
A Naming Service Architecture and Optimal Periodical Update Scheme for
a Multi Mobile Agent System

Suphithat Songsiri
Dept. of Communication Systems, FernUniversität Hagen

Universitätstr.11, D-58084 Hagen, Germany
suphithat.songsiri@fernuni-hagen.de

Abstract

 An agent’s mobility presents a challenge to the
communication framework in the mobile agent
paradigm. A mobile agent communication, e.g.
messaging, can only occur when the actual location
of the mobile agent is known and a reliable message
delivery scheme is utilized. This paper concentrates
on designing a globally distributed naming service
architecture, which aids in locating a mobile agent
and finding the optimal time threshold. The optimal
time threshold aims to minimize the sum of the cost of
periodical updates and the cost of maintaining
forwarding pointers.

1. Introduction

 Communication, by means of exchanging
information and knowledge sharing, is paramount for
mobile agents to collaborate with one another. Dale
et al. [1] demonstrate two forms of communication
namely; synchronous (i.e. synchronous dialogue) and
asynchronous (i.e. sending messages). To send a
message to a mobile agent, its location must be
known. To locate a peer mobile agent, the following
three processes must eventuate: name resolution,
location update and searching or tracking scheme.
The name resolution process comprises of an entity
sending the name of a mobile agent to a name server,
and a name server returns the mobile agent’s latest
update location. In the location update process, a
mobile agent sends its current position to a name
server. Searching is a procedure, where an entity,
after retrieving a mobile agent’s location from a
name server, performs a broadcast scheme to find the
target mobile agent. The tracking scheme is a method
where each visited host maintains some information,
e.g. forwarding pointer, leading to the actual location
of a mobile agent. The well-known hurdle of
designing a positioning system is the mobility of a

mobile agent. A location update algorithm alone is
inadequate to guarantee the accuracy of the actual
location of a mobile agent. In order to escalate the
accuracy of a target mobile agent’s location, a
coalescence of location update algorithm with either
the tracking or searching algorithm should be
effectuated. This paper concentrates solely on the
periodical location update algorithm and tracking
(forwarding pointer) algorithm consortium. The
reason underlying the combination of time based
location update and forwarding pointer is to eliminate
the weaknesses of the forwarding pointer [15, 16,
17], which are node’s failure and lengthy forwarding
pointer, as well as to identify the status of a mobile
agent. This paper does not discuss node failure
handling, instead proposes to reduce the size of the
forwarding pointer so as to provide an efficient
naming service architecture. Finally, this paper
derives the optimal threshold for periodical location
update, which yields the lowest total cost of location
update and forwarding pointer maintenance. This
paper commences with section 2 where definitions
and related work are explained. Section 3 presents
the background and problem statements. Section 4
demonstrates a naming service architecture, server
selection and load balancing schemes. Section 5
describes optimal threshold calculation and location
update algorithm. Section 6 presents the summary.

2. Definitions and Related work

 The definitions of the frequently used terms in
this paper are given as follows:
• Mobile agent: An active object acting on behalf
of its owner and autonomously deciding on which
location it will visit next.
• Current vs. Actual Location: Current location
refers to the location where location update is
performed, whereas actual location indicates the
agent’s actual residence.

mailto:suphithat.songsiri@fernuni-hagen.de

• The Geographically Distributed Naming
Server Clusters (GDNSC): Sets of servers,
responsible for providing the latest location of the
target mobile agent in the system in response to a
request. All the servers in a cluster are connected by
a local area network. Each server in a cluster has the
same hardware specification.
• Server Cluster Manager (SCM): A front-end
node that receives all of the inbound requests sent to
a cluster and redistributes incoming requests to the
servers in the cluster. It acts as the centralized
dispatcher of a cluster with fine-grained control on
client request delegation.
 There are numerous studies concerning mobile
agent messaging protocol and locating mobile agent
algorithm. For example, Feng [24] uses the mailbox
concept. The mailbox acts as a message buffer,
which stores incoming messages. The mailbox can
however be detached from its owner. Baik et al. [8]
present a message-transferring model in multi-region
computing environment by broadcasting a “message
received” notification. Tolman [25] summarizes the
strategies of locating a mobile agent. From these
mentioned studies, we conclude that efficient naming
service and mobile agent location method are
essential to every message transfer model.

