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Abstract 
 

     One of the primary security challenges of the 
mobile agent paradigm is that of protecting the 
result of computation carried out by a mobile agent 
against an attack by a malicious host. There are 
various proposals that appeared in the literature. 
Beside their benefits, a well-known vulnerability of 
their technique is the collusion attack. The collusion 
attack mainly considered in this paper is the two 
colluders truncation attack, which could be 
engendered by the leakage of a one time private key. 
This paper demonstrates the prevention of the two 
colluders truncation attack, the detection of other 
forms of collusion attacks, and the identification of 
the malicious host. The proposed protocol 
incorporates and extends the notion of publicly 
verified chained signature [2] by using a list of route 
information and a trusted third party to generate a 
one time public/private key pair. 
 
 
1. Introduction 
 
       A mobile agent is a program that can migrate 
from host to host in a heterogeneous network. Due to 
its benefit over the traditional client-sever paradigm, 
many applications make use of its mobility. This 
paper considers the scenario of Free Roaming 
Mobile Agent, which is a mobile agent that travels in 
the unfixed itinerary to collect the intermediate data 
on each visited host. Each collected data can either 
be the result of some computation done by the 
mobile agent, based on some local input, or simply 
some data which has been given by the visited host 
without any processing by the mobile agent. We 
particularly concentrate in protecting the integrity of 
partial results collected by the agent.  There are 
many methods that have been devised to protect the 
integrity of the data carried by the agent including 
Partial Result Authentication Code [1], Chained 

Signature [2], Set Authentication Code [3], Append 
Only Container [10] and Improved Forward Integrity 
Protocol [4]. In [1] Yee proposed the Partial Result 
Authentication Code (PRAC) to ensure the integrity 
of the collected result. This method provides the 
agent with a set of secret keys used to calculate 
MAC (Message Authentication Code) upon the 
result of each host, using a one-way function to 
produce the key associated with the current host 
from an initial secret key given by the originator. 
PRAC comprises of the result and its MAC. The 
agent erases the secret key associated with the 
current host before migration. Yee defines forward 
integrity which implies that the first visited malicious 
host cannot modify or forge any PRACs of already 
visited hosts. Karjoth et al. [2] published a family of 
protocols that aims to protect the integrity and 
confidentiality of data collected by a free roaming 
agent. In their paper, they extended Yee’s protocols 
and defined a set of security properties that has a 
higher degree of security.  They extended public 
verifiable forward integrity from Yee [1] in the 
following manner “Anyone can verify the offer oi by 
checking whether the chain is valid at encapsulated 
offer Oi”. In other words, every visited host is able to 
verify the integrity of the encapsulated offer by using 
one time public/private key pair generated by the 
previous host. This property is very useful since not 
only the originator but also the visited host on the 
agent’s itinerary can detect the tampering. 
      The proposed protocol will demonstrate the 
prevention of two colluders truncation attack and the 
identification of the malicious host. The objective of 
this protocol is to ensure the confidentiality, 
authenticity, integrity, publicly verification and non 
repudiability on the collected data by using the 
trusted third party to issue the one time 
public/private key pair and forcing the agent to carry 
the protected list of visited host. The structure of this 
paper is organized as follows: Section 2 introduces 
the notations and defines the security properties. 
Section 3 presents the possible attacks and problem 



Table 1. Notations
 
Π            An agent’s code. 
TTP         Trusted third party 

iΨ             Protected list of already visited host at Si. 
 S0            ID of the originator. 
 Si   ID of server i, 1 ≤ i ≤ n 

0o             Dummy offer of originator. 

io             An offer (a partial result) from Si. 

iO            An encapsulated offer  

0 nO ,...,O    The chain of encapsulated offers from  
                 S0 to Sn. 

ir    A nonce generated by Si. 

iST            Timestamp chosen by Si. 
H(m)       Hash function of message m. 

i i( , )υ υ      A public/private key pair of server Si 

i i(y , y )      A one-time key pair to be used by Si.  
                key pair is generated by Si-1.   

i i( , )µ µ      A one-time key pair to be used by 
                Si+1,Si. The key pair is generated by TTP  

i i( , )σ σ      A one-time key pair to be used by 
                Si+1 and Si. When TTP is off-line.  
  

