
A New Approach for Computation Result Protection in the Mobile Agent
Paradigm

Suphithat Songsiri
Dept. of Communication Systems, FernUniversität Hagen

Universität str.11, D-58084 Hagen, Germany
suphithat.songsiri@fernuni-hagen.de

Abstract

 One of the primary security challenges of the
mobile agent paradigm is that of protecting the
result of computation carried out by a mobile agent
against an attack by a malicious host. There are
various proposals that appeared in the literature.
Beside their benefits, a well-known vulnerability of
their technique is the collusion attack. The collusion
attack mainly considered in this paper is the two
colluders truncation attack, which could be
engendered by the leakage of a one time private key.
This paper demonstrates the prevention of the two
colluders truncation attack, the detection of other
forms of collusion attacks, and the identification of
the malicious host. The proposed protocol
incorporates and extends the notion of publicly
verified chained signature [2] by using a list of route
information and a trusted third party to generate a
one time public/private key pair.

1. Introduction

 A mobile agent is a program that can migrate
from host to host in a heterogeneous network. Due to
its benefit over the traditional client-sever paradigm,
many applications make use of its mobility. This
paper considers the scenario of Free Roaming
Mobile Agent, which is a mobile agent that travels in
the unfixed itinerary to collect the intermediate data
on each visited host. Each collected data can either
be the result of some computation done by the
mobile agent, based on some local input, or simply
some data which has been given by the visited host
without any processing by the mobile agent. We
particularly concentrate in protecting the integrity of
partial results collected by the agent. There are
many methods that have been devised to protect the
integrity of the data carried by the agent including
Partial Result Authentication Code [1], Chained

Signature [2], Set Authentication Code [3], Append
Only Container [10] and Improved Forward Integrity
Protocol [4]. In [1] Yee proposed the Partial Result
Authentication Code (PRAC) to ensure the integrity
of the collected result. This method provides the
agent with a set of secret keys used to calculate
MAC (Message Authentication Code) upon the
result of each host, using a one-way function to
produce the key associated with the current host
from an initial secret key given by the originator.
PRAC comprises of the result and its MAC. The
agent erases the secret key associated with the
current host before migration. Yee defines forward
integrity which implies that the first visited malicious
host cannot modify or forge any PRACs of already
visited hosts. Karjoth et al. [2] published a family of
protocols that aims to protect the integrity and
confidentiality of data collected by a free roaming
agent. In their paper, they extended Yee’s protocols
and defined a set of security properties that has a
higher degree of security. They extended public
verifiable forward integrity from Yee [1] in the
following manner “Anyone can verify the offer oi by
checking whether the chain is valid at encapsulated
offer Oi”. In other words, every visited host is able to
verify the integrity of the encapsulated offer by using
one time public/private key pair generated by the
previous host. This property is very useful since not
only the originator but also the visited host on the
agent’s itinerary can detect the tampering.
 The proposed protocol will demonstrate the
prevention of two colluders truncation attack and the
identification of the malicious host. The objective of
this protocol is to ensure the confidentiality,
authenticity, integrity, publicly verification and non
repudiability on the collected data by using the
trusted third party to issue the one time
public/private key pair and forcing the agent to carry
the protected list of visited host. The structure of this
paper is organized as follows: Section 2 introduces
the notations and defines the security properties.
Section 3 presents the possible attacks and problem

Table 1. Notations

Π An agent’s code.
TTP Trusted third party

iΨ Protected list of already visited host at Si.
 S0 ID of the originator.
 Si ID of server i, 1 ≤ i ≤ n

0o Dummy offer of originator.

io An offer (a partial result) from Si.

iO An encapsulated offer

0 nO ,...,O The chain of encapsulated offers from
 S0 to Sn.

ir A nonce generated by Si.

iST Timestamp chosen by Si.
H(m) Hash function of message m.

i i(,)υ υ A public/private key pair of server Si

i i(y , y) A one-time key pair to be used by Si.
 key pair is generated by Si-1.