3. Background and Problem Statements

 This paper considers a free roaming mobile agent
scenario where the owner dispatches its mobile agent
to carry out some tasks during its lifetime. Each
mobile agent has a unique name defined using the
naming function, and lifetime . Once its lifetime
has expired the mobile agent migrates back to the
owner. Besides performing some tasks on the visited
host, the mobile agent must periodically update its
current location to a name server. The visited hosts
must maintain pointers to the host to be visited next
by the mobile agent until the consecutive update is
done. Once a new location update has been done, the
mobile agent sends messages informing each visited
host to erase their forwarding pointers. Before
proceeding any further, this paper will present some
problems posed by naming function, location update
and naming service architecture.

LifeT

 In this paper, an agent’s name is used to track its
location. It is not impossible that several agents
belonging to different owner possess the same name.
To avoid the latter, the naming function algorithm is
designed to produce a unique name for each mobile
agent. The location of a mobile agent is an important
issue for location-aware applications. Due to the
mobile agent’s mobility, an efficacious location
update scheme needs to be developed. To design an

effective location update algorithm, there are two
important issues to be considered namely: where and
when should a mobile agent update its location. The
first issue can be determined by using the server
selection method discussed in section 4.2. The
second can be distinguished by the following three
methods:
• Simple Method: Whenever a mobile agent
migrates to the next host, it updates its location to an
authorized entity.
• Movement-Based Method: Whenever a mobile
agent completes d migrations between hosts, it
updates its location to a name server [5, 16]. The
critical weakness of this method occurs during the
period between the first migration and the dth
migration, as the status of a mobile agent cannot be
easily determined. During this period a mobile agent
could have been killed or prevented from migrating.
• Time-Based Method: A periodical location
information update after a certain interval of time τ
has elapsed. The effectiveness of this method is not
determined by the behaviour of a mobile agent. This
method allows mobile agent’s status identification. It
is assumed that a mobile agent has been killed if a
location update to the authorized entity fails to ensue.
 Wright [10] demonstrates that the basic
properties of naming service architecture are
scalability, security and fault-tolerance. A naming
service architecture can be categorized into two
paradigms:
• Centralized Scheme [6, 7, 8, 9]: Only one name
server acts as a central database. Since everything
relies on only one entity, it is obvious that it will
become a single point of failure.
• Distributed Scheme [10]: This can be roughly
categorized into three types. The Cluster type is a
group of servers connected to each other by local
area network. The front-end node of a cluster
connects to the outside world and distributes loads
equally to each server. Even though this scheme
provides load balancing and easy management, the
front-end node undoubtedly becomes a single point
of failure. The Geographically Distributed Servers
type consists of servers, which are physically
installed on different locations. Unfortunately, this
scheme poses the danger of dispensing stale location
information. For instance, a mobile agent “A”
updates its current location to a server “S1”. At that
same time, an entity requesting server “S2” for A’s
location will be provided with A’s latest location, and
not the current location or S2 does not have A’s
location. The Geographically Distributed Cluster of
Servers (GDCS) type comprises of physically
dispersed clusters of servers. According to Shehory
et al. [14], the distributed scheme proves to be more
efficient in comparison to the centralized scheme.

4. The Naming Service Architecture

 This section attempts to explain the naming
service architecture design chosen to support global
and secure name resolution proposed in this paper.
From the problems indicated in section 3, the
GDNSC architecture has been depicted in this paper
due to its ability to expunge the bottleneck and single
point of failure problems incurred from a single name
server. Having a mobile agent’s name in hand, a host
chooses the best server cluster by using the server
selection algorithm, and sends a location request to
the chosen cluster. One of the servers in the cluster
will then return the location of the mobile agent to
the host. The SCM assigns the received request to
one of the servers by performing load distribution. If
none of the servers in the cluster is available due to
excessive load, the SCM will relay all incoming
requests to another SCM. Each cluster provides a
single virtual interface to the outside world. The only
address visible to the client is the virtual IP address
corresponding to one device, i.e. SCM. The
mechanism of how to designate the responding server
will be further elucidated in the sub-section 4.2. As
previously mentioned in the preceding section, the
availability of a mobile agent’s name is quintessential
for retrieving the actual mobile agent’s location. The
next sub-section expounds the generation of a unique
name by employing naming function algorithm.

