Prof. Dr.-Ing. Firoz Kaderali

Foundations and Applications of Cryptology

Symmetric and Asymmetric Encryption, Digital Signatures, Hash Functions,
Key Management and PKI

Das Werk ist urheberrechtlich geschiitzt. Die dadurch betgien Rechte, insbesondere das Recht der Vervielfagfignd Verbreitung sowie der Ubersetzung
und des Nachdrucks, bleiben, auch bei nur auszugsweisereXeng, vorbehalten. Kein Teil des Werkes darf in irgendeiForm (Druck, Fotokopie, Mikrofilm
oder ein anderes Verfahren) ohne schriftiche Genehmigl@sgAutors reproduziert oder unter Verwendung elektroeisSysteme verarbeitet, vervielfaltigt

oder verbreitet werden.

Preface

Cryptology as a part of scientific research, especially exgtiblic sector, is a rela-
tively young discipline despite its thousands of years atdry. Up until a few
decades ago, it was only conducted seriously in the milgagtor and in the sec-
tor of state security. In the 1990s there was an increastegdst in cryptographic
techniques due to the growth in the number of computer néisvand the popu-
larity of electronic commerce. Security relevant aspeetgeho be considered in
the following Internet and network applications: data exue via FTP or e-mail,
information offered on the WWW, client/server relatiorshiremote access, virtual
private networks, e-commerce, payments transactions;net banking, exchange
of legally valid documents (digitally signed with a timesiga), signing of contracts
over the net, virtual town halls (on-line application fornssuing of certificates,
passports, on-line enrollment), on-line elections, aundietc.

Subject of this course is cryptology, the science of infdiaresecrecy and security.
The Cryptology consist of cryptography, with data encrypts a main subject, and
cryptoanalysis, which involves and analyses techniquedreaking the ciphers.
The cryptological algorithms and protocols are the mostartgnt modules of the
security architecture of any network. At the beginning & tlourse some mathema-
tical background, important for the understanding of thgtological algorithms,
is treated. This includes subjects of number, group, and fretory, polynomials
over finite fields, theory of complexity and probability. Be¢ the modern crypto-
graphic algorithms are discussed in detail, an overvievhefdassical encryption
algorithms is given. Both symmetric (DES, IDEA, stream @phbased on pseu-
dorandom generators) and asymmetric (RSA, ElGamal) etiorygchemes are
presented and analysed. Further focuses are digital sigrsathash functions and
authentication codes, entity authentication and genesaianagement techniques.
Public key infrastructure (PKI) and important PKI-Starataare also presented.

F. Kaderali
Summer 2007

Author

Author

Prof. Dr.-Ing. Firoz Kaderali

1963 - 69

1969 - 74

1974

1974 - 76

1976 - 81

1981 - 86

Since 1986

1989 - 94

1990 - 96

Since 1992

1995 - 2001

1999 - 2003

2000 - 2002

Since 2002

Studied theoretical electrical engineering at the Technische
Hochschule Darmstadt

Assistant at the Faculty of Electrical Engineering at the Technische
Hochschule Darmstadt

Doctorate (Promotion) at the Faculty of Electrical Engineering,
Technische Hochschule Darmstadt, Subject: Network Theory

Lecturer of Statistical Signal Theory at the Technische Universitat
Darmstadt

Member of the Research Center at SEL (ITT)/Stuttgart. Projektleader
of Bundespost study and Fieldtrial DIGON (Digital Local Area
Network)

Head of the Department System Development/Large Systems at
Telefonbau und Normalzeit/Frankfurt Development of ISDN-PABXs

Professor for Communication Systems at the FernUniversitat in
Hagen, Main interests: Communication Systems, Networks and
Protocols, Network Security

Head of the regional telecommunications initiative TELETECH NRW
(Consultant and supervisor of over 120 Telecommunications Projects)

Member of the ISDN Research Commission NRW (Projects on ISDN
Applicationsdesign and Technology Assessment)

Director of the Research Institute of Telecommunications (FTK) in
Dortmund, Hagen and Wuppertal, Joint Institute of the Universities
Hagen (Electrical Engineering) and Wuppertal (Economy)