i i(,)µ µ A one-time key pair to be used by
 Si+1,Si. The key pair is generated by TTP

i i(,)σ σ A one-time key pair to be used by
 Si+1 and Si. When TTP is off-line.

i i 1S SZ
+

 The shared secret computed by the entities

i,i 1K + Session key calculated using
 key derivation function.
G A subgroup of p

∗Z
p A large prime.
q A prime with q p 1− .
g A generator of G .
 OSTi Offline status of TTP generated by Si

kMAC (m) Message Authentication Code generated
 with key K.

i
SIG (m)υ Signature of Si on a message m.

i
ENC (m)υ Message m encrypted with the
 encryption key associated with Si.

i i 1t , t + Ephemeral public key: Si
it gα= , Si 1

i 1t g +
α

+ =

i i 1, +α α Random integers, same size as the order
 of G , chosen by Si and Si+1.

T,F
i 1ACK + Acknowledgement generated by Si+1 after

 checking TTP’ offline status.
CT1,CT2 The cost according to the protocol T1,T2

0 1S S : m→ S0 sending a message m to S1.

statements. Section 4 demonstrates the proposed
protocol. Section 5 describes security and cost
analysis. Section 6 comprises the summary of this
protocol.

2. Notations and Security Requirements

 The notations used in this paper are summarised
in table 1. We assume that every host in the mobile
agent environment knows the public key of the
originator (0υ) and the TTP (TTPυ). There is no
further public key infrastructure in this situation.
Given a signature, anyone can extract m, if one
possesses the associated public key. A chain of
encapsulated offers is an ordered sequence of
encapsulated offers such that each entry of the chain
depends on the previous and/or next host. This
dependency is specified by a chain relation.

2.1 Security Requirements

 In this section, we list some of the basic security
requirements behind the design of our scheme. We
extend the set of security properties defined in [2] as
follows:
• Data confidentiality: Only S0 can extract the

offer oi.

• Non-repudiability: Si cannot deny submitting io
after S0 receives io .

• Forward Privacy: Only S0 can extract the visited
host’s identity.

• Strong forward integrity: at Sm, where v m< ,
none of Ov can be modified.

• Publicly Verifiable Forward Integrity: Anyone
can verify the validity of the offer io by checking
chain at Oi.

• Insertion resilience: No offer can be inserted at i
unless explicitly allowed i.e. one host can insert
only one offer.

• Truncation resilience: the chain can only be
truncated at Si if Si colludes with the attacker.

• Malicious host identification: S0 can identify the
malicious host after the invalidity of the chain of
encapsulated offers has been reported.

3. Attacks and Problem Statements

 Assume that after visiting m undetermined hosts
where m n≤ , a mobile agent is seized by a
malicious host. This host, possibly the host Sm+1,
obtains a chain of encapsulated offers O0,…,Om,
Some host excluding Sm may collude with the
malicious host to attack

the chain of encapsulated offers. Collusive hosts
perform the following actions:
• Deletion: The malicious host deletes previously

encapsulated offers generated by its
predecessors.

• Modification: The malicious host alters the
collected offer.

• Insertion: The malicious host performs an
illegal insertion of an offer into the chain of
encapsulated offers.

