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Abstract — The linear complexity profile of pseudo- for1 <m <n.

random sequences to be used in stream cipher systems Similarly as Niederreiter did in [2], we define a sequence
provides a criterion concerning their element’s unpre- s™ to have a good linear complexity profile, if for a real
dictability which is necessary for secure encryption. In numberK > 1 and2 < m < n the linear complexity is
this paper, we present new results concerning the num-  bounded by

ber of finite sequences with good linear complexity pro- m m m

files and determine the probability for an arbitrary cho- [51 — K -logym < L(s™) < [51 + K -logym. (1)
sen finite sequence with given length to have good linear

. . Note, that in this definition there is no restriction concern-
complexity profile.

ing the linear complexityl.(s!) of the start segment con-
sisting only of the first sequence element. We exclusively

. INTRODUCTION consider valued( > 1. If 0 < K < 1, we would obtain
Technically relevant stream cipher systems use finite bi-sequences with start segments that are partially predictable
nary pseudorandom sequencé&s= sq, $1, - - ., Sn—1, With by a property found by Wang [5].
Sm € GF(2) for0 < m < nandm,n € Z. These se- In general, the number of sequences that fulfill certain

guences are produced by a pseudorandom generator and tlsecurity requirements is of high interest. In this context, the
generation process is controlled by a cryptographic key. Fornumber of finite sequences with lengtland L (s™) = [ was
encryption, the pseudorandom sequence is added compaziven in [3]. Furthermore, the number of finite sequences
nentwisely to the binary elements of the plaintext messagewith lengthn and never exceeding a distante> 0 from
In order to decrypt the encrypted message, the same psey-3 | for 1 < m < n can be found in [4]. In this paper, we
dorandom sequence has to be substracted componentwisetyive the number of finite sequences with lengtand good
from the obtained ciphertext. In the following, we restrict linear complexity profile as it was defined in expression (1).
our considerations to binary sequences. In section II, we introduce some necessary fundamentals
For security reasons, the pseudorandom generator shoul@nd properties in the area of linear complexities. In sec-
produce the sequence in such a way that an attacker shoultion Ill, we give the new result concerning the number of
not be able to predict any unknown sequence element withPinary sequences with good linear complexity profile. Fur-
probability better tharP(s,,, = 0) = P(s,, = 1) = 0.5 thermore, we consider the probability to find a sequence
even if he knows the generation principle or any other se-With good linear complexity profile in the set of all finite
quence elements. Therefore, as a necessary condition fdpinary sequences of length
unpredictability, a sequence should have high complexity.
A sequence complexity measure indicates the difficulty in - RELEVANT PROPERTIES OFLINEAR COMPLEXITY
predicting the sequence. In this context, the linear complex- The properties of the linear complexity follow mainly
ity L(s™) of a finite sequence™ is very important. The from [1]. Let1 < m < n. If the shortest LFSR which is
linear complexity is defined as the length of the shortest lin- able to produce™* also generates the next element ,
ear feedback shift-register (LFSR) that can prodsiteln thenL(s™) = L(s™!). If the LFSR is not able to produce
generalp < L(s") < n. The generating LFSR anbl(s”) ~ sm—1 thenL(s™) = max(L(s™'),m—L(s™")). Inthis
can be found by the Berlekamp-Massey algorithm if the at- case, we have
tacker knows2 - L(s™) sequence elements [1]. Thus, for T _— .
the avoidance of the sequence reconstruction by means of r(gm) — { L(s™), flL({f ) %15 )
some known sequence elements and the application of the m— L(s™™%), if L(s™™%) < 3.
Berlekamp-Massey algorithm, the linear complexity should  This property of linear complexity is indicated in figure
be high-valued. 1. Each point in this figure represents all sequences of given
Rueppel showed in his work [3] that a high-valued lin- length with specific linear complexity. The numbers be-
ear complexity is not sufficient for unpredictability and in- side the arrows show the numbers of possibilities to obtain
troduced the linear complexity profile of a sequenteas a sequence withn elements and linear complexify(s™)
L(s'), L(s%),..., L(s"). He also stated that the linear com- from a sequence witm — 1 elements and linear complexity
plexity L(s™) should follow the’-line in a close manner ~ L(s™ ).