i i 1S SZ
+

         The shared secret computed by the entities 

i,i 1K +          Session key calculated using 
                 key derivation function.  
G              A subgroup of p

∗Z  
p               A large prime.  
q               A prime with q p 1− . 
g               A generator of G .   
 OSTi        Offline status of TTP generated by Si 

kMAC (m)   Message Authentication Code generated 
                  with key K.       

i
SIG (m)υ    Signature of Si on a message m. 

i
ENC (m)υ    Message m encrypted with the 
                   encryption  key associated with Si. 

i i 1t , t +          Ephemeral public key: Si
it gα= , Si 1

i 1t g +
α

+ =    

i i 1, +α α        Random integers, same size as the order  
                   of  G , chosen by Si and Si+1. 

T,F
i 1ACK +         Acknowledgement generated by Si+1 after 

                   checking TTP’ offline status.    
CT1,CT2        The cost according to the protocol T1,T2 

0 1S S : m→    S0 sending a message m to S1.        

statements. Section 4 demonstrates the proposed 
protocol. Section 5 describes security and cost 
analysis. Section 6 comprises the summary of this 
protocol.  
 
2. Notations and Security Requirements  
 
     The notations used in this paper are summarised 
in table 1. We assume that every host in the mobile 
agent environment knows the public key of the 
originator ( 0υ ) and the TTP ( TTPυ ). There is no 
further public key infrastructure in this situation.  
Given a signature, anyone can extract m, if one 
possesses the associated public key. A chain of 
encapsulated offers is an ordered sequence of 
encapsulated offers such that each entry of the chain 
depends on the previous and/or next host. This 
dependency is specified by a chain relation.  
 
2.1 Security Requirements 
 
      In this section, we list some of the basic security 
requirements behind the design of our scheme. We 
extend the set of security properties defined in [2] as 
follows:  
• Data confidentiality: Only S0 can extract the 

offer oi. 

• Non-repudiability: Si cannot deny submitting io  
after  S0 receives io . 

• Forward Privacy: Only S0 can extract the visited 
host’s identity. 

• Strong forward integrity: at Sm, where v m< , 
none of  Ov can be modified. 

• Publicly Verifiable Forward Integrity: Anyone 
can verify the validity of the offer io by checking 
chain at Oi. 

• Insertion resilience: No offer can be inserted at i 
unless explicitly allowed i.e. one host can insert 
only one offer. 

• Truncation resilience: the chain can only be 
truncated at Si if Si colludes with the attacker. 

• Malicious host identification: S0 can identify the 
malicious host after the invalidity of the chain of 
encapsulated offers has been reported. 

 
3. Attacks and Problem Statements 
 
      Assume that after visiting m undetermined hosts 
where m n≤ , a mobile agent is seized by a 
malicious host. This host, possibly the host Sm+1, 
obtains a chain of encapsulated offers O0,…,Om, 
Some host excluding Sm may collude with the 
malicious host to attack 



the chain of encapsulated offers.  Collusive hosts 
perform the following actions: 
• Deletion: The malicious host deletes previously 

encapsulated offers generated by its 
predecessors. 

• Modification:  The malicious host alters the 
collected offer. 

• Insertion:  The malicious host performs an 
illegal insertion of an offer into the chain of 
encapsulated offers.  