Please note that, in this paper both the malicious
hosts and the collusive hosts/partners are able to
perform deletion, truncation, modification, as well as
revelation of secret information e.g. one time
public/private key.
 However, as pointed out by Roth in [7, 9], the
protocols [1], [2] lack in mechanism to bind the
dynamic data of an agent to its static data (i.e. its
code and initial parameters). The absence of binding
leads to the interleaving attack presented in his
paper. Cheng and Wei [3] addressed the well known
threat of the two colluder truncation attack in which
a host with an agent in hand colludes with a
previously visited host to discard all encapsulated
offers between the two hosts. Recently, in [4] Yao et
al. considered the collusion attack. They implied that
the security of the KAG protocol [2] relies on the
assumption that the predecessor does not leak the
secret (the one time public/private key) used by its
successor. This attack takes place when, for instance,
a host Sm+1 sends a copy of the one time private key
of its successor Sm+2 to its collusive partner Sk where
m 2 k+ < , then when the mobile agent arrives at
host Sk, Sk truncates all of the encapsulated offers
after thm 2+ We deduce the problem from the
previous works [1], [2], [3], [4] and [10], [12] that
the vulnerability of all mentioned protocols
concerning the collusion attack is the leakage of the
one time private key. Generally, we can categorize
the technique of key fabrication into four methods
namely:
 Pre-creation by the originator: In [1] the
originator appends the list of the keys used by each
host to the mobile agent.
 Using key seed: Park et al [12] proposed the
algorithm OKGS to ensure the data integrity by
using DES to encrypt the result generated by each
host. The idea of this method is that the originator S0
produces the key seed Ck0 for its successor S1. S1
will then incorporate its secret information and the
acquired key seed to produce a one time key used by
DES for data encryption. S1 will in turn produce a
key seed for its successor based on its one time key.
Their assumption is that the secret information from
each host (which is encrypted by using the
originator’s public key) is appended to the mobile

agent. Then, nobody except the originator can
generate the key to decrypt all the ciphers. This
technique is unfortunately still vulnerable to the
collusion attack.
 Key fabrication by predecessor: Karjoth et al. [2]
use this technique to achieve the security property
“Publicly verifiable” mentioned in section 2. This
technique too is not unexposed to the collusion
attack.
 Split knowledge key generation: Yao et al. [4]
suggested the idea of the cooperation between the
predecessor and the successor to produce a one time
key used by the successor. This technique is mainly
based on the idea from [2] by composing the one
time private key generated by its predecessor and its
long-term private key. The authors mentioned that
this method cannot efficiently defend against the
truncation attack. It has been concluded that in order
to prevent the two colluders truncation attack and to
detect other forms of collusion attacks on the chain
of the encapsulated offers, it is essential to have an
efficient and secure algorithm to establish the one
time public/private key pair for each visited host.

4. The Protocol

 The goal of this paper is to design an effective
protocol, which prevents the two colluders truncation
attack [3] as well as detects other forms of collusion
attacks. The security of the process used to generate
the computation result at each visited host will not be
discussed in this paper. This is based on the
assumption that each host can be trusted to produce
its own computed data. Assume that Si has the
mobile agent in hand. After having completed its
computation for the mobile agent, Si has two tasks to
perform, namely: to sign the computation result and
send the mobile agent to Si+1. In order to complete its
tasks, Si interacts with the TTP. All hosts trust the
TTP to execute the protocol faithfully and not to
engage in any other activity that will deliberately
compromise their security. Moreover, the TTP is
trusted to generate a new one time public/private key
pair for signing and verifying an offer and maintain
the list of keys which have been issued for all hosts
in an itinerary. The procedure is briefly described as
follows: TTP issues the one time public/private key
pair and maintains the key list. Si obtains the one
time private key iµ for signing its offer under the
constraint that only Si+1 will be its successor.
Afterward, Si+1 receives the one time public key

iµ for the verification of the validity of Si’s signature
on its offer. We separate our protocol into two
situations: TTP is always online (T1) and TTP is
offline for some period of time (T2).