The number of binary sequenca (I) with n elements  Therefore, it yield§ Z£1] = [£] + 1 and thus;j has to be
and linear complexity.(s™) = [ was given in [3] as even, as it is shown in figure 2.
Since the second derivative &f - log, x iS negative and

min(2n—2[,21—1) ;
Np(l) = { ? it 1 ; 0<n, Fo<izn (38)  thefactthal K -log,j| = | K -logy(j + 1)], it results that
’ = | K -logo(m+1)| — | K -loggm] < 1form > j. Thus,
Analyzing expression (3), one finds tha, (1) is maxi- | K - log, m] can notincrease more thanf m grows byl

mum if | = [4]. Furthermore, it is known that the rounded form > j.

expected linear complexity of true binary random sequences In the following, we consider exclusively those se-
with n identically distributed symbols equalg;|. This guences of length wheren > j. Denote byR the number
serves as a posteriori justification for the consideration of of jumps in| K - log, m| for j < m < n. Then,R is ob-
the class of sequences that have linear complexity profiledained by

which are bounded symmetrically in respect[t§ | for R= K -logyn] — | K -log, j]. )

<m<n. d
2smsn If R > 0, then denote byn; fori = 1,..., R the posi-

The linear complexity of the class of sequences aSy0ns of the ium SiNK -log, m), and letj < my < -
they are defined by expression (1) is lowerbounded bymR <n Jump 821, J L=

max(0, [F] — | K - logym]) for lengthm. Analogously,
the linear complexity is upperbounded hyin(m, [2] + Definition 1 Letm > j. Q(m) is defined as thé2| K -
| K -logym]). As long asmax(0, [5 ] — | K -logy m]) =0 log, m| + 1)-dimensional vector whosé&* component rep-

which is equivalent td 3 | < | K -log, m] we have obvi-  resents the number of sequences of lengthvith linear
ouslymin(m, [F] + | K -logym]) = m. complexityL(s™) = [%] — |K - logym| — 1 + i for
Denote by; the maximum sequence length for which i = 1,... 2| K - log, m| + 1 and good linear complexity

max(0, [F] — |K -logym]) = 0 is fulfilled for everym profile.
with2 < m < j < n. If j = n, then the number of se-
guences with linear complexity profile as defined in expres-
sion (1) is given by> """, N,,(i) = 2", which is the number

of all binary sequences with length

If m = j, we have2| K -log, j| = j, and thus, we obtain
the(j + 1)-dimensional initialization vector

QUj) = [N;(0),...,N; ()" (5)

In the following, we show howQ(m) can be obtained
m Q(m — 1) exploiting the presented properties of linear
complexity shown in figure 1

[11. COMBINATORIAL ANALYSIS AND RESULTS

In order to consider binary sequences with good Iinearfro
complexity profiles for givenk and for arbitraryn, it is
necessary to analyze the behaviour of linear complexity pro-
files for j < m < n. By definition of j, we obtain that e if [ K -logym] > [K -logy(m — 1)] (subsection IIL.A),
[ K log,(j +1)]) > 0. and

SinceK -log, x is monotonously increasing over the real o if | K -log, m| = | K - log,(m — 1) (subsection I11.B).
numbers andZf] — | K log,(j+1)]) > 0 aswellag 1] -

|K -log, j] = 0, we havel K -log, j| = | K -log,(j +1)]. For efficiency reasons in computation, we also introduce

arelation to obtai) (m) from Q(m —2) for m even, which
is applicable if K - log, m| = | K - logy(m — 2)].
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Fig. 2: Range of linear complexity profiles far< m <
Fig. 1: Linear complexity for step fromn — 1 tom j+1



A. Increasing| K - log, m|

In this subsection, we will show how the number of bi-  fori=1,...,[K -logy, m|
nary sequences changes at the step fram- 1 to m if Qi(m) = Qi(m — 1),
m € {my,...,mg}. Notetha2 < j <my < ... < mp.
To do this, we have to distinguish the cases fori=|K -logym|+1,...,2[K -logym| — 1
Qi(m) =2Qi(m — 1)+ )
e m even, and +Q2| K logy m)+1—i(m — 1),
e m odd

QQ[K~log2 m] (m) = Ql(m - 1);
for | K -log, m| > 2. Note that the caseK - log, m| =1
does not exist folX > 1 andm € {m1,...,mp} with Q2K log, m]+1(m) = 0.

2<j<my <...<mg. .
=7 ! R These four subcases can also be summarized(l & -

logym| + 1) x (2| K - logym]| — 1)-matrix M) (| K -

|. case:m even .
" log, m|). We obtain

Here,Q(m—1)isa(2| K -log, m| —1)-dimensional vector;
Q(m) has dimensiof| K -log, m|+1. Inthis case, we have