4.1. Naming Function

 The naming function is a function that generates
a message containing a mobile agent’s readable name
and secure parameters for identification purposes. A
Name is a syntactic entity consisting of symbol
alphabet(s) as well as numerics, which denotes an
object. Roth [18] demonstrates that a globally unique
name could be used to defend against impersonation;
i.e. the chance to create another agent that maps to
the same globally unique name is negligible.
Recently, Wright [10] employs a hierarchical DNS-
styled agent naming format, which provides a
readability characteristic, but is vulnerable to
impersonation attack. Roth’s algorithm protects
against impersonation attack, however lacks in
readability. Even though a unique name is always
assumed in many literatures, they are devoid of an
explicit description of a unique name generation.
Hence, this paper endeavours to determine an
appropriate unique name generation method. As a
conclusion, a name should have the following
properties:
• Singularity: One name belongs to only one
mobile agent.

• Unpredictability: No one can generate a mobile
agent, which has the same name as an existing
mobile agent.
 In this paper, the public key infrastructure is
assumed to be available. denotes an
encrypted message m with host S’s public key.

 indicates host S’s signature on a message.
The unique name generation is accomplished by
registering a message (R) to the name server. A
readable name (R

SENC (m)

SSig (m)

N) should be exclusively different
from other agents’ names of the same owner. The
mobile agent’s kernel comprises of initial value and
codes. Mobile agent’s information refers to which
tasks are to be accomplished, the agent’s ability,
optimal time threshold, total number of updates, and
its lifetime. The last three values are further
elaborated in section 5.1. This encrypted message is
sent by the owner and then registered at the name
server. The registration message is illustrated in the
following equation:

[]Cluster owner NR ENC Sig R ,kernel,Agent 's information⎡ ⎤= ⎣ ⎦ (1)

After having received (1), the request is decrypted
and the signature attained is broadcasted to the other
clusters in GDNSC. They will send an
acknowledgement back to the broadcaster at the
acquirement of the signature. At the last entry of
acknowledgement, the selected cluster will send a
“registration completed” notification back to the host.
This indicates that the name is now registered in the
GDNSC. The possibility that another host could have
generated the same readable name as an existing
agent’s name belonging to another host is not
nonexistent. This will not, however lead to a name
conflict, since the registration at the name server
enforces the signing of the readable name, agent’s
kernel and agent’s information with the private key
of the owner host. Rendering thereby the uniqueness
of each name registered at the GDNSC.

4.2. Server Selection and Load Balancing

 This sub-section deals with the server selection
algorithm for the choice of the responding name
server cluster. The SCM of a cluster of servers in
GDNSC appears to be the server that responds to
incoming requests, even though in actual fact it only
relays the requests to one of the servers in the cluster.
The name server selection algorithm in this paper is
not to be misinterpreted to be the selection of a
responding server. The incoming requests allotment
performed by a SCM is accomplished by
administering the load-balancing algorithm. The
load-balancing algorithm is discussed later in this

sub-section. Due to the disseminated location of each
cluster, we necessitate to have a method to choose
one of these clusters to be the service point. This
paper considers server-side and client-side [11]
selection method. The client-side selection method is
most appropriate for the widely scattered clusters in
the GDNSC architecture. The cluster appointment is
done by client, based on selection methods like
client-server proximity [19, 20], random selection,
server’s load and so on. In this paper, a cluster
selection is attained by using client-server proximity
selection method. Favourably, the cluster with the
smallest proximity to the client will be depicted. This
server selection method contributes; to a certain
extent, to the performance improvement of the
system. Generally, to quantify the proximity
between client and server, three possible
consideration issues which are number of hops (or
routers), round trip time (RTT) and number of
administrative system (AS) hops, can be viewed.
This paper considers only the number of hops and
round trip time. The main reason for this decision is
to avoid the time-consuming computation in
acquiring the number of AS hops [19]. Apart from
that, having computed the number of AS hops does
not help determine the best server to respond to the
request. The Traceroute command is utilized to
determine the number of hops and RTT between a
client and a server. The ping utility is used to
measure RTT between a client and a server. Silva et
al. [19] point out that RTT should be used when
trying to reduce client’s perceived latency, while the
number of hops is a good indicator of network
resource usage. The cost of performing ping is
obviously much less than Traceroute, but Traceroute
provides more information. As a conclusion, the best
client-server proximity can be computed by
incorporating the RTT and number of hops (N) as
follows:

i i

N

C CS CSi 1
I min{(*RTT *N)} with 1

=
= α +β α+β= (2)

The selected cluster is . The values of α,β refer
to respectively perceived latency and network usage.
They may be adjusted according to the user’s
requirements. This algorithm can be performed as
frequently as necessary.