4.1 Protocol T1

 Protocol T1 is usable only under the assumption
that TTP is always online to issue the one time
public/private key pair for each host. Each host in the
mobile agent’s itinerary knows the public key of the
originator and the TTP. Both originator and TTP
know each other’s public keys in advanced. TTP,
however, has no knowledge about each visited host’s
public key. The protocol commences with S0
contacting TTP to perform mutual authentication as
well as to obtain a one time private key for signing
its offer. We call the latter key transportation. As
defined by Boyd in [13], key transportation is a
protocol in which one of the users in the protocol
generates the key and this key is then transferred to
all protocol users

4.1.1 Mutual Authentification

 Mutual Authentication serves as an indication of
mobile agent dispatching described as follows:

TTP

0 TTP

TTP 0

0 0 0 0

0 0 TTP o

0 TTP o

S TTP : ENC (r , ,S) (1.1)

TTP S : ENC (SiG (r , r ,S ,TTP)) (1.2)

S TTP : ENC (SIG (r , r ,TTP)) (1.3)

υ

υ υ

υ υ

→ υ

→

→

The mutual authentication protocol is adapted from
the ISO/IEC 9798-3 three pass mutual authentication
[14]. From equations (1.1) to (1.3) the protocol
assures TTP that S0 is active, and that S0 is aware of
TTP as its peer entity.

4.1.2 Key Transportation Protocol and Key List

TTP 0

0 0 0,1TTP

TTP 0 0 ,10

o 0 1 S

0 0 1 0 S TTP

o 0 1 S TTP

S TTP : ENC (S ,S ,T) (2.1)

TTP S : ENC (SIG (S ,S , ,T ,T)) (2.2)

S TTP : ENC (SIG (S ,S ,T ,T)) (2.3)

υ

υ υ

υ µ

→

→ µ

→

0,1TTPT : The time of one time private key issuing for
 S0 when S1 is its successor generated by TTP

Equation (2.1) is the constraint that only S1 is the
next visited host. Equation (2.2) refers to the key
transportation, which guarantees the freshness of a
key. Equation (2.3) is the key confirmation where the
key

0
µ is used to generate a signature. TTP thus

knows that S0 successfully received the key.
Consequently, equation (2.4) is initiated by TTP after
receiving (2.1) for authentication purpose. The
equations (2.5) through (2.7) are the combination of
key transportation and key confirmation. Once (2.1)
to (2.3) have been done, the originator is ready to
sign its offer and dispatch the mobile agent to S1.

Obviously S1 has an associated public key to check
the validity of O0.

TTP

TTP 1

1 1 ,0TTP

TTP 0 1 ,0

1 TTP

1 1 1 TTP 1

1 1 1 TTP 0 0

1 1 1 TTP 0

TTP S : SIG (r , TTP) (2.4)

S TTP : ENC (SIG (S , TTP, r , r),) (2.5)

TTP S : ENC (SIG (S , TTP, r , T , , S)) (2.6)

S TTP : ENC (ENC (S , TTP, r , T , S)) (2.7)

υ

υ υ

υ υ

υ µ

→

→ υ

→ µ

→

1.0TTPT : The time of one time verification public key
 issuing for S1 when S0 is its predecessor.

Subsequently, TTP generates the key list as follows:

1,0 0,10 o 1 1 TTP TTP 0 0

Signer ,Next host,Time of issue,Key pairs
KeyList (2.8)

S , S , T ,T (,)
=

υ υ µ µ

TTP updates or sends the key list periodically to the
originator for verification of the chain of signatures
in case tampering has been detected.

4.1.3 Offer Encapsulation, List of Visited host and
 Agent Transmission

00

0o

0 0

0 1 S 0 0

0 0 0 o 0 o 1

o 0 1

S S : SiG (,T),O ,

O SIG (ENC (o , r),h),h H(r ,S) (3.1)

ENC (SiG (S ,S)) (3.2)

(3.3)
υ

υµ

υ µ

→ Π Ψ

= =

Ψ =

Equation (3.1) illustrates that, after S0 obtains the
key issued by TTP, it signs an offer with the given
key. This part of the protocol is a modification of the
KAG protocol (P4), where the one time public key
generated by S0 has been removed. Then, S0
produces a list of already visited hosts in form of an
encrypted signature containing S0 and S1, encrypted.
Finally, S0 sends the mobile agent to its successor.