Member of management of mediaNRW, an initiative to promote the
development and spreading of multimedia-applications as a whole

and interactive services in enterprises, private households, and the
public sector

Project manager of the research alliance Data Security
Northrhein-Westphalia

Chairman of the advisory board of GITS (Gesellschaft fir
IT-Sicherheit) in Bochum, Germany

Chairman of the open source initiative CampusSource

Table of Contents

Table of Contents

PrEfaCE. e ——— iii
AUTNOT e ——— e v
Prof. Dr.-Ing. Firoz Kaderaliciiiimmme i iV
1 INtrodUCHION ... ———— e 1
1.1 0 ST = o] U 1
1.2 Cryptographyoee e 2
1.3 Overview of thiSBOOKccoiiiiiiiiiii e 3
1.4 Symmetric-key ENCryption.........c.cooviiiiiiiiiiiiiiieiiaeenn, 4
1.5 Asymmetric ENCryptionooouiiiiiiiiiiiaie i 8
1.6 One-way FUNCLIONSot i e e 11
1.7 Cryptographic Hash Functions................ccoeceiiiviin.n, 12
1.8 Entity Authentication..............cooviiiii e 14
1.9 Key Management Techniques..................ccveeemeeveeen.. 15
1.10 PublicKey Infrastructure............c.oooviiiiiiiiiii i, 15
1.11 Recommended Literatureccoviiiiiiiieiiiiiieiinnn. 17
2 Mathematical Backgroundoooiiiiiiiiiiii i 18
21 Setsand MappingsS.ueeunieii i 18
2.1.1 SetTheory ..o e 18
2.1.2 MaPPINGS .+ .ottt 20
2.2 Groups,Ringsand Fieldsccoiiiiiiiiiiii i 22
221 GIOUPS - 22
2.2.2 RINGS .. 25
2.2.3 Filelds ..o 26
2.3 NUMDEr ThEOIY ...ttt et 26
2.3.1 DIVISIDIlity ... 27
2.3.2 Representation of integers in different bases 27
2.3.3 Greatest common divisSor..............ovviieeaan.... 28
2.3.4 Euclidean Algorithmoiiimeae . 29
2.3.5 Extended Euclidean Algorithmcc..... 30
2.3.6 Primenumbers............cooii 31
2.3.7 CONQIUEBNCES ... 33
2.3.8 Some algebraic systems formed by theZget......... 41
2.4 Finite Fields and Polynomialsmeeveenennn. 42
2.4.1 PolynomialoveraRiNgcccocviiiiiiicaenn.. 42
24.2 Finite Fields. ... 44
25 Complexity TREOIY . ..oovii e 48
2.5.1 Asymptotic Notationciiviiicannenn. 49
252 O-NOtALION ...ttt ——— 52
253 Q-NOtatioN ... 53