Please note that, in this paper both the malicious 
hosts and the collusive hosts/partners are able to 
perform deletion, truncation, modification, as well as 
revelation of secret information e.g. one time 
public/private key. 
        However, as pointed out by Roth in [7, 9], the 
protocols [1], [2] lack in mechanism to bind the 
dynamic data of an agent to its static data (i.e. its 
code and initial parameters). The absence of binding 
leads to the interleaving attack presented in his 
paper. Cheng and Wei [3] addressed the well known 
threat of the two colluder truncation attack in which 
a host with an agent in hand colludes with a 
previously visited host to discard all encapsulated 
offers between the two hosts. Recently, in [4] Yao et 
al. considered the collusion attack. They implied that 
the security of the KAG protocol [2] relies on the 
assumption that the predecessor does not leak the 
secret (the one time public/private key) used by its 
successor. This attack takes place when, for instance, 
a host Sm+1 sends a copy of the one time private key 
of its successor Sm+2 to its collusive partner Sk where 
m 2 k+ < , then when the mobile agent arrives at 
host Sk, Sk truncates all of the encapsulated offers 
after thm 2+  We deduce the problem from the 
previous works [1], [2], [3], [4] and [10], [12] that 
the vulnerability of all mentioned protocols 
concerning the collusion attack is the leakage of the 
one time private key. Generally, we can categorize 
the technique of key fabrication into four methods 
namely: 
       Pre-creation by the originator: In [1] the 
originator appends the list of the keys used by each 
host to the mobile agent. 
      Using key seed: Park et al [12] proposed the 
algorithm OKGS to ensure the data integrity by 
using DES to encrypt the result generated by each 
host. The idea of this method is that the originator S0 
produces the key seed Ck0 for its successor S1. S1 
will then incorporate its secret information and the 
acquired key seed to produce a one time key used by 
DES for data encryption. S1 will in turn produce a 
key seed for its successor based on its one time key.  
Their assumption is that the secret information from 
each host (which is encrypted by using the 
originator’s public key) is appended to the mobile 

agent. Then, nobody except the originator can 
generate the key to decrypt all the ciphers. This 
technique is unfortunately still vulnerable to the 
collusion attack.  
      Key fabrication by predecessor: Karjoth et al. [2] 
use this technique to achieve the security property 
“Publicly verifiable” mentioned in section 2. This 
technique too is not unexposed to the collusion 
attack. 
       Split knowledge key generation: Yao et al. [4] 
suggested the idea of the cooperation between the 
predecessor and the successor to produce a one time 
key used by the successor. This technique is mainly 
based on the idea from [2] by composing the one 
time private key generated by its predecessor and its 
long-term private key. The authors mentioned that 
this method cannot efficiently defend against the 
truncation attack. It has been concluded that in order 
to prevent the two colluders truncation attack and to 
detect other forms of collusion attacks on the chain 
of the encapsulated offers, it is essential to have an 
efficient and secure algorithm to establish the one 
time public/private key pair for each visited host. 
 
4. The Protocol  
     
     The goal of this paper is to design an effective 
protocol, which prevents the two colluders truncation 
attack [3] as well as detects other forms of collusion 
attacks. The security of the process used to generate 
the computation result at each visited host will not be 
discussed in this paper. This is based on the 
assumption that each host can be trusted to produce 
its own computed data. Assume that Si has the 
mobile agent in hand. After having completed its 
computation for the mobile agent, Si has two tasks to 
perform, namely: to sign the computation result and 
send the mobile agent to Si+1. In order to complete its 
tasks, Si interacts with the TTP. All hosts trust the 
TTP to execute the protocol faithfully and not to 
engage in any other activity that will deliberately 
compromise their security. Moreover, the TTP is 
trusted to generate a new one time public/private key 
pair for signing and verifying an offer and maintain 
the list of keys which have been issued for all hosts 
in an itinerary. The procedure is briefly described as 
follows: TTP issues the one time public/private key 
pair and maintains the key list. Si obtains the one 
time private key iµ for signing its offer under the 
constraint that only Si+1 will be its successor. 
Afterward, Si+1 receives the one time public key 

iµ for the verification of the validity of Si’s signature 
on its offer. We separate our protocol into two 
situations: TTP is always online (T1) and TTP is 
offline for some period of time (T2). 



4.1 Protocol T1 
 
      Protocol T1 is usable only under the assumption 
that TTP is always online to issue the one time 
public/private key pair for each host. Each host in the 
mobile agent’s itinerary knows the public key of the 
originator and the TTP. Both originator and TTP 
know each other’s public keys in advanced. TTP, 
however, has no knowledge about each visited host’s 
public key. The protocol commences with S0 
contacting TTP to perform mutual authentication as 
well as to obtain a one time private key for signing 
its offer. We call the latter key transportation. As 
defined by Boyd in [13], key transportation is a 
protocol in which one of the users in the protocol 
generates the key and this key is then transferred to 
all protocol users 
 
