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Abstract — The linear complexity profile of pseudo-
random sequences to be used in stream cipher systems
provides a criterion concerning their element’s unpre-
dictability which is necessary for secure encryption. In
this paper, we present new results concerning the num-
ber of finite sequences with good linear complexity pro-
files and determine the probability for an arbitrary cho-
sen finite sequence with given length to have good linear
complexity profile.

I. I NTRODUCTION

Technically relevant stream cipher systems use finite bi-
nary pseudorandom sequencessn = s0, s1, . . . , sn−1, with
sm ∈ GF (2) for 0 ≤ m < n andm, n ∈ Z. These se-
quences are produced by a pseudorandom generator and the
generation process is controlled by a cryptographic key. For
encryption, the pseudorandom sequence is added compo-
nentwisely to the binary elements of the plaintext message.
In order to decrypt the encrypted message, the same pseu-
dorandom sequence has to be substracted componentwisely
from the obtained ciphertext. In the following, we restrict
our considerations to binary sequences.

For security reasons, the pseudorandom generator should
produce the sequence in such a way that an attacker should
not be able to predict any unknown sequence element with
probability better thanP (sm = 0) = P (sm = 1) = 0.5
even if he knows the generation principle or any other se-
quence elements. Therefore, as a necessary condition for
unpredictability, a sequence should have high complexity.
A sequence complexity measure indicates the difficulty in
predicting the sequence. In this context, the linear complex-
ity L(sn) of a finite sequencesn is very important. The
linear complexity is defined as the length of the shortest lin-
ear feedback shift-register (LFSR) that can producesn. In
general,0 ≤ L(sn) ≤ n. The generating LFSR andL(sn)
can be found by the Berlekamp-Massey algorithm if the at-
tacker knows2 · L(sn) sequence elements [1]. Thus, for
the avoidance of the sequence reconstruction by means of
some known sequence elements and the application of the
Berlekamp-Massey algorithm, the linear complexity should
be high-valued.

Rueppel showed in his work [3] that a high-valued lin-
ear complexity is not sufficient for unpredictability and in-
troduced the linear complexity profile of a sequencesn as
L(s1), L(s2), . . . , L(sn). He also stated that the linear com-
plexity L(sm) should follow them

2 -line in a close manner

for 1 ≤ m ≤ n.
Similarly as Niederreiter did in [2], we define a sequence

sn to have a good linear complexity profile, if for a real
numberK ≥ 1 and2 ≤ m ≤ n the linear complexity is
bounded by

dm

2
e − K · log2 m ≤ L(sm) ≤ dm

2
e + K · log2 m. (1)

Note, that in this definition there is no restriction concern-
ing the linear complexityL(s1) of the start segment con-
sisting only of the first sequence element. We exclusively
consider valuesK ≥ 1. If 0 < K < 1, we would obtain
sequences with start segments that are partially predictable
by a property found by Wang [5].

In general, the number of sequences that fulfill certain
security requirements is of high interest. In this context, the
number of finite sequences with lengthn andL(sn) = l was
given in [3]. Furthermore, the number of finite sequences
with lengthn and never exceeding a distanceδ > 0 from
dm

2 e for 1 ≤ m ≤ n can be found in [4]. In this paper, we
give the number of finite sequences with lengthn and good
linear complexity profile as it was defined in expression (1).

In section II, we introduce some necessary fundamentals
and properties in the area of linear complexities. In sec-
tion III, we give the new result concerning the number of
binary sequences with good linear complexity profile. Fur-
thermore, we consider the probability to find a sequence
with good linear complexity profile in the set of all finite
binary sequences of lengthn.

II. RELEVANT PROPERTIES OFLINEAR COMPLEXITY

The properties of the linear complexity follow mainly
from [1]. Let 1 ≤ m ≤ n. If the shortest LFSR which is
able to producesm−1 also generates the next elementsm−1

thenL(sm) = L(sm−1). If the LFSR is not able to produce
sm−1 thenL(sm) = max(L(sm−1), m−L(sm−1)). In this
case, we have

L(sm) =
{

L(sm−1), if L(sm−1) ≥ m
2

m− L(sm−1), if L(sm−1) < m
2 .

(2)

This property of linear complexity is indicated in figure
1. Each point in this figure represents all sequences of given
length with specific linear complexity. The numbers be-
side the arrows show the numbers of possibilities to obtain
a sequence withm elements and linear complexityL(sm)
from a sequence withm−1 elements and linear complexity
L(sm−1).