254 B-NOLALION ..ot e e 53

Table of Contents

255 0-NOALION ... 54
256 w-NOtatioN .. .o 54
2.5.7 Properties of the Complexity Notations 55
2.5.8 Complexity ClassSesovvviiiiiiiie et e 55
2.5.9 Complexity clas®’ccoveiiiii 56
2510 Complexity Clas8/Povuuiiiii i 56
2.5.11 Complexityclasso — NPcooiiiiiiiiiiiiiiininanns 57
2.5.12 Complexity Class/ PC'coiiiiiii i 58
2.6 Hard Problems in Number Theory..............ccoocaaeeiiiin.t. 58
2.6.1 Primality TestsScooiiiii i 59
2.6.2 Factorization ... 62
2.6.3 Discrete logarithmcooiiiiiieei 64
Stream Ciphers.o e 69
3.1 Classification of Stream Ciphers.............cococeeiiiiiin. .. 69
3.1.1 Synchronous Stream Cipherscouuu. 69
3.1.2 Self-synchronizing Stream Ciphers.................. 71
3.2 Design of Keystream Generators . R 72
3.3 Binary Sequences and Linear Feedback Shn‘t Reglsters. wave. 16
3.3.1 Nonlinear Filter Generator (NLFG) 83
3.3.2 Combiner Generator Without Memory 84
3.3.3 Combiner Generator With Memory 85
3.4 Software-based Keystream Generatorscccccc......... 86
BlOCK CIpNerS .. ——— 90
4.1 Design PrinCiples ... 90
4.2 Modes of Operationcoviuiiiiiiiiii et e eens 94
4.2.1 ECBMOdE ... e 94
4.2.2 CBCMOE ... e 95
4.2.3 OFB MO ..o 96
4.2.4 CFBmMOde ... e 97
4.3 Data Encryption Standard (DES)coiviiieeaiina. 98
4.4 International Data Encryption Algorithm (IDEA) 100
4.4.1 Designconceptof IDEAcooiiiiiiiiiiiennn... 101
4.4.2 IDEA ENCIryptioncovvi i e e e e e e e 101
4.4.3 IDEA DeCryptionoieieii i e e e e e e e 105
4.4.4 Security and Implementation Issues...........c...... 106
4.5 Advanced Encryption Standard (AES)ccceeeeiiian.. 106
4.5.1 Selection of Algorithmsfor AES 107
4.5.2 The Rijndael Algorithm: Some Notions............... 107
4.5.3 AES ENCryplionoviiiiiii i 109
45.4 AES DeCryptionooouiiiiiiiiiiiii i 118
4.5.5 Security and Implementation Issuescouu... 121
Public-Key ENCryptionooouiiii e 122
5.1 Principles of Public-Key Cryptographyc..ooooeo. 122
5.2 RSAENcryption Scheme...........c.cooiiiiiiiiicieee e 125

Table of Contents

Vii

5.21 Description of the Algorithm cee.... 125

5.2.2 Security oOf RSA ... 128
5.3 The Discrete Logarithm Problem . T RC ¥ I
5.3.1 The Problem of Discrete Logarlthmm; 131
5.3.2 Diffie-Hellman Key Exchange 132
5.4 ElGamal Encryption Schemecooiiiiiieea i, 133
5.5 Elliptic Curve Cryptography (ECC)covviimmmeeeennnns 136
5.5.1 Elliptic Curves Over Real Numbers 136
55.2 Elliptic Curves Over Finite Fieldscc...... 140
5.5.3 Elliptic Curve Cryptosystems (ECCS)..........cu... 142
5.6 Other Public-Key Cryptosystems (PKCS)ccoccevnnn.... 148
6 Digital SIgnatures. 149
6.1 INErOUCTION ... i e 149
6.2 RSA SIgNatures e e e 150
6.2.1 Some CoOMMENES.o 151
6.2.2 Description of the algorithm 151
6.3 ElGamal Signature Schemet v e evvnn.... 152
6.3.1 Key generation...........coooiiiiiiiinnitmne e 152
6.3.2 Signature generation............cccooviiiiiiieiiiannn.. 153
6.3.3 Signature verification................coooieeeei . 153
6.4 DSA - Digital Signature Algorithm...............ccceiiiiiiia... 153
6.4.1 DSA key generationovviiiiiine et e e 153
6.4.2 DSA signature generation.............ccoviiiaeennnn. 154
6.4.3 DSA signature verification 154
6.4.4 SeCUNty aSPeCES.....vvi i i 154
6.5 ECDSA - Elliptic Curve Digital Signature Algorithm........... 155
6.5.1 ECDSA key generationc.oovvvciwwn .. 155
6.5.2 ECDSA signature generationco.... 156
6.5.3 ECDSA signature verificationccc.... 156
6.5.4 NOTE e 156
6.5.5 SEeCUNtY @SPECES. ..ot 157
6.6 Signatures with Additional Functionalityce............. 157
6.6.1 Fail-stop signaturesooviiiii it e eeen 157
6.6.2 Blind signatures ...t 158
6.6.3 Undeniable signaturescovviiiieennnns 158
7 Hash Functions and Authentication Codes.............c.ccovvviiiiennn 161
7.1 Authentication FUNCLIONS...........ccoiiiiiii i 161
7.1.1 Message Encryption as Authentication Function 162
7.1.2 Message Authentication Code (MAC) as Authentica-
tion Function ... 163
7.1.3 Hash Function as Authentication Function.......... 165
7.2 Requirements for Hash Functionsccceeeiiioant L. 166
7.3 Size of the Hash Value (Message Digest)cuuuuu...... 169
7.3.1 The Birthday Paradox we... 169

