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ABSTRACT
Random graphs are a popular method to model the inter-
connections in different domains, ranging from social net-
works, IP networks up to peer-to-peer networks. For mod-
elling and simulation often different distinct graphs are re-
quired, which must have a minimum number of links. By
choosing graph generation paramaters for random graphs
resulting into a low number of links, the risk arises not
to generate a connected graph, which is inapplicable for
further simulations. After demonstrating the question of
choosing convenient parameters for the graph generation
process using random graphs as an example, we concen-
trate on a popular class of random graphs introduced by
Waxman. We show that other investigations in literature
do not comply with our constraints and propose simple
manageable approximations of each characteristic for ran-
dom and Waxman graphs, which can be used practically to
parametrize the graph generation process.
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1 Introduction

During the generation of network structures consisting of
nodes and edges, the interconnection process between spe-
cific nodes is a fundamental requirement for a number of
fields in science, commonly controlled by a well known
rule-set. In this paper, we focus on special types of net-
works which are represented by random graphs, where the
nodes are connected to each other by a given probability
or a probability function. A lot of methods have been pub-
lished to create graph topologies with statistical link prob-
abilities. The basic random graph is described by Erdös
and Renyi as a statistical process in which the points in
the graph are connected step by step [6]. Each edge has
the same probability and in each step (unless the points are
not connected yet) a random number generator is used to
evaluate the probability. We demonstrate the challenge of
choosing the best parameters with the constraint of a con-
nected graph and minimum links in this generation process
and extend our results to another generation process de-
scribed by Waxman [21]. Waxman uses a method in which
the distance between each node pair affects the probability

of being connected.
The question we are trying to answer is the following:

How have the parameters of the generation process to be
chosen in order to achieve a connected graph of n nodes
whilst using a minimum number of edges?

This question is not purely academic because there
are many fields of research in which random graphs are
used and our results can aid those dealing with these kinds
of topologies to understand the effects the parameters have
on the generation process in creating topologies which are
easier to compare to each other. For example, a lot of real
world networks are successfully modelled on random graph
generation processes yet there is still a lot of research to be
carried out in this field.

For instance, [16] examined the properties of social
network structures by using a generalized Erdös Renyi ran-
dom graph. Although this piece of work concentrates on
social networks, the authors are convinced, that many other
real world networks could be modelled in the same way.
A more specific analysis carried out Malarz et. al. closely
studied gossip in social networks [13], while the effects of
clustering in an underlying social network is analyzed. The
spread of diseases is addressed in [3]. The network model
used for this is a random intersection graph, where a node
represents a person, every one belonging to a number of
groups, and a link can only be established between people
who are in at least one predefined group.

Far away from topics mentioned before, random con-
nected models are also used in the area of neuroscience. In
[12] biologically motivated neural structure are used for de-
tection of signalling between neural fields. In this particular
model, there are two types of columns, macro- and mini-
columns. The neurons of the minicolumns are randomly
connected to each other in the first simulation step.

Another field of research in which random graphs are
used is the modelling and simulation of sensor networks,
often with the focus of self-organizing and routing aspects.
In [11] a scenario with a high number of cheap sensors,
connected to each other by a wireless ad-hoc network in-
frastructure is described where these sensors are dropped
out of a plane to monitor the environment. It becomes clear
that random networks are a good choice to model the re-
sulting topology.

Random graphs are also very important in the mod-
elling of communication networks such as the internet, ad-



hoc networks and P2P systems. For an overview of appli-
cations using random graphs please refer to [18].

In the context of communication infrastructures, the
aspect of IT security profits in many ways from the de-
tailed and realistic simulation of the underlaying network,
especially when computer viruses [5] or distributed denial
of service attacks are taken into consideration, which are
investigated and attempts are made to prevent them. The
simulations of both viruses which spread and denial of ser-
vice attacks can be based on random graph topologies [10].

The performance of networks is investigated in [8],
where the authors present another point of view on ran-
dom graph generating processes. The results are quite in-
teresting; Routing algorithms which use the ’geometric dis-
tance method’, registered an increase in performance after
adding a few random links. In contrast, the performance
is decreased after adding random links using ’shortest path
metric’ routing.