The number of binary sequencesNn(l) with n elements
and linear complexityL(sn) = l was given in [3] as

Nn(l) =
{

2min(2n−2l,2l−1), if 0 < l ≤ n
1, if l = 0 ≤ n.

(3)

Analyzing expression (3), one finds thatNn(l) is maxi-
mum if l = dn

2 e. Furthermore, it is known that the rounded
expected linear complexity of true binary random sequences
with n identically distributed symbols equalsdn

2 e. This
serves as a posteriori justification for the consideration of
the class of sequences that have linear complexity profiles
which are bounded symmetrically in respect todm

2 e for
2 ≤ m ≤ n.

The linear complexity of the class of sequences as
they are defined by expression (1) is lowerbounded by
max(0, dm

2 e − bK · log2 mc) for lengthm. Analogously,
the linear complexity is upperbounded bymin(m, dm

2 e +
bK · log2 mc). As long asmax(0, dm

2 e−bK · log2 mc) = 0
which is equivalent todm

2 e ≤ bK · log2 mc we have obvi-
ouslymin(m, dm

2 e+ bK · log2 mc) = m.
Denote byj the maximum sequence length for which

max(0, dm
2 e − bK · log2 mc) = 0 is fulfilled for everym

with 2 ≤ m ≤ j ≤ n. If j = n, then the number of se-
quences with linear complexity profile as defined in expres-
sion (1) is given by

∑n
i=0 Nn(i) = 2n, which is the number

of all binary sequences with lengthn.

III. C OMBINATORIAL ANALYSIS AND RESULTS

In order to consider binary sequences with good linear
complexity profiles for givenK and for arbitraryn, it is
necessary to analyze the behaviour of linear complexity pro-
files for j ≤ m ≤ n. By definition of j, we obtain that
d j+1

2 e − bK · log2(j + 1)c) > 0.
SinceK · log2 x is monotonously increasing over the real

numbers andd j+1
2 e−bK ·log2(j+1)c) > 0 as well asd j

2e−bK · log2 jc = 0, we havebK · log2 jc = bK · log2(j +1)c.
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Fig. 1: Linear complexity for step fromm − 1 to m

Therefore, it yieldsd j+1
2 e = d j

2e + 1 and thus,j has to be
even, as it is shown in figure 2.

Since the second derivative ofK · log2 x is negative and
the fact thatbK · log2 jc = bK · log2(j + 1)c, it results that
bK · log2(m + 1)c − bK · log2 mc ≤ 1 for m ≥ j. Thus,
bK · log2 mc can not increase more than1 if m grows by1
for m ≥ j.

In the following, we consider exclusively those se-
quences of lengthn wheren > j. Denote byR the number
of jumps inbK · log2 mc for j < m ≤ n. Then,R is ob-
tained by

R = bK · log2 nc − bK · log2 jc. (4)
If R > 0, then denote bymi for i = 1, . . . , R the posi-

tions of the jumps inbK · log2 mc, and letj < m1 < . . . <
mR ≤ n.

Definition 1 Let m ≥ j. Q(m) is defined as the(2bK ·
log2 mc+ 1)-dimensional vector whoseith component rep-
resents the number of sequences of lengthm with linear
complexityL(sm) = dm

2 e − bK · log2 mc − 1 + i for
i = 1, . . . , 2bK · log2 mc + 1 and good linear complexity
profile.

If m = j, we have2bK · log2 jc = j, and thus, we obtain
the(j + 1)-dimensional initialization vector

Q(j) = [Nj(0), . . . , Nj(j)]T . (5)

In the following, we show howQ(m) can be obtained
from Q(m− 1) exploiting the presented properties of linear
complexity shown in figure 1

• if bK · log2 mc > bK · log2(m− 1)c (subsection III.A),
and

• if bK · log2 mc = bK · log2(m − 1)c (subsection III.B).

For efficiency reasons in computation, we also introduce
a relation to obtainQ(m) fromQ(m−2) for m even, which
is applicable ifbK · log2 mc = bK · log2(m − 2)c.