4.1.1 Mutual Authentification 
 
       Mutual Authentication serves as an indication of 
mobile agent dispatching described as follows: 
 

TTP

0 TTP

TTP 0

0 0 0 0

0 0 TTP o

0 TTP o

S TTP : ENC (r , ,S ) (1.1)

TTP S : ENC (SiG (r , r ,S ,TTP)) (1.2)

S TTP : ENC (SIG (r , r ,TTP)) (1.3)

υ

υ υ

υ υ

→ υ

→

→

 

 
The mutual authentication protocol is adapted from 
the ISO/IEC 9798-3 three pass mutual authentication 
[14]. From equations (1.1) to (1.3) the protocol 
assures TTP that S0 is active, and that S0 is aware of 
TTP as its peer entity. 
 
4.1.2 Key Transportation Protocol and Key List 
  

TTP 0

0 0 0,1TTP

TTP 0 0 ,10

o 0 1 S

0 0 1 0 S TTP

o 0 1 S TTP

S TTP : ENC (S ,S ,T ) (2.1)

TTP S : ENC (SIG (S ,S , ,T ,T )) (2.2)

S TTP : ENC (SIG (S ,S ,T ,T )) (2.3)

υ

υ υ

υ µ

→

→ µ

→

0,1TTPT : The time of one time private key issuing for  
            S0 when S1 is its successor generated by TTP 
 
Equation (2.1) is the constraint that only S1 is the 
next visited host. Equation (2.2) refers to the key 
transportation, which guarantees the freshness of a 
key. Equation (2.3) is the key confirmation where the 
key 

0
µ  is used to generate a signature. TTP thus 

knows that S0 successfully received the key. 
Consequently, equation (2.4) is initiated by TTP after 
receiving (2.1) for authentication purpose. The 
equations (2.5) through (2.7) are the combination of 
key transportation and key confirmation. Once (2.1) 
to (2.3) have been done, the originator is ready to 
sign its offer and dispatch the mobile agent to S1. 

Obviously S1 has an associated public key to check 
the validity of O0. 
 

TTP

TTP 1

1 1 ,0TTP

TTP 0 1 ,0

1 TTP

1 1 1 TTP 1

1 1 1 TTP 0 0

1 1 1 TTP 0

TTP S : SIG (r , TTP) (2.4)

S TTP : ENC (SIG (S , TTP, r , r ), ) (2.5)

TTP S : ENC (SIG (S , TTP, r , T , , S )) (2.6)

S TTP : ENC (ENC (S , TTP, r , T , S )) (2.7)

υ

υ υ

υ υ

υ µ

→

→ υ

→ µ

→

 

1.0TTPT : The time of one time verification public key 
            issuing for S1 when S0 is its predecessor.  
 
Subsequently, TTP generates the key list as follows:  
 

1,0 0,10 o 1 1 TTP TTP 0 0

Signer ,Next host,Time of issue,Key pairs
KeyList (2.8)

S , S , T ,T ( , )
=

υ υ µ µ

 
TTP updates or sends the key list periodically to the 
originator for verification of the chain of signatures 
in case tampering has been detected. 
 
4.1.3 Offer Encapsulation, List of Visited host and 
        Agent Transmission 
 

00

0o

0 0

0 1 S 0 0

0 0 0 o 0 o 1

o 0 1

S S : SiG ( ,T ),O ,

O SIG (ENC (o , r ),h ),h H(r ,S ) (3.1)

ENC (SiG (S ,S )) (3.2)

(3.3)
υ

υµ

υ µ

→ Π Ψ

= =

Ψ =

  
Equation (3.1) illustrates that, after S0 obtains the 
key issued by TTP, it signs an offer with the given 
key. This part of the protocol is a modification of the 
KAG protocol (P4), where the one time public key 
generated by S0 has been removed. Then, S0 
produces a list of already visited hosts in form of an 
encrypted signature containing S0 and S1, encrypted. 
Finally,  S0 sends the mobile agent to its successor. 
 