As you can see, random graph structures can be found
in many different areas of research, for the most part when
connected systems are being investigated. We propose a
model to define the parameters for two different graph gen-
eration processes keeping in mind the minimum number of
links. We are dealing with probabilities which means that
there will be connected graphs with a lower number of links
using parameters below our presented threshold. However,
in many cases, especially when the generation of hundreds
or thousands of topologies are needed for test runs, the gen-
eration of a connected graph has to be ensured.

2 Related Work

The aforementioned random graphs are, as a result of their
great significance, subject to a number of studies. Rate
equations known from statistical physics are used in [1]
to discuss the extremal properties of random structures e.g.
trees, graphs and networks. In [17] classical random graphs
are compared to scale-free networks in a performance anal-
ysis of a TCP/IP network, resulting in an improved per-
formance for the random structure when traffic is high. A
higher number of routers ensure a shorter way between two
nodes in a random structure which provides a more bal-
anced trafficload.

XinPing [22] introduces a network generation method
that creates a graphs from a predefined degree distribution.
Classic random graphs generally use a Poisson degree dis-
tribution, which are not always a good approximation of
real networks because they often follow a power-law de-
gree sequence. The robustness when faced with network
failures is addressed by Newman et. al. in [4], by exploring
the flow on random graphs. Their work also leaves the tra-
ditional path of Poisson degree distributions and observes
graphs with general distribution of degrees. They stated
that while power-law networks like the internet are quiet
robust with regard to the extraction of randomly picked
nodes, they are, however, fragile when dealing with the re-
moval of nodes with many connections.

The subject of this paper is closely related to re-
search carried out by Naldi [15], where the connectivity
of Waxman-type network structures is investigated for dif-
ferent side ratios of the base area (we are using a quadratic
area, see figure 1) and a model for the density distribution
of the link lengths is proposed.

When observing networks generated on the basis of
the Waxman algorithm, the problem of chosing values for
the constantsα andβ (see eq. 4) arises, because there is
no ’standard configuration’ for this. While Waxman him-
self used to set bothα andβ to 0.4, others worked with
very different parameter sets or ranges. For example Ze-
gura et. al. [23] encountered the same problem which we
would like to address and simply have chosenα = 0.2 and
β = 0.15 with no further explanatory statements. In order
to solve these kinds of problems, we present a mathemati-
cal relationship between the values ofα andβ in order to
find the optimal values under the constraints of a connected
graph and the minimum number of links.

3 Generators

Topology genrators are mainly proposed [14] to generate
structures which represent the internet topology and can
be distinguished into three special classes:Random Gen-
erators link two nodes dependent on a random function,
Structural Generators benefit from the hierarchical prop-
erties of the internet and try to recreate this structure and
Degree-based Generators which reproduce the degree dis-
tribution of all nodes, i. e. the probability of a node having
a certain numbers of links.

In this paper we deal with random generators and fo-
cus on a simple random graph generation function [6] and
the Waxman generator [21]. Figure 1 shows exemplary
graphs for both types of generation1.

(a) Pure Random Generator (b) Waxman Generator

Figure 1: Examples of Random Graphs

3.1 Random Generator

One of the simplest ways to create a random graph is to
place the desired number of nodes on a base area with a

1With 250 nodes and following parameters: a) Pure Random:p =

0.04 b) Waxman:α = β = 0.5, Lmax = 10000.
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Figure 2: Connectivity Probability of Random Generator

uniform distribution of their positions. Edges between all
pairs of nodes are added with a given probabilityPl. The
number of edges is straight proportional toPl and quadratic
to the number of nodes, which limit the maximum possible
edges ton(n−1)

2 .
Gilbert introduced a recursive algorithm to compute

the connectivity probability for homogeneous graphs [9],
the algorithm is initialized withf1 = 1.

fn = 1 −

n−1
∑

k=1

(

n − 1

k − 1

)

fk · (1 − Pl)
k(n−k) (1)

The approximationfn ≈ 1 − n(1 − Pl)
n−1 of (1) is only

valid for a large link probability and a large number of
nodes and can not be used for our problem because we get
very low probabilities for a large number of nodes.

Unfortunately this recursive algorithm is not easy to
compute for a large number of nodes. The first problem is
the binomial coefficient

(

n − 1

k − 1

)

=
(n − 1)!