7.3.2 Lower Bound on the Sizes of Message Dlgest 171.

viii

Table of Contents

7.4 Construction and Classification of Hash Functions............ 172
7.4.1 Hash Functions Based on Block Ciphers............173
7.4.2 Hash Functions Based on Modular Arithmetic 176
7.4.3 Dedicated Hash Functionscccee.t 178
7.4.4 Provable Secure Hash Functions.................... 184
7.5 Message Authentication Codes (MAC)cviveieennnn. 184
7.6 Some MAC algorithms ...t e 186
7.6.1 MAC based on block ciphersoceea. 186
7.6.2 Constructing MACs from Hash Functions187
7.6.3 Dedicated (Customized) MACS..............ov w187
Entity Authenticationcoiiiiiii i 189
8.1 INtrOdUCTION ... e e e e 189
8.2 Entity Authentication.......... ... 189
8.2.1 Authentication based on what the user knows189
8.2.2 Authentication based on what the user has.......... 190
8.2.3 Authentication based on what the user is............190
8.3 Password-based authenticationcccooooiiiL 190
8.3.1 Password selectionccooiiiiiiiiiii 190
8.3.2 AttACKS . o 191
8.3.3 SaltiNg ..o 192
8.3.4 One-time pPassWordsovvvevieiiineeianennnnn. 192
8.4 Challenge-reSpoNnSe........c.uviiiiiiiiii i 193
8.4.1 Challenge-response based on symmetric encryptioi93
8.4.2 Challenge-response based on public-key encryptiori94
8.5 Zero-knowledgec.iiiiiiii 196
8.5.1 Feige-Fiat-Shamir identification protocol 197
8.5.2 Guillou-Quisquater identification protocol 197
8.5.3 Schnorr identification protocol........................ 198
8.6 BIOMEtNCS .ot 199
8.6.1 INtrodUCtioN ..o 199
8.6.2 Authentication and Identification 200
8.6.3 Architecture and functionalityc....... 200
8.6.4 Error statistiCS. ..o 202
8.6.5 AttACKS .o 203
Key Management TeChniques...........coooviiiiiiiiiii i 205
9.1 INErOdUCHION ... e 205
9.2 KeYy GEeNErationceuuieiieeie et e s e e e e eeeaannn 205
9.3 Certification and Authentication................cccoovviiiiin.n. 206
9.4 Key Establishment......o 206
941 Point-to-Point Key Establishment 207
9.4.2 Key Establishment Within One Domain207
9.4.3 Key Establishment Between Domains............... 208
9.5 Key DIStribULION ... e 208
951 Techniques for Distributing Public Keys 209
9.5.2 Secret Key Transport Mechanisms 210

Table of Contents

10

9.5.3 Key-Exchange Algorithmsooioeeentt 214
9.6 Key ESCrow/Key RECOVEIYviviii et e i e e 216
9.7 Storing, Updating and Destroying Keys..........couuuvvee.... 217
Public Key Infrastructure ... 218
10.1 INErOQUCTION ...ttt et e 218
10.2 BasiCS Of PKI ... 220
10.2.1 Identity Certificates and Trusted Third Parties...... 220
10.2.2 Certification Structures...............ccviovunevneeen.. 229
10.2.3 Attribute Certificatesooviviiiiiiininnaen. 236
10.2.4 Authorization and Delegation Certificates 239
10.3 Important PKI Standardsoooviiiit e eeiieeennnn. 242
10.3.1 X509 .. 242
10.3.2 PKIX 245
10.3.3 SPKI. .t 246
10.3.4 OpenPGP ... 248
ASSIgNMENTS. . et ———— e 251
Solutions for ASSIgNMENTS.o ee e 265

REfEIENCES . . e e ——— 305

Table of Contents

1 Introduction

1.1 IT-Security

In the last decades the use of computers and communicatimomks has consis-

tently grown and they have found their way into many areasriwgfe and com-
mercial life. Thus a new workspace, the cyberspace has edoApart from the cyberspace
many new opportunities opened by cyberspace, there araasmber of dangers
resulting from the patchy protection against attacks onmders and networks.