the following relations between the component§gfn—1) _ (0) . . _
andQ(m) that follow by the properties of linear complexity Q(m) = M?(|K - logym])-Q(m—1), (10)
(see figure 1):
r1 0 07
Ql(m) = 0, 0o . )
fori=2,...,|K -log,m| MOK - loge m|) = } 9 11
Qi(m):Qi—l(m_l), (I_ g2 J) . 0 ( )
0 1 2
QLKJogQ mj+1(m) = 2C)LK-log2 m) (m - 1); (6) i (1) 8 l
fori=|K -logom]|+2,...,2| K -logym] O
Qi(m) =2Qi—1(m — 1)+ To summarize the results of this subsection, we have
+Q2| K 1ogy m)+1—i(m — 1), shown how@(m) can be calculated fron9(m — 1) for
m > j in case of increasingK - log, m| by application
Q2| K-log, m|+1(m) = 0. of expression (7) ifn is even, or expression (10)if is odd

respectively.
This relation can be modelled by(a| K - log, m| + 1) x

(2K -logy m] — 1)-matrix M) (| K - logy m)) B. Constant & - log, m|
In this subsection, we will analyze the behaviour of
Qm) = MK -logym])-Qm—1), (7) Q(m) at steps fromm — 1tom, m > j, if [K -logy(m —
1)] = |K -log, m]. Here, we also have to consider two
cases
'(1) 07 o |K-logo,m| =1,
0 . e | K -log, m] > 1 with subcases: even andn odd.
1
M(|K -logym]|) = 02 (8)  I.caselK -log,m| =1
0 . 0 in this case, we can restrict our consideration to just one
1 2 sequence length. Becauselof> 1, the only possible se-
L O 0 J quence lengthn > j with | K - log, m| = 1ism = 3 odd.

Thus, we do not have to consider the subeaseven, here.
Consider the3-dimensional vector§)(m — 1) andQ(m).

Il. case:m odd: Using the properties of linear complexity, we obtain

In this case, we also try to establish a mapping from the
(2| K - logy, m| — 1)-dimensional vecto€)(m — 1) to the

(2| K - log, m| + 1)-dimensional vecto€(m). To do this, Q1(m) = Qa(m — 1),
we also exploit the properties of linear complexity as we did Q2(m) =2Q3(m —1) + Q2(m — 1), (12)
before. We find Qs(m) = Q1(m —1).



The relation betwee@(m) and@(m — 1) can be described
by a(3 x 3)-matrixG() (| K -log, m|) = G(1)

Q(m) =G (1)-Q(m — 1),

} . (14)

O

(13)

= o O
O = =
SN O

GO(1) = {

Il. case:| K -log, m| > 1
Consider the2| K -log, m | +1)-dimensional vector® (m)

Q(m) = GUY(K logym]) -Q(m—1), (19)
0 1 0 0
0 1
G(")(LK-longJ)z 0 1 2 (20)
0 O 0
0o . 2
1 0 0
Oa

By alternating use of matriceS(®) (| K - log, m; |) and
G (| K -log, m;|) an appropriate number of times, one can

andQ(m — 1). To present the relations between the com- determine (m;1—1) fromQ(m;). Note that| K -log, m |

ponents of)(m) and@(m — 1), we have to distinguish the
two subcases: even andn odd.

Subcasen even:

If m is even we have the dependencies

fori=1,...,|K -logym]
Qi(m) = Qi(m — 1),

QLKJogz m,J-l—l(m) = QQI_KJng m,J-l—l(m - ]-); (15)

fori=|K -logom| +2,...,2| K -log,m| +1
+Q2| K logy m)+2—i(m — 1),

that can be written as a mapping usin@aK - log, m| +
1) x (2| K -logym| + 1)-matrix G() (| K - log, m])

Q(m) = GY(|K -logym])-Q(m—1), (16)
1 0 0
0 .
1
G (|K -logym]) = 0 2 (17)
1 0 2
0 . 0
1 0 0 2
Subcasen odd:
If m is odd we obtain
fori=1,...,|K -logym]
Qi(m) = Qit1(m — 1),
fori = |K -loggm],...,2| K -log, m] (18)

Qi(m) = 2Qi11(m — 1)+
+Q2| K log, m|+2—i(m — 1),

QQLKJogQ m,J-l—l(m) = QQl(m - 1);

which will be represented by means of f2¢ K -log, m| +
1) x (2| K -logym| + 1)-matrix G (| K - logy m])

is constant forn; < m < m;4; — 1. Since matrix mul-
tiplication is not commutative, the sequence of the matri-
ces is not allowed to be changed in the determination of
Q(mi+1 — 1). In order to obtain more effectivity, we now
analyze the behaviour of linear complexity profiles for steps
from sequence length. — 2 to m for m even and constant
|K - log, m| over this range. This means, that we need
at least three subsequent sequence lengths 2, m — 1
andm for which | K - logy(m — 2)] = | K - logy(m —
1)] = | K - log,m|. Therefore, we only have to consider
| K -log, m| > 2. SinceK > 1, three subsequent sequence
lengths with| K - log, m| = 1 do not exist.