CI
CS

 After a mobile agent obtains a selected name
server cluster, it may now send a request to that
cluster. We now turn to the problem of how each
SCM effectively decides which server of the cluster
should serve the client’s request. This is where the
server-side selection method is employed in this
paper. The server-side selection method focuses on
server clusters in which a dispatcher; in this case the

SCM, equally distributes requests to one of the
servers contained in the cluster or redirects the
requests to another cluster of servers in case the
cluster’s load exceeds a predefined value. The SCM
consigns the requests based on dispatching policy.
Cardellini et al. [13] describe two algorithms for
dispatching policy: static or dynamic algorithms.
Since the static algorithm does not take into
consideration any state information while making
assignment decision, it proves to be the best solution
in preventing the SCM from becoming the primary
bottleneck of the cluster. The dynamic algorithm, on
the other hand, takes into account a variety of system
state information, and thereby has the potential to
outperform the static algorithm. It however,
introduces high computational complexity, which
could result in a bottleneck problem. Hence, we
choose the static algorithm to be our dispatching
policy implemented in server cluster. Typically,
static algorithm can be achieved by Random and
Round-Robin (RR) schemes. A random scheme
conveys the incoming requests uniformly through the
servers with equal probability. The danger in using
this scheme is that a certain server could receive
multiple requests while another server receives
nothing. Delay of service could arise once the
overloaded server has reached its limits in processing
the requests. To avoid the latter, we decided to
employ the RR scheme at the SCM. To make a
dispatching decision, RR uses a circular list and a
pointer to the last selected server. SCM executes as
follows:
• Request Distribution: each server in the cluster
must send an online status message periodically to
the SCM. Assume that was the last chosen host,

the new request will be assigned to as follows:

c
iS

c
jS

j (i 1) mod K= + where K = number of hosts (3)
• Load Monitoring: SCM observes the overall
cluster’s load, so as not to exceed the predefined
threshold; otherwise any new incoming request must
be redirected to another cluster.

4.3. Current Location Information Retrieval

 Assume that a host wants to request the location
of a mobile agent. The first step that it has to
accomplish is to find the best cluster of servers in the
vicinity to respond to its request. Once the cluster has
been selected, a host may now request for the agent’s
location by sending the location request (LR)
message to the cluster. The LR is shown as follows:

()[]cluster RH NLR ENC Sig R ,owner 'sPublicKey,RH'sID= (4)

RH is a requesting host. Viewing the scenario
described above from the cluster’s aspect, a LR
arrives at a server, and thus an agent’s location is to
be returned. The server then compares the received
name and public key of the owner to its database, and
returns the location. The current location message
used in returning the agent’s location is described as
follows:

RH Cluster NCL ENC [Sig (R ,owner 's ID, ker nel,

location, remaining _ time _ to _ update)]

=
 (5)

Note that all the servers in a cluster share the same
pair of public and private keys. The initial current
location of a mobile agent is set to be the owner’s
location. Due to the complexity and interdependence
of CL’s components, the location update algorithm
will be explicated in detail in the next section.

5. Optimal Time Threshold Calculation

 The optimal time threshold, the total number of
updates, and the agent’s lifetime values are also in
agent’s name registration in (1). Hence, all these
information must have been computed before the
agent’s name registration. The owner predestines the
agent’s lifetime. The number of updates and optimal
time threshold (τopt) are essential information for the
agent’s location update. τopt is the value of τ which
provides the minimum total cost of location update
and maintaining forwarding pointers. τ is the period
of time at which the agent is to update its current
location. To derive the costs of location update and
maintaining forwarding pointers, we model a free
roaming mobile agent. The agent migrates to hosts
H1, H2, and so on, and resided in the hosts for certain
duration described by which indicates the host
residence time (HRT). The agent will perform a
location update at every τ during its lifetime. It is not
uncommon that an agent still resides in a host after
updating its location. Thus, the time remaining for
the agent to stay in the host is indicated as . Every
time the agent migrates to another host, the previous
host maintains a forwarding pointer, which contains
the next host’s address. The duration for a host to
maintain the forwarding pointer is indicated as .
The forwarding pointer is maintained until the next
update has effectuated. Figure 1. illustrates the
above-described scenario. The cost of performing a
location update (U for U>0) accounts for bandwidth
utilization and the computation requirement, which
includes the expense of performing server selection
as well as updating the database in GDNSC. Let C