0

1

1 2

~ ~

sequence length

~
~

2

3

lin
e
a
r

c
o
m

p
le

x
it
y

3

jj-1 j+1

bounds

-linem
2
_

Fig. 2: Range of linear complexity profiles for1 ≤ m ≤
j + 1



A. IncreasingbK · log2 mc
In this subsection, we will show how the number of bi-

nary sequences changes at the step fromm − 1 to m if
m ∈ {m1, . . . , mR}. Note that2 ≤ j < m1 < . . . < mR.
To do this, we have to distinguish the cases

• m even, and

• m odd

for bK · log2 mc ≥ 2. Note that the casebK · log2 mc = 1
does not exist forK ≥ 1 andm ∈ {m1, . . . , mR} with
2 ≤ j < m1 < . . . < mR.

I. case:m even
Here,Q(m−1) is a(2bK ·log2 mc−1)-dimensional vector;
Q(m) has dimension2bK ·log2 mc+1. In this case, we have
the following relations between the components ofQ(m−1)
andQ(m) that follow by the properties of linear complexity
(see figure 1):

Q1(m) = 0,

for i = 2, . . . , bK · log2 mc
Qi(m) = Qi−1(m − 1),

QbK·log2 mc+1(m) = 2QbK·log2 mc(m − 1),

for i = bK · log2 mc+ 2, . . . , 2bK · log2 mc
Qi(m) = 2Qi−1(m − 1)+

+Q2bK·log2 mc+1−i(m− 1),

Q2bK·log2 mc+1(m) = 0.

(6)

This relation can be modelled by a(2bK · log2 mc + 1) ×
(2bK · log2 mc − 1)-matrixM (e)(bK · log2 mc)

Q(m) = M (e)(bK · log2 mc) · Q(m− 1), (7)

M (e)(bK · log2 mc) =




0 0
1
0 .

1
0 2
1 0 2

0 . . 0
1 2
0 0




(8)

2

II. case:m odd:
In this case, we also try to establish a mapping from the
(2bK · log2 mc − 1)-dimensional vectorQ(m − 1) to the
(2bK · log2 mc+ 1)-dimensional vectorQ(m). To do this,
we also exploit the properties of linear complexity as we did
before. We find

for i = 1, . . . , bK · log2 mc
Qi(m) = Qi(m − 1),

for i = bK · log2 mc+ 1, . . . , 2bK · log2 mc − 1
Qi(m) = 2Qi(m − 1)+

+Q2bK·log2 mc+1−i(m − 1),

Q2bK·log2 mc(m) = Q1(m − 1),

Q2bK·log2 mc+1(m) = 0.

(9)

These four subcases can also be summarized in a(2bK ·
log2 mc + 1) × (2bK · log2 mc − 1)-matrix M (o)(bK ·
log2 mc). We obtain

Q(m) = M (o)(bK · log2 mc) ·Q(m − 1), (10)

M (o)(bK · log2 mc) =




1 0 0
0 .

1
1
1 2

. . 0
0 1 2
1 0
0 0




(11)

2

To summarize the results of this subsection, we have
shown howQ(m) can be calculated fromQ(m − 1) for
m > j in case of increasingbK · log2 mc by application
of expression (7) ifm is even, or expression (10) ifm is odd
respectively.

B. ConstantbK · log2 mc
In this subsection, we will analyze the behaviour of

Q(m) at steps fromm − 1 to m, m > j, if bK · log2(m −
1)c = bK · log2 mc. Here, we also have to consider two
cases

• bK · log2 mc = 1,

• bK · log2 mc > 1 with subcasesm even andm odd.

I. case:bK · log2 mc = 1
in this case, we can restrict our consideration to just one
sequence length. Because ofK ≥ 1, the only possible se-
quence lengthm > j with bK · log2 mc = 1 is m = 3 odd.
Thus, we do not have to consider the subcasem even, here.
Consider the3-dimensional vectorsQ(m − 1) andQ(m).
Using the properties of linear complexity, we obtain

Q1(m) = Q2(m − 1),
Q2(m) = 2Q3(m− 1) + Q2(m − 1),
Q3(m) = Q1(m − 1).