4.1.4 Agent Migration Protocol at Si (1 i n≤ ≤):

 After receiving the mobile agent, the chain of
encapsulated offers and the list of already visited
hosts from Si-1, Si verifies the immutable part to
ensure that the code belongs to the originator by
checking the signature of the originator on the code.
Subsequently if the code has not been altered, it
inspects the encapsulated offer proceeding in a
decreasing order, otherwise it reports to the
originator. Si uses i 1−µ to recover i 1 i 2h ,− −µ from Oi-1.
Si examines recursively until the first encapsulated
offer. If the invalidity in chain signature is identified,
Si sends the mobile agent to the originator
immediately. If the agent verification is successful,
Si retrieves the one time private key from TTP and

proceeds stepwise according to the previously
defined equations. The generalization of how to
produce offer encapsulation, list of visited host and
agent transmission is given as follows:

0i

0 i

00

i i i i i 1 i 1 i i 1 i 1

i i 1 i i 1 i 1

i i 1 S 0 1 i i

O SIG (ENG (o , r), h ,S ,), h H(O ,S) (4.1)

ENC (SiG (S ,S ,S),) (4.2)

S S : SiG (,T),{O ,O ,...,O }, (4.3)

υ − − − +µ

υ − + −µ

+ υ

= µ =

Ψ = Ψ

→ Π Ψ

4.2 Protocol T2

 Protocol T2 is focused mainly on dealing with a
situation where TTP is inaccessible for a certain
period of time when a host requires the one time
private key for signing an offer. Protocol T2 is
designed such that a host will be granted a temporary
authority to generate the one time key pair on its
own. Temporary authority will only be granted to Si
when the absence of TTP has been confirmed by
Si+1. Protocol T2 is described as follows: Protocol
initialization at Si: Si was unable to reach TTP, the
following occurs:

4.2.1 Offline Status of TTP Generation (iOST):

 Si produces the unreachable-status log file,
which documents the number of attempts made in
contacting TTP by using “ping” command.

4.2.2 Key Agreement and Mutual Authentication.

 Assume that there is no key sharing between two
hosts and they have no knowledge of each other’s
public keys. The key agreement protocol is utilized
to establish a session key between the two
cooperating hosts. The session key is used to send
offline status of TTP securely to Si+1. There are some
protocols which have been devised in the literature
[15], [17], [18] concerning key agreement protocol.
Key agreement protocols can be divided into two
types. The symmetric protocol [15] describes the two
entities a-priori possess common secret information,
while the asymmetric protocol describes the two
entities sharing only public information that has been
authenticated. In our scheme, we employ the
asymmetric protocol based on Diffie-Hellman key
establishment [16], followed by an exchange of
authentication information. Our protocol can be
divided into two steps with the following procedures:
• Step 1: equations (5.1) through (5.4), indicate

the exchange of algorithms and parameters to
establish a session key.

• Step 2: equations (6.1) and (6.2) indicate entity
authentication and acknowledgment swapping.

In step 1, Si offers a list of Diffie-Hellman key
exchange parameters that Si uses for ephemeral key
fabrication. Once the ephemeral keys have been
exchanged, both entities can derive a shared secret
and form a temporary derived key by using key
derivation function. MAC is employed as the key
derivation function.

i i 1 i i 1

i i 1

i i 1

i i 1 i i i

i 1 i i 1 i 1 i 1

i , i 1 i , i 1 r , r S S

S S i i 1 i 1 i

S S : S ,LIST, r , t

S S : S , t , r

(LIST (p,q,g,G,K)),K MAC (Z)

Z at S t ,S t

(5.1)
(5.2)
(5.3)

(5.4)
+ +

+

+

+

+ + + +

+ +

α α
+ +

→

→

= =

= =

Now, we consider the assurance Step 1 provides both
entities. From Si’s point of view, it shares a secret
(5.4), which is a result of ephemeral key exchange,
known only to it and its peer entity who may or may
not be Si+1.