IHT

IRT

IMT

up

be the total cost of location update per mobile agent’s
lifetime. Thus, it is the cost per location update
multiplied by the number of updates given by

Life
UP

T
C U *⎡ ⎤= ⎢ ⎥τ⎣ ⎦

 (6)

Figure. 1 Time Diagram

From (6), the number of updates can be easily
derived from the dividing agent’s lifetime by the time
threshold, rounding the result to the closest integer.
The range of time threshold is given as .
C

Life0 T< τ ≤

up decreases for increasing τ. The cost of
maintaining forwarding pointer per unit time M
(M>0) can be obtained by considering the memory
usage of each visited host. Let be independent
identically distributed random variable with a general
distribution , the probability density

and expectation

iHT

iH HF (T)
iH Hf (T)

i iHE[T] 1 H= λ . Let be the

probability density function of and be
the distribution. The probability that there are i
visited hosts between two location updates us
denoted by v(i).

iR Rr (T)

iRT
iR RR (T)

 Let CM be the expected cost of maintaining
forwarding pointers per lifetime. It is the cost of
maintaining forwarding pointers per unit time
multiplied with number of location updates and the
average time to maintain forwarding pointer, given
as:

M 1 j

i 1
Life

R H
i 1 j 0

C M* *
T

v(i)* E[T] j*E[T]
+

∞ −

= =
=

1

⎡ ⎤⎡ ⎤ ⎡ ⎤+∑ ∑⎢ ⎥⎢ ⎥ ⎢ ⎥τ ⎣ ⎦⎣ ⎦ ⎣ ⎦
(7)

The derivation of v(i) and is achieved as
follows:

iR Rr (T)

• Calculation of : To derive this probability
density, we apply the renewal theory by using the
concept of renewal reward process to calculate
residual life (i.e. in this case it is). The detailed
derivation can be found in [21]. We have

iR Rr (T)

iRT

i iR R H H Hr (T) 1 F [T] E[T]⎡ ⎤= −⎣ ⎦ i

j 1H

.

• Calculation of v (i): Consider fig 1. , v(1)
indicates that there is one visited host between two
location updates.

1

1

1

R

R

R

v(1) P[T]

1 P[T]

1 R () (8)

= >τ

= − ≤τ

= − τ

 For , we have: i 1>

1 1 2

1 1 2

j j

R R H

R R H

i 1 n i

H H
j 1 j 1n 1

v(2) P[T]*P[T T]

P[T]*[1 P[T T]]

v(i) P T 1 P (T) (9)
−

= ==

= <τ + >τ

= ≤τ − + ≤τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ≤τ ∗ − ≤τ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
∑ ∑∏

Please note that .

1 1H RT T=

• The term from (7)

describes the total amount of forwarding pointers
maintaining time which is gathered from i visited
hosts given v(i). For example, given v(4) indicating
the four visited hosts H

1

i 1

R
j 0

E[T] j*E[T]
+

−

=

⎡ ⎤+ ∑⎢ ⎥⎣ ⎦

1, H2, H3 and H4 and two
location updates. The first location update occurred
at H1 and the second update is to occur at H4. The
total amount of forwarding pointers maintaining time
is shown as follows:

1 1 2 3 4

2 3 4

3 4

M R H H H

M H H

M H

T E[T T T T]

T E[T T]

T E[T] (10)

= + + +

= +

=

 The total cost is obtained by Cup(τ)+CM(τ). For
the calculation of the optimal threshold parameters;
the probability density of HRT, U and M must be
carefully specified. The in this paper has
been assumed to be exponentially distributed. In [22],
Ross explains that the lifetime of an instrument e.g. a
random variable can be assumed to be exponentially
distributed, because such a distribution does not
deteriorate with time, is easy to work with and often
a good approximation to the actual distribution. This
distribution has only one parameter, which is the
failure rate or mean. λ in this paper refers to the
average HRT. Due to the complexity of (6) and (7),
the optimal time threshold value has been procured
by means of simulations conducted using Matlab. At
the commencement of the simulation, some

difficulties in estimating the values of the
constants , U, M, and λ were encountered. These
values should never be assigned solely upon
assumption. Instead, proper experiments must be
conducted so as to acquire the most appropriate
values. For example, the best way to determine the
most appropriate

iH Hf (T)