4.1.4 Agent Migration Protocol at Si (1 i n≤ ≤ ): 
       
       After receiving the mobile agent, the chain of 
encapsulated offers and the list of already visited 
hosts from Si-1, Si verifies the immutable part to 
ensure that the code belongs to the originator by 
checking the signature of the originator on the code. 
Subsequently if the code has not been altered, it 
inspects the encapsulated offer proceeding in a 
decreasing order, otherwise it reports to the 
originator. Si uses i 1−µ to recover i 1 i 2h ,− −µ  from Oi-1. 
Si examines recursively until the first encapsulated 
offer. If the invalidity in chain signature is identified, 
Si sends the mobile agent to the originator 
immediately. If the agent verification is successful, 
Si retrieves the one time private key from TTP and 



proceeds stepwise according to the previously 
defined equations. The generalization of how to 
produce offer encapsulation, list of visited host and 
agent transmission is given as follows: 
 

0i

0 i

00

i i i i i 1 i 1 i i 1 i 1

i i 1 i i 1 i 1

i i 1 S 0 1 i i

O SIG (ENG (o , r ), h ,S , ), h H(O ,S ) (4.1)

ENC (SiG (S ,S ,S ), ) (4.2)

S S : SiG ( ,T ),{O ,O ,...,O }, (4.3)

υ − − − +µ

υ − + −µ

+ υ

= µ =

Ψ = Ψ

→ Π Ψ

 
4.2 Protocol T2 
 
      Protocol T2 is focused mainly on dealing with a 
situation where TTP is inaccessible for a certain 
period of time when a host requires the one time 
private key for signing an offer. Protocol T2 is 
designed such that a host will be granted a temporary 
authority to generate the one time key pair on its 
own. Temporary authority will only be granted to Si 
when the absence of TTP has been confirmed by 
Si+1. Protocol T2 is described as follows: Protocol 
initialization at Si: Si was unable to reach TTP, the 
following occurs: 
 
4.2.1 Offline Status of TTP Generation ( iOST ):  
 
       Si produces the unreachable-status log file, 
which documents the number of attempts made in 
contacting TTP by using “ping” command. 
 
4.2.2 Key Agreement and Mutual Authentication.    
   
       Assume that there is no key sharing between two 
hosts and they have no knowledge of each other’s 
public keys. The key agreement protocol is utilized 
to establish a session key between the two 
cooperating hosts. The session key is used to send 
offline status of TTP securely to Si+1. There are some 
protocols which have been devised in the literature 
[15], [17], [18] concerning key agreement protocol. 
Key agreement protocols can be divided into two 
types. The symmetric protocol [15] describes the two 
entities a-priori possess common secret information, 
while the asymmetric protocol describes the two 
entities sharing only public information that has been 
authenticated. In our scheme, we employ the 
asymmetric protocol based on Diffie-Hellman key 
establishment [16], followed by an exchange of 
authentication information. Our protocol can be 
divided into two steps with the following procedures: 
• Step 1: equations (5.1) through (5.4), indicate 

the exchange of algorithms and parameters to 
establish a session key.  

• Step 2: equations (6.1) and (6.2) indicate entity 
authentication and acknowledgment swapping.  

In step 1, Si offers a list of Diffie-Hellman key 
exchange parameters that Si uses for ephemeral key 
fabrication. Once the ephemeral keys have been 
exchanged, both entities can derive a shared secret 
and form a temporary derived key by using key 
derivation function. MAC is employed as the key 
derivation function. 
 

i i 1 i i 1

i i 1

i i 1

i i 1 i i i

i 1 i i 1 i 1 i 1

i , i 1 i , i 1 r , r S S

S S i i 1 i 1 i

S S : S ,LIST, r , t

S S : S , t , r

(LIST (p,q,g,G,K )),K MAC (Z )

Z at S t ,S t

(5.1)
(5.2)
(5.3)

(5.4)
+ +

+

+

+

+ + + +

+ +

α α
+ +

→

→

= =

= =

               
Now, we consider the assurance Step 1 provides both 
entities. From Si’s point of view, it shares a secret 
(5.4), which is a result of ephemeral key exchange, 
known only to it and its peer entity who may or may 
not be Si+1. 
 