This basically is because of two aspects: Firstly becauigegbrevailing computer
architecture, the PC, whose initial hardware design lackssacurity mechanism

and secondly because security aspects have not been takecdount in the deve-
lopment of the Transport Control Protocol /Internet Protqd@ CP/IP), the prevai- TCP/IP
ling communication protocol in computer networks. For epéarfor TCP/IP in the
widespread version 4 no encryption is in use (not even theyption of passwords),
sender addresses can be easily forged and even completgeesan be forged or
redirected by the intermediate nodes of the network, theereuWhen computers

or communication networks are used for the processing astdhiition of sensi-

tive data or for commercial applications it is necessaryate tadditional security
measures.

If an unauthorized person gains access to a computer or caiation network,
data is in danger of being spied on, forged or deleted. Evendimputer or network
itself can be tampered with or crash. Depending on the agic affected, an
attack can have diverse and sometimes even disastrougjcemees. Attacks range
from industrial espionage and spying on public offices tdtingery and prevention
of business and financial transactions.

Generally speaking all information, management, supptiteansport systems can
be affected. Attacks similar to the ones already describaal be launched against
each of the following systems: air traffic control, highwaylipe, toll collection,
process control in enterprises, etc. The number and scdlesé IT-Systems has
been constantly growing for several years and as a resuliabflT-Security has
become more and more significant.

A particular aspect of IT-Security is data security. Datzausiy can mean protecting data security
data from eavesdropping, alteration (or forgery) and olzgem (of data exchange).

It can also mean protection from incorrect personalisalionng the data exchange

and enforcement of copyrights linked to the data.

Fig. 1.1-1 shows the four different measures which contebio data secu-
rity. These are legal measures (e.g. the German “Telekorkauions-
Datenschutzverordnung”), organizational measures (bg.four-eye-principle),
physical measures (e.g. protection of hardware againsithodzed access) and
cryptological measures.

1 Introduction

cryptography

cryptology
cryptanalysis

classical cryptography
transposition ciphers

substitution ciphers

Data Security

—/ N~

Legal Organizational Physical Cryptological
Measures Measures Measures Measures
- > <3
,Real World“-Attacks Krypto-Attacks

Fig. 1.1-1: The four different measures which contribute to data sgcur

The individual measures must be well coordinated to guaeathmprehensive data
security. For example even the best cryptological methoelsfano use when pass-
words are treated irresponsibly (missing or insufficiergamizational measures)
or everyone has free access to rooms with important hargwareers or routers

(missing or insufficient physical measures).

Obviously computers, networks and data have to be protécsdthe above men-
tioned threats in the “real world” as well as in cyberspacsd®l on these thoughts
this book “Foundations and Applications of Cryptology” tbeaith a “core techno-
logy of cyberspace” [Schneier04], the cryptography.

1.2 Cryptography

Cryptography (from the Greek kryptés, "hidden" and graph#o write") has been
in existence almost as long as texts have been recorded ttemwform. It means
"secret writing" or encryption. Today we consider cryptgny to be a part of
cryptology, the other part being cryptanalysis. Cryptgsial is the science of fin-
ding weaknesses in cryptosystems.

In classical cryptography essentially two methods werel dse encryption. The
first method was the use of transposition ciphers (a cipheesit of algorithms for
encryption and decryption). When using this method the secgl of symbols in
the message was altered. The second method was the sudstdiphers, which
systematically replaced symbols or groups of symbols bgratlgmbols or groups
of symbols.