λ

LifeT

λ will be to assign one task for the
mobile agent to perform on different hosts and use
the algorithm proposed in [23] (i.e. the failure rate for
exponential distribution can be estimated either
graphically on probability plotting paper, or
analytically using either least squares or maximum
likelihood). The value of could be easily
estimated when the owner knows the exact number
of hosts (i.e. predefined itinerary) a mobile agent will
visit. The same applies to the estimation for the
values of U and M. The acquirement of the U and M
values are yet to be investigated. The following
values were assigned for demonstration purposes
only:

LifeT

LifeT 200= , 0.1λ = , U = 2 and M=1. The
maximum number of visited hosts (i) is 15.

Figure. 2 Optimal Threshold

From Figure 2., τopt has been determined to be 24.
However, since the costs of τ = 27 and 31 are not
significantly different, these values can also be
adopted to be τopt. Thereby, it can be concluded that
the threshold value can take up values 24, 27 or 31.

5.1. Location Update and Stale Location
Information

 With the availability of the optimal threshold
value, we can now proceed with mobile agent
location update. In precedence to the location update,
the mobile agent has to ask the current host for the
best name server in the vicinity according to the
algorithm described in (2). At the attainment of the
server, the host produces a signature on the agent’s
kernel and its own IP address. After obtaining a

cluster server’s address and the signature from the
host, the mobile agent generates UL and transmits it
to the designated cluster.

[] []Cluster N hostUL ENC R ,Remaining_updates , Sig (kernel,host_addr (11)⎡= ⎣ ⎤⎦

 Once the SCM has received UL, it then broadcasts
the decrypted UL to the other clusters in GDNSC and
awaits acknowledgements. At the last entry of
acknowledgement, the location update is completed.
If a certain host requests for the mobile agent’s
location, the server will return the location, annexing
the agent’s remaining time for the next update. This
hinders any host from obtaining stale location
information. The signature generated by the host
obviates the repudiation of the fact that the agent has
resided in this host. In return, this ensures smooth
tracking of the mobile agent.
 Let us consider a scenario where a host retrieves
an agent’s location just shortly before the agent
performs its following update. The address obtained
by the host at that instance will be the address of the
first visited host. As previously mentioned, the hosts
visited by the agent maintain forwarding pointers to
be visited next host in the agent’s path only as long
as the agent has not updated its next location. Hence,
as the host contacts the first visited host to track the
agent’s next location, the pointer to the next host
might have well been erased, since the agent has
performed its next update. Undoubtedly, the tracking
of the agent breaks down at this point. Thereby, the
attached agent’s remaining time for the next update
in the returned current location allows the requesting
host to consider between tracking the agent
immediately or to request the location at a later time.

6. Summary

 The naming service architecture presented in this
paper provides secure name resolution for a large-
scale mobile agent system. Since the GDNSC
architecture encompasses globally distributed
clusters of name servers, a server selection algorithm
is proposed in this paper for the closest cluster
selection. The Server Cluster Manager performs load
balancing to distribute cluster’s load to the members.
In case of overloading, some incoming requests may
be relayed to other clusters in GDNSC. The naming
function described in this paper produces mobile
agent’s unique name using the conjunction of public
key infrastructure and digital signature. This paper
also proposes on how to obtain the actual location of
the mobile agent by using the combination of
periodical update (i.e. to determine the mobile
agent’s latest location) and the forwarding pointer

(i.e. the pointers which lead to the actual location of
the mobile agent). The optimal time threshold has
been procured to determine the best period for
location update, which gives the minimum cost of
location update and maintaining forwarding pointers.

7. Acknowledgement

 The author is currently a doctoral candidate under
the supervision of Prof. Dr.-Ing Firoz Kaderali at the
department of Communication Systems, Fern
Universität Hagen Germany. The author wishes to
thank Prof. Dr. rer. nat. habil. Werner Poguntke and
Prof. Dr.-Ing Firoz Kaderali for the encouraging
discussions that led to the development of this model
and reviewing this paper. The author is fully funded
by the project “ Mathematic and Engineering Science
Method for Secure Data Transmission and
Information Transfer” from DFG (German Research
Community).