(k − 1)! · (n − k))!
=

k−1
∏

i=1

n − i

i
(2)

which results in a very large value. This value is multi-
plied with the very low value(1−Pl)

k(n−k). Even double-
precision 64 bit floating-point computation [19] result in
rounding errors, which are fatal for the recursive algorithm.

In order to evaluate the recursive algorithm
for high n, special classes like MPFR2 [7] or
java.math.BigDecimal need to be used, which
provides decimal numbers of arbitrary precision and
correct rounding. This (required) precision has some dis-
advantages, the most significant being the calculation time.
For n > 5000 it took hours on actual desktop computer
hardware3 to calculate the probability of a connected graph
for a givenPl. Even if this probability can be calculated

2Multiple-Precision Binary Floating-Point Library With Correct
Rounding

3Intel Core 2 Duo 2,6 GHz, 4GB RAM
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Figure 3: Characteristic ofPc = 0.99 with approximation

we still do not know if this is the minimumPl needed to
generate a connected graph. Our question is notWhat is
the connectivity probability Pc for a given Pl but What
minimum Pl must be chosen in order to achieve a graph
which is connected with the probability Pc?

An empirical evaluation of the connectivity for vari-
ous numbers of nodesn and edge connection probability
is shown in figure 2. Forn > 200 the abrupt slope of the
connectivity probabilityPc going from0 + δ to 1 − δ with
δ → 0 is remarkable and is pointed out in [2] as typical for
random graph models.

In order to generate a graph with the minimum num-
ber of links which is, nevertheless, still fully connected the
upper edge of this slope must be looked at. Figure 3 shows
this edge for a number of nodes2 < n < 4.5 · 104 and
Pc = 0.99 and two different scales of the y-axis to get a
better impression of the data. The development of these
values seems to have a a power-law behaviorf(x) ∼ xβ

and even with the simple power-law distributionf(x) =
α · xβ we were able to obtain good approximation results.
The addition of a Gaussian term led to an even better ap-
proximation for higher values, but we have to accept the
disadvantage of a poor approximation forn < 100.

fα1,β,α2,ϑ,τ (n) = α1 · n
β + α2 · e

ϑ(n−τ)2 (3)

There is an almost perfect fit for the valuesn > 100, the
curves on the right of figure 3 are almost identical for em-
pirically estimated data and for our approximation. The
values of each coefficient of eq. 3 are given in table 1.

Parameter Value

α1 5,3413448
β -0,8985608
α2 0,0856744
ϑ -0,0001659
τ 2,4613273

Table 1: Values for approximation (eq. 3) in figure 3

With these coefficients and our approximation func-
tion fα1,β,α2,ϑ,τ (n) it is possible to choose a low link prob-
ability Pl resulting in a lower number of links but neverthe-
less still have a connected graph with probabilityPc.
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Figure 4: Link length distribution and QQ-Plot for corresponding Beta Distribution

3.2 Waxman Generator

In [21] Waxman proposed a model to generate network
topologies. In his model nodes are distributed uniformly
on a base area. The maximum possible distance isL and is
determined by the geometric shape of the base area. With
the probabilityP (u, v) edges are created between the node
pairsu andv.

P (u, v) = β · e
−d(u,v)

αL (4)

The probability of two nodesu andv being connected de-
pends on the Euclidean distanced(u, v) between them and
is influenced byα andβ, whereβ with 0 < β ≤ 1 directly
affects the link density. The ratio between short and long
links can be controlled byα (see figure 4 on the left) in the
range of0 < α ≤ 1. The number of links forn = 5000
is demonstrated in figure 5 for the allowed range ofα and
β. The number of links ranges upto a factor of10, which
does not seem very much, however there are many graph
properties and metrics which have a quadratic complexity
in calculation time [20].

Naldi [15] proposes the Beta Distributiondα,β(x) to
model the probability density function (pdf) of the dis-
tances between each pair of nodes.

dα,β(x) =
1

B(α, β)
xα−1(1 − x)β−1 (5)

B(α, β) =
Γ(α) · Γ(β)

Γ(α + β)
=

∫ 1

0

uα−1(1 − u)β−1du (6)

With eq. 4 and eq. 5 the probabilityPl for two generic
nodes to be connected is estimated to be

Pl =

∫ 1

0

P (u, v) · dα,β(x)dx (7)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

x 10
6

αβ

N
um

be
r 

of
 E

dg
es

Figure 5: Number of edges in Waxman graph (n = 5000)

which can be resolved toPl = β · Θ(α; α + β;−1/α).
These assumptions are carried out in [15] to analytically
obtain the connectivity of a Waxman graph for different
side ratios of the base area (we only use a quadratic base
area). The Beta Distribution is assumed as suitable and
Quantil-Quantil (QQ) plots with a near linear gradient of
the expected and empirical quantil are given to prove the
assumption.