i,i 1 i,i 1i

i,i 1 i,i 1i 1

i i 1

K i i 1 i i 1 i i K i

i 1 i

T
K i i 1 i i 1 i 1 i 1 K i 1

S S :

SIG (MAC (t , t ,r ,r ,List,S ),OST),ENC ( )

S S :

SIG (MAC (t , t ,r ,r ,List,S ),ACK ),ENC ( )

(6.1)

(6.2)

+ +

+ ++

+

+ +ν

+

+ + + + +ν

→

ν

→

ν

 
Subsequently, Si and Si+1 generate MAC over the 
parameters that they used to produce the session key. 
Si+1 has signed the particular parameters mentioned 
in Step 1, of which Si has just created for this 
individual section. Encrypting its associated public 
key for the verification of its signature with Ki,i+1,Si+1 

shows Si that it was the creator of i 1t + . This assures 
Si that the entity engaged in the key exchange was, 
indeed Si+1. Si+1 obtains an analogous set of assurance 
from Si. After verifying the received signature, Si+1 
proves the genuineness of OSTi by attempting to 
contact TTP. On one hand, if TTP is indeed inactive, 
then T

i 1
ACK

+
is generated. Si will then receive an 

acknowledgment (6.2). This allows Si to generate the 
one time key pair. Si+1 as a witness to the key 
generation done by its predecessor is expected to 
send an acknowledgement about the key generation 
to TTP once it gets the mobile agent in hand. On the 
other hand, if TTP is available, Si+1 sends F

i 1
ACK

+
to 

inform Si to try to contact TTP again to retrieve the 
authorized one time private key. Therefore, the 
protocol T1 will be applied. There is, however, a 
possible situation where Si cannot reach TTP due to 
reasons like communication channel failure, but Si+1 
can reach TTP. Si+1 will send acknowledgement to Si. 
Upon receiving F

i 1
ACK

+
 Si retransmits TTP’s offline 

status to Si+1. Si+1 will now ask TTP to contact Si 
immediately. If TTP is also unable to reach Si, then 



TTP has to provide evidence of communication 
channel failure to Si+1. Once the evidence arrived, 
Si+1 must cooperate with Si to execute the appropriate 
protocol (i.e. T2). 
 
4.2.3 Offer Encapsulation and Agent Dispatching 

 
Si performs a one time public/private key pair 

generation. The generated private key pair is used to 
sign its offer as shown in equation (7.1). Equations 
(7.2) and (7.3) represent list of visited host and agent 
dispatching. 
 

0 i 1 ii

i ,i 1 i 1

0 i

00

T
i i i S S i i 1 i 1

K i

i i 1 i i 1 i 1

i i 1 S 0 1 i i

O SIG (ENC (o , r ,ACK ,OST ),h ,S , ),

ENC (ENC ( ))

ENC (SiG (S ,S ,S ), )

S S :SiG ( ,T ),{O ,O ,...,O },

(7.1)
(7.2)
(7.3)

+

+ +

υ − −σ

ν

υ − + −σ

+ υ

= µ

σ

Ψ = Ψ

→ Π Ψ

 
T

i 1
ACK

+
and offline statue in encrypted offer provide 

assurance to the originator that at the period of time 
when TTP is inactive, Si as a claimant and its 
verifier, Si+1 , cooperatively produced the evidence 
and proof of TTP’s inactiveness. T

i 1
ACK

+
serves as a 

confirmation that not only Si experienced the 
absence of TTP but also Si+1. After having received 
the key generation acknowledgement, the TTP 
instantaneously updates the key list incorporating the 
information obtained during its inactivity. Si+1 must 
include the offline status generated by the 
predecessor as well as its own acknowledgment into 
its offer no matter which protocol, i.e. T1 or T2, it 
employs. Therefore, the protocol T1 is applied when 
there is a presence of the TTP otherwise T2. 
 
5. Security and Cost Analysis 
 
      In this section, the protocols are analysed to 
ascertain whether they satisfy the set of security 
properties described in section 2. The protocols T1 
and T2 differ in generation of one time public/private 
key as well as the parameters contained in the 
encapsulated offer, however the method of signing 
an offer and protected list of visited hosts are similar. 
Therefore, the protocols can be similarly analysed. 
Data confidentiality: each host encrypts the offer 
with the originator’s public key so that only the 
originator can retrieve the protected offer. 
Non-repudiability: In T1, each host submits its offer 
signed with the key given by the TTP, thus making it 
impossible for Si to deny the offer it has signed. In 
T2, each host submits its offer signed with the “self-
generated” key, thus prohibiting Si from denying 
having signed the offer. 