Exploiting the properties of linear complexity, we obtain
for steps fromm —2tom, m > 6 even, and K -log, m| >
2

fori=1,...,|K -logym]
Qi(m) = Qi(m — 2),

Q| K 1og, m)+1(M) = 2Q | K .1og, m|+1(m — 2)+
+4Q | K -logy m|+2 (m - 2)7

fori = [K -logom] +2,...,2|K -logym|
Qi(m) = 4Qi+1(m — 2)+
+2Q2| K logy m | +2—i(m — 2)+
+Q2| K log, m|+3—i(m — 2),

(21)

Q2| K logy m)+1(m) = 2Q1(m — 2)+
+Q2(m - 2)a

that can be described usingd K - log, m| + 1) x (2| K -
logy m| + 1)-matrix H (| K - log, m]) by

Q(m) = H(|K-logym]) -Q(m—2), (22)
0 1 0 0
H(|K -logym]) = 8 2 4 (23)
.1 0 0
0o . 4
2 1 0 0



Now, we have the means to determi@én) effectively
applying matrices/(¢), M (), G(¢), G(°) andH to Q(j) =
[N;(0), .., N; ()]

C. Application of the Matrices

In the previous subsection, we showed h@yn) can be
obtained from@Q(j). The previous results can be summa-
rized in the following theorem in order to give the number
Ak (n) of binary sequences of length with good linear
complexity profile.

= [0,2,8,32,12,2,0]"

0 00 0O

10 0 0 O 2

01 0 0O 8
= 0 0200 16 | =

01 0 2 0 2

1.0 0 0 2 0

0 00 0O

_ 2 _
Theorem 1 The numberd (n) of finite binary sequences QQO) = H(3)-Q(6) = )
with lengthn and linear complexity 3| — K - logym < 8 (1) (1) 8 8 8 8 g
L(sm)g(%]+K.120§(21mfojrfz1and2§m§nis o 00 100 0 8
iven byA =y sLrroeen (n). = 000 2 40 0 32 | =
s YAk (n) = 322y Qi(n) 00020 s
E . : 0021 00 0 4 2
xample Consider the set of all sequences that are given 9 1. 000 0 0 0
with K = 1.2 andn = 12. We obtainj = 2. Thus,R = T
| K -logy | — | K -logy j| = [1.2-log, 12] —|1.2-log, 2] = = [8,32,112,448,224,56, 12]
4 — 1 = 3. This means that there are three sequence lengths
m for 2 < m < n where| K - log, m| increases. These
arem; = 4, mg = 6, andmg = 11. By expressions (3) ) (1) . o
and (5), we obtairQ(2) = [1,2,1]7. Application of the Q) M(4) - Q(10) =
matrices yields = [8,32,112, 448,896,224, 56,8, 0]"
QB) = GY1)-Q(2) = e
0 1o Q(12) = GY4)-Q11)=
— T
_ 01 2|.p,217= = [8,32,112,448,1792, 896, 224, 48, §]
1 0 0
By this result, we gefl; »(12) = 37, Q:(12) = 3568,
= (2,417 0
Table | showsA g (n) for some values of. and K. One
can recognize thatlx (n) does nearly not differ signifi-
cantly if K > 1.5.
— (e) — = . .
Q4) M(2)-Q@3) = Another interesting measure that can be easily deter-
0 00 mined by Ak (n) is the conditional probability that a se-
1 00 guence taken out of the set of all finite binary sequences
= 01 0 -[2,41"= with n elements has good linear complexity profile as it was
10 2 defined by (1) for giverK. It is obtained as
0 0 0
_ T
= [0,2,8,4,0 P21~ Lis™)| < Kloggm form =2....n |n) =
Ak (n)
o = 24
Q6) = G2) QM) = o 24)
8 (1) (1) 8 8 TABLE |
A for givenn and K
— o012 0]|-02840= x(n)forg sl
01 .0 0 2 K 20 50 100 200 500 1000
10 0 0 0 1.0 | 888448 |9.46e14 |1.06e30|1.35e60 | 2.74e150 | 8.96e300
T 1.1 | 906496 |9.69e14 |1.09e30|1.38e60 |2.81e150|9.21€300
= [2,8,16,2,0] 1.2 | 910464 |6.76e14 |1.10e30 | 1.39¢60 | 2.83e150 | 9.27€301

1.5 [1045952 |1.12e15|1.26e30 | 1.60e60 |3.27e150|1.07e301
2.0 [1048540|1.13e15|1.28e30|1.61e60 |3.27e150|1.07e301
3.0 [1048576|1.13e15|1.28e30|1.61e60 |3.27e150|1.07e301




These probabilities are shown in figures 3-6. The figures V. ACKNOWLEDGEMENT
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