviations or smileys. Table 3 sum-
marizes the Top 5 messages with such a short length
to give an impression of the most used abbreviations.

l=2 l=3 l=4

1. ok (7791) lol (22704) yeah (4707)
2. :) (5660) yes (7300) haha (3478)
3. hi (5575) heh (3043) hehe (2305)
4. no (4938) hmm (2668) nope (1660)
5. :p (3083) yea (1846) nice (1089)

Table 3: Top 5 Messages

The Dagum distribution (see the dashed line in
figure 4 on the right) seems to be a very good fit for
the message length3, apart from outliers, which have a
very low message length both curves are nearly iden-
tical. These message lengths seem to be dominant,
but remember (especially on the left of figure 4) the
logarithmic scale of the x-axis.

The is in-line with early studies of IM like [13],
where inaccurate grammar and spelling as well as a
high usage of abbreviations and very short messages
was detected.

3Just as for the session duration in table 2 we calculated
the best-fit for all other distributions and found the Weibull
(e = 2.47) and the Exponential distribution (e = 2.76) as the
next best ones.



4 Modeling IM Traffic

In order to simulate the behavior of a user we
consider in the highest level the Offline and Online
presences. As shown in figure 5a, each Online period
can be divided into alternating Burst and Silence pe-
riods (will be described in section 4.1).

OfflineSession

Burst Silence

Message inter-arrival time
(a) Specification of times

Offline

Online

Silence

Burst

(b) State transitions

Figure 5: Simulation Overview

The possible state transitions are shown in figure
5b. Beginning Offline the user can login into the IM
network and transits to Online by either entering the
sub-state Burst or Silence. Messages can only be sent
during Burst periods with specific inter-arrival times.

4.1 On/Off Model

To describe systems with alternating active and
silence phases an On/Off Model4 is often used. The
On/Off Model is used in various fields of research, e.g.
for modeling VBR traffic in ATM networks [12] or de-
scribing effects in inter-domain routing protocols [22].

The resolution in time is defined as δ = 60 sec-
onds and we generated time series where each entry
represents the number of messages in a period of 1
minute. To minimize the effect of outliers and a disad-
vantageously choice of δ, we allow several exceptions.
If two long On Periods are interrupted by a very short
Off period (depending on the length of the surround-
ing On periods), the On-Off -On Sequence will merge
to just one On period.

The cumulative distribution function (cdf) of
both periods are shown in figure 6. We see that 95%
of all conservations which are not interrupted by a si-
lence phase are shorter than 10 minutes. While the
distribution for all channels are similar in the On pe-
riod, they are rather apart in the Off period, but have
a similar characteristic.

On Phase The burst period (figure 6 on the left)
can be described very well using the Hjorth-

4Also known as Burst/Silence model

10
0

10
1

10
2

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
ON−Phase

d
on

 [min]

F
(d

on
)

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
off

 [min]

F
(d

of
f)

OFF−Phase

 

 

#iphone
#debian
#ubuntu
#xbox360

Figure 6: Cdf of retention times (On and Off period)

Distribution. This distribution is defined for pos-
itive coefficients α, β, ϑ > 0 and x ≥ 0 as

Fα,β,ϑ(x) = 1 −
e

−αx2

2

(1 + βx)
ϑ
β

(3)

and otherwise as zero.

Off Phase The silence period (figure 6 on the right)
cannot be easily approximated with a common
distribution. We figured out also the Hjorth dis-
tribution, but have to accept a sub-optimal ap-
proximation for low values (see figure 10).

Distribution of Messages The distribution of the
inter-arrival time diat of messages is shown in fig-
ure 7, each (red) line represents the distribution
for a specific duration of the On period. For
the approximation method we use the duration
independent distribution (blue line). As men-
tioned before we set the resolution time for the
On/Off Model to 1 minute, thus one could expect
a maximum inter-arrival time of 60 seconds, oth-
erwise the system should transit to the Off state.
The longer inter-arrival times can be found in the
exceptions we described previously and contain
about 15% of all inter-arrival times. The Weibull
distribution can be applied when describing inter-
arrival times of messages during the burst period.

4.2 Topology of Social Network

So far our model accounts all timing aspects for
sending a message, but accurate simulations require
explicit source and target information (‘who talks with
whom?’). These relationships create the social net-
work, mentioned before as a buddy network. To sim-
ulate the message exchange between distinct users, we
have to account for this, but even for a relative small
number of users a topology cannot be created manu-
ally, thus we investigated specialized graph generation
algorithms which are able to reproduce the properties
found in real buddy networks.
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Figure 7: Message inter-arrival time during On period

Such a network has been identified as a scale-free
network [3] where some nodes are highly connected,
but most are lowly connected. This is independent
of the number of nodes n and can be expressed as
a power law relationship of the degree distribution
P (k) ∼ k−γ . The identified parameters range from
γ = 1.8 [16] to a power-law with exponential cutoff
[11] P (k) ∼ k−γe−βk with γ = 0.8 and β = 0.03.

Graph generation algorithms cover a wide range
from random, preferential attachment or optimization-
based generators up to geographical models or internet
specific generators. For reasons of comparison we in-
vestigated a random generator and three preferential
attachment models which are able to generate power
law degree distributions.

The algorithm of Barabási and Albert [2] is used
because of its simplicity, but with the certainty that it
will create scale-free networks with γ ≈ 3. A modifica-
tion of the original BA algorithm includes a parameter
κ which specifies the number of edges that are gener-
ated for each new node, helping to influence the av-
erage path length, which increases with logn

loglogn
other-

wise. We also evaluated the Watts-Strogatz [19] algo-
rithm, which is able to create networks with a cluster-
ing coefficient independent of the number of nodes n.
Finally we investigated the Generalized Linear Pref-
erence (GLP) algorithm [4] which can produce degree
distributions with γ ∈ (2,∞) and different clustering
coefficients.