i,i 1 i,i 1i

i,i 1 i,i 1i 1

i i 1

K i i 1 i i 1 i i K i

i 1 i

T
K i i 1 i i 1 i 1 i 1 K i 1

S S :

SIG (MAC (t , t ,r ,r ,List,S),OST),ENC ()

S S :

SIG (MAC (t , t ,r ,r ,List,S),ACK),ENC ()

(6.1)

(6.2)

+ +

+ ++

+

+ +ν

+

+ + + + +ν

→

ν

→

ν

Subsequently, Si and Si+1 generate MAC over the
parameters that they used to produce the session key.
Si+1 has signed the particular parameters mentioned
in Step 1, of which Si has just created for this
individual section. Encrypting its associated public
key for the verification of its signature with Ki,i+1,Si+1

shows Si that it was the creator of i 1t + . This assures
Si that the entity engaged in the key exchange was,
indeed Si+1. Si+1 obtains an analogous set of assurance
from Si. After verifying the received signature, Si+1
proves the genuineness of OSTi by attempting to
contact TTP. On one hand, if TTP is indeed inactive,
then T

i 1
ACK

+
is generated. Si will then receive an

acknowledgment (6.2). This allows Si to generate the
one time key pair. Si+1 as a witness to the key
generation done by its predecessor is expected to
send an acknowledgement about the key generation
to TTP once it gets the mobile agent in hand. On the
other hand, if TTP is available, Si+1 sends F

i 1
ACK

+
to

inform Si to try to contact TTP again to retrieve the
authorized one time private key. Therefore, the
protocol T1 will be applied. There is, however, a
possible situation where Si cannot reach TTP due to
reasons like communication channel failure, but Si+1
can reach TTP. Si+1 will send acknowledgement to Si.
Upon receiving F

i 1
ACK

+
 Si retransmits TTP’s offline

status to Si+1. Si+1 will now ask TTP to contact Si
immediately. If TTP is also unable to reach Si, then

TTP has to provide evidence of communication
channel failure to Si+1. Once the evidence arrived,
Si+1 must cooperate with Si to execute the appropriate
protocol (i.e. T2).

4.2.3 Offer Encapsulation and Agent Dispatching

Si performs a one time public/private key pair

generation. The generated private key pair is used to
sign its offer as shown in equation (7.1). Equations
(7.2) and (7.3) represent list of visited host and agent
dispatching.

0 i 1 ii

i ,i 1 i 1

0 i

00

T
i i i S S i i 1 i 1

K i

i i 1 i i 1 i 1

i i 1 S 0 1 i i

O SIG (ENC (o , r ,ACK ,OST),h ,S ,),

ENC (ENC ())

ENC (SiG (S ,S ,S),)

S S :SiG (,T),{O ,O ,...,O },

(7.1)
(7.2)
(7.3)

+

+ +

υ − −σ

ν

υ − + −σ

+ υ

= µ

σ

Ψ = Ψ

→ Π Ψ

T

i 1
ACK

+
and offline statue in encrypted offer provide

assurance to the originator that at the period of time
when TTP is inactive, Si as a claimant and its
verifier, Si+1 , cooperatively produced the evidence
and proof of TTP’s inactiveness. T

i 1
ACK

+
serves as a

confirmation that not only Si experienced the
absence of TTP but also Si+1. After having received
the key generation acknowledgement, the TTP
instantaneously updates the key list incorporating the
information obtained during its inactivity. Si+1 must
include the offline status generated by the
predecessor as well as its own acknowledgment into
its offer no matter which protocol, i.e. T1 or T2, it
employs. Therefore, the protocol T1 is applied when
there is a presence of the TTP otherwise T2.