(12)



The relation betweenQ(m) andQ(m−1) can be described
by a(3 × 3)-matrixG(o)(bK · log2 mc) = G(o)(1)

Q(m) = G(o)(1) ·Q(m − 1), (13)

G(o)(1) =


 0 1 0

0 1 2
1 0 0


 . (14)

2

II. case:bK · log2 mc > 1
Consider the(2bK ·log2 mc+1)-dimensional vectorsQ(m)
andQ(m − 1). To present the relations between the com-
ponents ofQ(m) andQ(m− 1), we have to distinguish the
two subcasesm even andm odd.
Subcasem even:
If m is even we have the dependencies

for i = 1, . . . , bK · log2 mc
Qi(m) = Qi(m − 1),

QbK·log2 mc+1(m) = 2QbK·log2 mc+1(m− 1),

for i = bK · log2 mc+ 2, . . . , 2bK · log2 mc+ 1
Qi(m) = 2Qi(m − 1)+

+Q2bK·log2 mc+2−i(m − 1),

(15)

that can be written as a mapping using a(2bK · log2 mc +
1)× (2bK · log2 mc+ 1)-matrixG(e)(bK · log2 mc)

Q(m) = G(e)(bK · log2 mc) · Q(m− 1), (16)

G(e)(bK · log2 mc) =




1 0 0
0 .

1
0 2
1 0 2

0 . . 0
1 0 0 2


 (17)

Subcasem odd:
If m is odd we obtain

for i = 1, . . . , bK · log2 mc
Qi(m) = Qi+1(m − 1),

for i = bK · log2 mc, . . . , 2bK · log2 mc
Qi(m) = 2Qi+1(m− 1)+

+Q2bK·log2 mc+2−i(m − 1),

Q2bK·log2 mc+1(m) = 2Q1(m− 1),

(18)

which will be represented by means of the(2bK · log2 mc+
1)× (2bK · log2 mc+ 1)-matrixG(o)(bK · log2 mc)

Q(m) = G(o)(bK · log2 mc) ·Q(m − 1), (19)

G(o)(bK · log2 mc) =




0 1 0 0
.
0 1
0 1 2
. 0 0 . 0

0 . 2
1 0 0


. (20)

2

By alternating use of matricesG(e)(bK · log2 mic) and
G(o)(bK ·log2 mic) an appropriate number of times, one can
determineQ(mi+1−1) fromQ(mi). Note thatbK ·log2 mc
is constant formi ≤ m ≤ mi+1 − 1. Since matrix mul-
tiplication is not commutative, the sequence of the matri-
ces is not allowed to be changed in the determination of
Q(mi+1 − 1). In order to obtain more effectivity, we now
analyze the behaviour of linear complexity profiles for steps
from sequence lengthm − 2 to m for m even and constant
bK · log2 mc over this range. This means, that we need
at least three subsequent sequence lengthsm − 2, m − 1
and m for which bK · log2(m − 2)c = bK · log2(m −
1)c = bK · log2 mc. Therefore, we only have to consider
bK · log2 mc ≥ 2. SinceK ≥ 1, three subsequent sequence
lengths withbK · log2 mc = 1 do not exist.

Exploiting the properties of linear complexity, we obtain
for steps fromm−2 to m, m ≥ 6 even, andbK · log2 mc ≥
2

for i = 1, . . . , bK · log2 mc
Qi(m) = Qi(m − 2),

QbK·log2 mc+1(m) = 2QbK·log2 mc+1(m − 2)+
+4QbK·log2 mc+2(m− 2),

for i = bK · log2 mc + 2, . . . , 2bK · log2 mc
Qi(m) = 4Qi+1(m − 2)+

+2Q2bK·log2 mc+2−i(m − 2)+
+Q2bK·log2 mc+3−i(m− 2),

Q2bK·log2 mc+1(m) = 2Q1(m − 2)+
+Q2(m − 2),

(21)

that can be described using a(2bK · log2 mc+ 1)× (2bK ·
log2 mc + 1)-matrixH(bK · log2 mc) by

Q(m) = H(bK · log2 mc) ·Q(m− 2), (22)

H(bK · log2 mc) =




0 1 0 0
.
0 1
0 2 4
. 1 0 . 0

0 . . 4
2 1 0 0


. (23)



Now, we have the means to determineQ(n) effectively
applying matricesM (e), M (o), G(e), G(o) andH to Q(j) =
[Nj(0), . . . , Nj(j)]T .

C. Application of the Matrices

In the previous subsection, we showed howQ(n) can be
obtained fromQ(j). The previous results can be summa-
rized in the following theorem in order to give the number
AK(n) of binary sequences of lengthn with good linear
complexity profile.