Figure 8 shows the generated degree distribution
of the social network on the left. Measurements show a
global clustering coefficient c = 1

n

∑n
i=1

ci between c =
0.137 [11]5 and c = 0.33 [16] while we can produce c

between 10−4 and 0.76 in our simulation environment.
To approximate the distance distribution we cal-

culated the distance between approximately 5·106 ran-
domly chosen node pairs for each algorithm. Figure
8 the distribution of the shortest path lengths of the

5The clustering coefficient represents the clustering of peo-
ple with whom a person communications, the c of the buddy
network is expected to be higher.
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Figure 8: Degree distr. and shortest paths lengths

synthetically generated networks on the right. While
the coefficient γ of the degree distribution is far away
from the measured parameter, we identified the Watts-
Strogatz algorithm as a suitable graph generation al-
gorithm, because the average path length l as well as
the average degree d and clustering coefficient c are
close to real networks [9, 11, 16, 21] (table 4).

γ l c d

BA -2,8621 4,5434 0,0002 13,9999
WS -13,261 5,6463 0,3375 19,0362
Rnd -15,5094 6,3061 10−4 10
GLP -2,3254 4,6097 0,7567 2,8451

Table 4: Topology metrics for n=106

4.3 Simulation

Now we can put all components together into a
simulation environment. The created social network
represents the possible contacts (thus possible conver-
sation partners) of all nodes. The period, a user is
online in the instant messaging network can be de-
scribed by the Dagum distribution (β = 0.19983, ϑ =
26301741.8618, δ = 1.6132). The offline duration is ex-
tracted from the periods between sessions and can be
described with a Weibull distribution (ϑ = 49626.7165,
α = 0.39129, τ = 948.7647). The message length of
each message can also be described by a Dagum dis-
tribution (β = 0.40621, ϑ = 40152.6214, δ = 2.5537).
The occurrence within an online-period can be de-
scribed with an On/Off model (On: Hjorth (α =
0.20426, β = 2.1668 · 10−8, θ = 0.12273); Off: Hjorth
(α = 4.27 ·10−7, β = 0.36061, θ = 0.20927)) where the
inter-arrival times are modelled with a Weibull distri-
bution (ϑ = 33.136, α = 0.94435, τ = −0.50169).

The social network defines the starting- and
endpoint of a conversation. The underlying mes-
sage routing (client/server architecture, distributed
client/server architecture or a peer-to-peer network)
can be chosen in the simulation environment. Ex-
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Figure 9: Simulation for nmax = 106 nodes

amples we present here are based on a distributed
client/server architecture which can be interpreted as
XMPP. We assume an amount of 10000 XMPP server
and each node Ni belongs to a randomly chosen Server
Sj . Figure 9 shows the number of users who are on-
line and the number of login and logoff events per time
interval. The system leads to a balance of login and
logoff events after approximately 8 hours. Keeping in
mind the time-dependence of login and logoff events
(figure 2) we can add this characteristic to the proba-
bility of each event. This will simulate the dependence
of time of day for users in specific geographic areas.

Time Nsrc Ssrc Sdst Ndst Length

71378.7 891 27 375 886 338
71397.2 891 27 375 886 71
71437.0 891 27 497 887 13
71441.1 891 27 497 887 12
71456.3 891 27 497 887 3

Table 5: Example of generated traffic

The simulation tool creates trace files in XML
format, which can be easily transformed to any desired
format. Table 5 shows a short cut-out of the generated
traffic for a randomly chosen node.

5 Conclusion and Future Work

By plotting the empirical quantil against the ex-
pected quantil (derived from our proposed distribu-
tions) in a QQ-Diagram (figure 10, each distribution
with the scale normalized to 1) we can evaluate the
goodness-of-fit, a linear plot indicates a perfect fit. Be-
side the duration of the Off period all approximations
show really good fits of the expected data. In this case
the distribution is not able to produce a rapid slope
for small values, followed by a smoothly slope.

We identified the Dagum distribution to be
slightly better at describing the session duration than
the formerly identified Weibull distribution [21].
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As a novelty we characterize the inter-arrival time
and length of messages with very good approxima-
tions. Our model is implemented into a event-based
simulation framework which can generate trace files
for other simulation environments or directly simulate
the user behavior. Currently we are preparing the
release of our Java based simulation environment as
open source software. In this initial version users act
stochastically independent, future work will be include
feedback loops to describe the behavior more realistic,
e.g. a user will react (answer) if he got a message.
Another improvement will be the provision for differ-
ent presences like Away or Do not Disturb and the
propagation of changes of them.

The measured average number of messages per
(active) user per day is 109 [11], our simulation envi-
ronment generates, after the balanced state, approxi-
mately 117 messages per user per day with 70,2% of
active users (compared to 68,8% in [11]).

Using a topology with scale-free and small-world
properties we are able to describe the social network of
an instant messaging system in a massive graph with
106 nodes, knowing that the generation algorithm has
some flaws to reproduce structures found in real in-
stant messaging networks, especially the degree distri-
bution. But the network topology is – like the other
solutions – one component in the modelling framework
which can be easily exchanged. Thus we accepted this
compromise, but identified this issue for further opti-
mization, more general algorithms to generate scale-
free graphs (e.g. with γ ∈ (1,∞) [18]) will be investi-
gated for their suitability of modelling IM networks.
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