Forward Privacy: is not fulfilled. The reason being 
every host must append its predecessor’s identity to 
its signature to be used when the host verifies the 
hash value in every encapsulated offer.  
Strong forward integrity: The hash function and 
digital signature used enforce this property. 
Publicly Verifiable Forward Integrity: Any host can 
retrieve the verification public key. 
Insertion resilience: Insertion of any illegal offer 
anywhere in the chain relation is prevented by the 
hash function.  
Truncation resilience: is fulfilled by protocol T1 
because all of the hosts use only the key issued by 
TTP. We can track which hosts append their offers to 
the chain of encapsulated offers. Protocol T2 only 
satisfies this property provided the TTP’s offline 
time is not too long. 
Malicious host identification: the protocols T1 and 
T2 are treated separately. Protocol T1’s possible 
attacks and malicious host identification, for 
example, are described as follows: Two colluder 
truncation attack: This attack can be eliminated due 
to the fact that only TTP is entitled to generate the 
one time public/private key which will be used to 
sign an offer. Even if a collusive host sends its key to 
its malicious partner, the key will not be usable to 
sign an offer.  Signing and verifying an offer without 
obtaining the authorized keys: Two or more collusive 
hosts did not contact TTP to obtain the authorized 
keys. This attack can be detected when the honest 
host receives a mobile agent without having been 
previously contacted by the TTP. It will send the 
mobile agent back to the originator. The identity of 
the malicious host(s) can be unmasked by comparing 
the list of visited hosts and the key list.         
        Protocol T2’s possible attacks and malicious 
host identification are described as follows: Two 
colluders truncation attack: The protocol T2 detects 
this attack by checking the list of visited hosts 
generated by the hosts between the collusive 
partners. Spurious one time public/private key 
deployment: T2 is capable of detecting a malicious 
host in case it appended a bogus one time public key 
on its offer. Since T2 requires all hosts to update the 
list of generated keys to TTP, the originator only 
needs to check the list of generated keys in order to 
identify the malicious host.  
   
5.1 Cost Analysis  
         
         In this subsection we investigate the cost 
introduced by our protocols T1 and T2 under the 
network utilization aspect. Suppose the cost of 
sending a single session message is Un. The total cost 
of each protocol at each visited host is the 
multiplication of the cost per message with the total 



number of messages (Ni) composed during 
authentication, key transportation, key confirmation 
and mobile agent transmission. We derive the cost 
CT1 according to T1 1 NC N * U= , where N1 = 11. 
Identically we deduce the cost CT2, where N2 = 5. 
Comparing our protocols to the existing protocols [2, 
3, 4, 8, 10, 11], ours induce many message 
transmissions, which results in cost ineffectiveness 
(i.e. from network utilization point of view). 
Conversely to these mentioned protocols, our 
protocols can prevent the problem of two colluders 
truncation attack and identify the malicious host.  
 
6. Conclusion and Future Work 
 
     As shown in section 5, T1 is not only capable of 
fulfilling most of the stated security requirements, 
but it is also competent to detect malicious activities 
as well as identify the malicious hosts. T2 provides a 
more adaptable scheme as the operation can still take 
place in the absence of TTP. Apart from that, the 
protocol is also able to detect the two colluders 
truncation attack by checking the list of visited hosts 
generated by the hosts. However, the identification 
of the real malicious hosts cannot be efficiently 
capacitated by the protocol. The robustness of the 
protocols T1 and T2 relies mainly on the 
authentication protocol, key establishment and key 
agreement schemes. The two protocols introduce 
many message passing activities, which inevitably 
exposes the system to other types of attacks like 
message replay attack and impersonation attack. Our 
future research is aimed to avoid the large number of 
message transmission activities between the hosts 
and to simulate the cost imposed by our protocol.    
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