5. Security and Cost Analysis

 In this section, the protocols are analysed to
ascertain whether they satisfy the set of security
properties described in section 2. The protocols T1
and T2 differ in generation of one time public/private
key as well as the parameters contained in the
encapsulated offer, however the method of signing
an offer and protected list of visited hosts are similar.
Therefore, the protocols can be similarly analysed.
Data confidentiality: each host encrypts the offer
with the originator’s public key so that only the
originator can retrieve the protected offer.
Non-repudiability: In T1, each host submits its offer
signed with the key given by the TTP, thus making it
impossible for Si to deny the offer it has signed. In
T2, each host submits its offer signed with the “self-
generated” key, thus prohibiting Si from denying
having signed the offer.

Forward Privacy: is not fulfilled. The reason being
every host must append its predecessor’s identity to
its signature to be used when the host verifies the
hash value in every encapsulated offer.
Strong forward integrity: The hash function and
digital signature used enforce this property.
Publicly Verifiable Forward Integrity: Any host can
retrieve the verification public key.
Insertion resilience: Insertion of any illegal offer
anywhere in the chain relation is prevented by the
hash function.
Truncation resilience: is fulfilled by protocol T1
because all of the hosts use only the key issued by
TTP. We can track which hosts append their offers to
the chain of encapsulated offers. Protocol T2 only
satisfies this property provided the TTP’s offline
time is not too long.
Malicious host identification: the protocols T1 and
T2 are treated separately. Protocol T1’s possible
attacks and malicious host identification, for
example, are described as follows: Two colluder
truncation attack: This attack can be eliminated due
to the fact that only TTP is entitled to generate the
one time public/private key which will be used to
sign an offer. Even if a collusive host sends its key to
its malicious partner, the key will not be usable to
sign an offer. Signing and verifying an offer without
obtaining the authorized keys: Two or more collusive
hosts did not contact TTP to obtain the authorized
keys. This attack can be detected when the honest
host receives a mobile agent without having been
previously contacted by the TTP. It will send the
mobile agent back to the originator. The identity of
the malicious host(s) can be unmasked by comparing
the list of visited hosts and the key list.
 Protocol T2’s possible attacks and malicious
host identification are described as follows: Two
colluders truncation attack: The protocol T2 detects
this attack by checking the list of visited hosts
generated by the hosts between the collusive
partners. Spurious one time public/private key
deployment: T2 is capable of detecting a malicious
host in case it appended a bogus one time public key
on its offer. Since T2 requires all hosts to update the
list of generated keys to TTP, the originator only
needs to check the list of generated keys in order to
identify the malicious host.

5.1 Cost Analysis

 In this subsection we investigate the cost
introduced by our protocols T1 and T2 under the
network utilization aspect. Suppose the cost of
sending a single session message is Un. The total cost
of each protocol at each visited host is the
multiplication of the cost per message with the total

number of messages (Ni) composed during
authentication, key transportation, key confirmation
and mobile agent transmission. We derive the cost
CT1 according to T1 1 NC N * U= , where N1 = 11.
Identically we deduce the cost CT2, where N2 = 5.
Comparing our protocols to the existing protocols [2,
3, 4, 8, 10, 11], ours induce many message
transmissions, which results in cost ineffectiveness
(i.e. from network utilization point of view).
Conversely to these mentioned protocols, our
protocols can prevent the problem of two colluders
truncation attack and identify the malicious host.

6. Conclusion and Future Work

 As shown in section 5, T1 is not only capable of
fulfilling most of the stated security requirements,
but it is also competent to detect malicious activities
as well as identify the malicious hosts. T2 provides a
more adaptable scheme as the operation can still take
place in the absence of TTP. Apart from that, the
protocol is also able to detect the two colluders
truncation attack by checking the list of visited hosts
generated by the hosts. However, the identification
of the real malicious hosts cannot be efficiently
capacitated by the protocol. The robustness of the
protocols T1 and T2 relies mainly on the
authentication protocol, key establishment and key
agreement schemes. The two protocols introduce
many message passing activities, which inevitably
exposes the system to other types of attacks like
message replay attack and impersonation attack. Our
future research is aimed to avoid the large number of
message transmission activities between the hosts
and to simulate the cost imposed by our protocol.