We also evaluated the Beta Distribution, but variedα
(the pdf is independent ofβ andn). Figure 4 shows the
pdf of the distance and we agree with [15] that the Beta
Distribution is a very good approximation for the pdf of the
node distances, but only forα > 0.15. For lower values the
Beta distribution becomes inferior and is really not suitable
for α < 0.1. We are interested in a low number of links
(resulting in lowα andβ, see figure 5) which means that
we can not utilize the results of [15], which finally uses the
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Figure 6: Connectivity Probability of Waxman graph
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Figure 7: Connectivity of Waxman graph withPc = 0.99

unwanted recursive algorithm (eq. 1) of Gilbert [9].
As for random graphs, the distribution of the upper

edge of the connectivity probability of Waxman graphs can
be described by a power law relationship betweenα andβ

β(α) = ρ · ασ (8)

and is shown in figure 8 for differentn. The values ofρ
andσ, derived from the empirical determined relationship
betweenα andβ in fig. 7, are summarized in table 2.

The next step is the evaluation of the characteristics
of ρ andσ depending on the number of nodes. Figure 8
shows a plot of the values from table 2. We identified again
a power-law distribution, but addedµ as a third parameter
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Figure 8: Characteristic forα andβ dependent onn

n ρ σ

100 0,053536 -1,368692
200 0,023282 -1,524131
300 0,014424 -1,581728
500 0,008017 -1,631808
1000 0,0038 -1,673658
2000 0,001995 -1,697441
3000 0,001467 -1,706253
5000 0,001063 -1,713916

Table 2: Values of approximation (eq. 8) in figure 7

to get better results.

f(n) = κ · nλ + µ (9)

This equation is the beginning of our modelling process
with the parametersκ, λ andµ defined in table 3.

κ λ µ

ρ 14,831458 -1,223871 0,000637
σ 15,380093 -0,815294 -1,728748

Table 3: Parameters of eq. 9 to retrieveρ andσ

How should these results be interpreted? If a Waxman
graph with a minimum number of links as well as with a
high probability of being fully connected (Pc = 0.99) has
to be generated withn nodes,ρ andσ must be computed
using eq. (9) with the values of table 3. After choosing
the desired link length distribution (figure 4) withα, the
correspondingβ can be computed using eq. 8.

4 Conclusion and Future Work

We empirically evaluated the connectivity of about9 · 106

unique random and about12 · 106 unique Waxman graphs
to obtain the connectivity characteristics for different val-
ues ofPl, α andβ for severaln. With these characteristics
we derived two models to obtain the ceiling for each char-
acteristic for a specified connectivity probabilityPc. We
demonstrated that the Beta distribution can not always be
used to describe the link length distribution for Waxman
graphs.

For a random graph the probabilityPl for the graph
generation process can be directly obtained by our pro-
posed model for a particularn. The values for the two
parametersα andβ of the Waxman graph are obtained in-
directly. For a particularn the characteristic curve ofβ
which is dependent onα can be calculated. After choosing
α, the correspondingβ can be easily read from the char-
acteristic curve. Using these derived values for the graph
generation process ensures the minimum number of links
while maintaining the probabilityPc of a connected graph.

Future work will look at the improvement of our
model with the comprehension of a variable parameter



Pc. Samples have confirmed the assumption that the char-
acteristic of the connectivity of the the Waxman graph
will change, but we are surprised that this change is only
marginal. We are optimistic that further investigation will
be comprise a varibalePc in the model, so farPc is fixed.

We are also experimenting with different derivations
of a Waxman graph. For example, placing the nodes not
only on a rectangular base area but also on a sphere sur-
face where the distance between two points is a part of the
greater circle and results in a more balanced node distance
distribution without the tendency toward a long-tailed dis-
tribution. Another derivate is a combination of Waxman
graphs and random graphs we calledp-Waxman where a
link is only created if the distance is below a geometry in-
dependentLmax and the probability below a thresholdp.
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