Theorem 1 The numberAK(n) of finite binary sequences
with lengthn and linear complexitydm

2 e − K · log2 m ≤
L(sm) ≤ dm

2 e + K · log2 m for K ≥ 1 and2 ≤ m ≤ n is

given byAK(n) =
∑2bK·log2 nc+1

i=1 Qi(n).

Example Consider the set of all sequences that are given
with K = 1.2 andn = 12. We obtainj = 2. Thus,R =
bK ·log2 nc−bK ·log2 jc = b1.2·log2 12c−b1.2·log2 2c =
4− 1 = 3. This means that there are three sequence lengths
m for 2 < m ≤ n wherebK · log2 mc increases. These
arem1 = 4, m2 = 6, andm3 = 11. By expressions (3)
and (5), we obtainQ(2) = [1, 2, 1]T . Application of the
matrices yields

Q(3) = G(o)(1) ·Q(2) =

=


 0 1 0

0 1 2
1 0 0


 · [1, 2, 1]T =

= [2, 4, 1]T

Q(4) = M (e)(2) ·Q(3) =

=




0 0 0
1 0 0
0 1 0
1 0 2
0 0 0


 · [2, 4, 1]T =

= [0, 2, 8, 4, 0]T

Q(5) = G(o)(2) · Q(4) =

=




0 1 0 0 0
0 0 1 0 0
0 0 1 2 0
0 1 0 0 2
1 0 0 0 0


 · [0, 2, 8, 4, 0]T =

= [2, 8, 16, 2, 0]T

Q(6) = M (e)(3) · Q(5) =

=




0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 1 0 2 0
1 0 0 0 2
0 0 0 0 0



·




2
8
16
2
0


 =

= [0, 2, 8, 32, 12, 2, 0]T

Q(10) = H2(3) · Q(6) =

=




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 2 4 0 0
0 0 2 1 0 4 0
0 2 1 0 0 0 4
2 1 0 0 0 0 0




2

·




0
2
8
32
12
2
0


 =

= [8, 32, 112, 448, 224, 56, 12]T

Q(11) = M (o)(4) ·Q(10) =

= [8, 32, 112, 448, 896, 224, 56, 8, 0]T

Q(12) = G(e)(4) ·Q(11) =

= [8, 32, 112, 448, 1792, 896, 224, 48, 8]T

By this result, we getA1.2(12) =
∑9

i=1 Qi(12) = 3568.
2

Table I showsAK(n) for some values ofn andK. One
can recognize thatAK(n) does nearly not differ signifi-
cantly if K ≥ 1.5.

Another interesting measure that can be easily deter-
mined byAK(n) is the conditional probability that a se-
quence taken out of the set of all finite binary sequences
with n elements has good linear complexity profile as it was
defined by (1) for givenK. It is obtained as

P (|dm

2
e − L(sm)| ≤ K log2 m for m = 2 . . . n |n) =

=
AK(n)

2n
(24)

TABLE I
AK(n) for givenn andK

n
K 20 50 100 200 500 1000

1.0 888448 9.46e14 1.06e30 1.35e60 2.74e150 8.96e300
1.1 906496 9.69e14 1.09e30 1.38e60 2.81e150 9.21e300
1.2 910464 6.76e14 1.10e30 1.39e60 2.83e150 9.27e301
1.5 1045952 1.12e15 1.26e30 1.60e60 3.27e150 1.07e301
2.0 1048540 1.13e15 1.28e30 1.61e60 3.27e150 1.07e301
3.0 1048576 1.13e15 1.28e30 1.61e60 3.27e150 1.07e301



These probabilities are shown in figures 3-6. The figures
show, that for sufficient large sequence length (n > 100)
the conditional probability in (24) only depends onK. One
recognizes that for such sequence lengths, the conditional
probability to find a finite binary sequence with good linear
complexity profile is nearly constant for specificK. Fur-
thermore, the conditional probability grows rapidly with in-
creasingK.

IV. CONCLUSION

In this paper, we presented a new method to determine
the number of finite binary sequences with good linear com-
plexity profile. The numberAK(n) of those sequences de-
pends on the lengthn and the constantK which describes
the range of the considered linear complexity profiles. The
measureAK(n) allows the determination of the probability
that an arbitrary chosen finite sequence with lengthn has
good linear complexity profile. Finally, we show how this
probabiltiy depends onn andK.

Fig. 3: Conditional Probability forn andK = 1.0, . . . , 1.25

Fig. 4: Conditional Probability forn andK = 1.3, . . . , 1.5
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