7. References

[1] B. S. Yee,“A Sanctuary for Mobile Agents. Secure
Internet Programming”,LNCS, Vol. 1603. Springer-
Verlag, Berlin Heidelberg (1999) pp.261–273

[2] G. Karjoth, N. Asokan, C. Gülcü,: “Protecting the
Computation Results of Free-Roaming Agents”.
Proceedings of the 2nd International Workshop on Mobile
Agents. LNCS, Vol. 1477. Springer-Verlag, Berlin
Heidelberg New York (1998) 195–207

[3] J. S. Cheng, L. Wei,“Defenses against the Truncation
of Computation Results of Free-Roaming Agents”, ICICS
2002, Singapore. LNCS, Vol. 2513. Springer-Verlag,Berlin
Heidelberg (2002) pp.1–12

[4] M. Yao, E. Foo, K. Peng, and E. Dawson, “An
Improved Forward Integrity Protocol for Mobile Agents.”
LNCS, Vol. 2908. Springer-Verlag, Berlin Heidelberg
(2004) ,pp.272–285

[5] P. Maggi., R. Sisto, “A Configurable Mobile Agent
Data Protection Protocol”, Proceedings of the 2nd
International Conference on Autonomous Agents and
Multi agent Systems (AAMAS’03), Melbourne, Australia.
ACM Press, New York, USA (2003) 851–858

[6] A..Menezes., P. C. van Oorschot, “Handbook of
Applied Cryptography”. CRC Press Inc. (1996)

[7] V. Roth,” Programming Satan’s agents”, In: Fischer,
K., Hutter, D.. (eds.): Proceedings of 1st International
Workshop on Secure Mobile Multi-Agent Systems
(SEMAS 2001). Electronic Notes in Theoretical Computer
Science, Vol. 63. Elsevier Science Publishers (2002).

[8] V. Roth, “On the Robustness of some Cryptographic
Protocols for Mobile Agent Protection”, Proceedings
Mobile Agents 2001. LNCS, Vol. 2240. Springer-Verlag,
Berlin Heidelberg (2001),pp. 1–14

[9] V. Roth, “Empowering Mobile Software Agents”
Proceedings 6th IEEE Mobile Agents Conference.,LNCS
Vol. 2535. Springer-Verlag, (2002),pp. 47–63

[10] N. M. Karnik and A. R. Tripathi, “Security in the
Ajanta Mobile Agent System”. Technical Report TR-5-99,
University of Minnesota, Minneapolis, MN 55455, U. S.
A., May 1999.

[11]. A. Corradi, R. Montanari, and C. Stefanelli, “Mobile
agents Protection in the Internet Environment”, In The
23rd Annual International Computer Software and
Applications Conference (COMPSAC ’99), pp. 80–85

[12] J. Y. Park, D. Lee and H. H. Lee, “Data Protection in
Mobile Agents; one-time key based approach”, IEEE
ISADS 01, pp.411-418

[13] C. Boyd, A. Mathria, “Protocols for Authentication
and Key Establishment” Springer-Verlag ISBN 3-540-
43107-1

[14]. ISO. “ Information technology-Security techniques-
Entity authentication mechanisms-part 3: Entity
authentication Using a Public key Algorithm ISO/IEC
9798-3”.,2nd Edition , 1998. International standard.

[15]. B.W Simon, A. Menezes, “Authenticated Diffie-
Hellman Key Agreement Protocols”, SAC’98 LNCS 1556,
pp. 339-361. 1999

[16]. W. Diffie,Martin E. Hellman, “New directions in
cryptography”, IEEE transaction on Information Theory,
November 1976.

[17]. W. Diffie, Paul C. van Oorschot, M. J. Wiener,
“Authentication and Authenticated Key exchange. Designs,
Codes and Cryptography” March 1992

[18]. H. Orman, “The OAKLEY Key Determination
Protocol”,The Internet Society, November 1998, RFC
2412