8. References

[1] F.G. McCabe , J. Dale.“Asynchronous Messaging ”.
FIPA 98 Draft Specification part1.

[2] J. Li, H. Kameda, K. Li.“ Optimal Dynamic Mobility
Management for PCS Networks” IEEE Transaction on
Networking vol.8 June 2000.

[3] Y. Fang, I. Chlamtac, YB. Lin.“ Portable Movement
Modelling for PCS Networks” IEEE Transactions on
Vehicular Technology, Vol 49., July 2000.

[4] YB. Lin. “ Reducing Location Update Cost in A PCS
Network” IEEE/ACM Transaction on Networking, Vol.5,
Feb 1997

[5] T.Y Li, J.F Zhang. “An Optimal and Secure Tracking
Scheme for Mobile Agent”. AAMAS 2002.

[6] P.T. Wojciechowski. “Algorithms for location
Independent Communication between Mobile Agents”,
Technical Report DSC-2001/13, Departement Systemes de
Communication, EPFL, 2001.

[7] D. Milojicic, W. LaFroge, D. Chauhan. “ Mobile
objects and agents” Proc 4th USENIX conf. On Object-
Oriented Technologies and System,1998

[8] M. Baik. K.W. Yang, J. Shon, C. Hwang.“ Message
Transferring Model between Mobile Agents In Multi-
region Mobile Agent Computing Environment.” LNCS
2173, 2003

[9] X. Feng, J. Cao, J. Lü, H. Chan. “ An efficient mailbox-
based algorithm for message delivery in mobile agent
system” Proc. 5th Intern. Conf. On Mobile agemt ,Atlanta,
USA, LNSC 2240, 2001

[10] T. Wright. “ Naming Services in Multi-Agent System:
A Design for Agent-based White Pages”, AAMAS 2004

[11] S.G. Dykes, K. A. Robbins, C.L. Jeffery. “ An
Empirical Evaluation of Client-side Server Selection
Algorithms” IEEE INFOCOM, VOL. 3, MARCH 2000,
pp.1361-1370.

[12] M. Sayal, Y. Breitbart,P. Scheuermann, R. Vingralek.“
Selection algorithms for Replicated Web Server”, ACM
SIGMETRICS, Volume 26, 1998

[13] V. Cardellini, E. Casalicchio, M. Colajani, P. Yu. “
IBM Research report: The State of the Art in Locally
Distributed Web-server Systems”, 2001

[14] D. B. Ami, O. Shehory. “ Evaluation of distributed
and Centralized Agent location Mechanism”, CIA 2002 ,
LNAI 2446, pp 264-278,2002

[15] L. Moreau. “ A Fault-Tolerant Directory Service for
Mobile Agents based on Forwarding Pointers.” SAC 2002
Madrid Spain

[16] J. Ahn. “ Fault-Tolerant and Scalable Communication
Mechanism for Mobile Agents”, ISCIS 2004, LNCS 3280,
pp. 533-542, 2004

[17] J. Ahn. “ Decentralized Inter-agent Message
Forwarding Protocols for Mobile Agent System”, ICCSA
2004, LNCS 3045,PP 376-385

[18] V. Roth, J. Peters. “A Scalable and Secure Global
Tracking Service for Mobile Agents”, MA’2001, LNCS
2240, pp. 169-181.

[19] K. Obraczka, F. Silva.“ Network Latency Metrics for
Server Proximity”, IEEE GLOBECOM (2000), pp. 421–
427

[20] Z. Mao, C. Cranor, F. Douglis, M. Rabinovich. “ A
Precise and Efficient Evaluation of The Proximity between
Web Clients and their Local DND Servers” USENIX 2002

[21] S. M. Ross. “ Stochastic Processes” 2 nd ed New York,
Wiley 1996

[22] S. M. Ross. “ Introduction to Probability Models” 6th
ed. 1997

[23] “Calculating the parameter of the exponential
Distribution” www.weibull.com

[24] X. Feng. “ Design and Analysis of Mobile Agent
Communication Protocols”, Master thesis, 2002

[25] C. Tolman. “ A Fault-Tolerant Home-Based naming
Service for Mobile Agents”, Master thesis, 2003

http://www.weibull.com/

	Abstract
	An agent’s mobility presents a challenge to the communicatio