Example 1.2-1: Caesar Cipher

One of the most well-known and simplest examples of the gukish ciphers
is the Caesar Cipher, in which each letter of the alphabefpikaced by another
one, which is located a given number of places further badkenalphabet.
Thus the letters of the alphabet are simply shifted. The rarmobplaces to be
shifted serves as a "secret key" for the encoding and degadithe message
and is given in the form of a letter of the alphabet. For exanipE (fifth letter
in the alphabet) were the secret key, then the letter A woaldubstituted by
the letter F and the letter B by the letter G. If one reachegfitkof the alphabet

1.3 Overview of this Book

when counting the offset, then one has simply to continuenttog from the
beginning of the alphabet (modulo 26). Thus the letter Y isssituted by the
letter E.

Encrypted texts, called ciphertexts, which were providgdre of the two methods ciphertext
mentioned above, can be decrypted relatively easily wighhiglp of the frequency

analysis (first known recordings were made in the 9.th cgnbyrthe Arab Al-

Kindi [Ibraham92]). In its simplest form the frequency oftérs in unencrypted

texts, called plaintexts and the ciphertext are comparede¥ample the letter E is plaintext
most frequently represented in English-language textasThX appears with the

highest frequency in the ciphertext it is highly probablattih must be replaced by

the letter E for decryption. Frequency analysis is regaaedne of the first steps

in cryptanalysis.

The change to modern cryptography was marked in 1949 by ther g@ommuni- modern cryptography
cation Theory of Secrecy Systems” by C. E. Shannon [Shar8&jr&hd his other

work on information and communication theory [Shannon4@iith which a solid

theoretical basis for cryptography was established. ©gnaiphy gained public

interest in the seventies with the publication of the Daterfgotion Standard (DES) Data Encryption

as the official (non secret) encryption standard for the USd\with the paper "New Standard
Directions in Cryptography" by M. E. Hellmann and W. Diffieiffle76a]. In this

paper one of the major problems of cryptography, the sedatetition of crypto-

graphic keys was solved using the Diffie-Hellmann key exgleafurthermore the Diffie-Hellmann key
development of asymmetric encryption methods was comnaence exchange

In the last decades the term cryptography has been expafigad.from encryp-
tion, the term now also covers authentication, digital atgres, access control, data
integrity, data confidentiality and nonrepudiation.

Nowadays cryptography is, on the one hand, a mature teafoldich is integra-
ted in many applications and services and, on the other tenthterdisciplinary
research area where mathematicians, computer scientgtngineers participate.
This interdisciplinary approach can be seen in the topiecsiein of this book, in
particular in the chapters on the foundations of mathematic

1.3 Overview of this Book

This book Foundations and Applications of Cryptology structured as follows:
Chapter 1 continues with an introduction to basic cryptpgraprimitives. Requi-
red basic mathematical principles from the number theoeyexiplained compre-
hensively (also for non-mathematicians) in chapter 2. @ap (stream ciphers)
and chapter 4 (block ciphers) deal with symmetric-key epitoyn techniques.
Design and analysis of encryption systems as well as thewelsknown encryp-
tion systems are introduced and the notions of stream ardt blphers further dis-
cussed. In particular binary sequences and linear feedifaftkegisters are looked
at in chapter 3 and important algorithms which are based ackldiphers (IDEA,

1 Introduction

DES) in chapter 4. The other form of encryption, public-kegmyption is exami-
ned in chapter 5. Whereby, important algorithms (RSA, El@aiCC) are looked
at in detail. Chapter 6 is dedicated to digital signaturesious signature schemes
like RSA, ElIGamal, DSA and ECDSA are presented. In chapteashtiunctions
and authentication codes are introduced. Chapter 8 detdsewiity authentication
methods like password based, challenge-response, zewadatge, and biometrics.
In chapter 9 key management techniques are handled. Thehigster is dedicated
to basics of public key infrastructure (PKI) and importakitandards. The chap-
ter closes with a list of references and recommended resading

1.4 Symmetric-key Encryption

One of the most important goals of cryptography is confiddityi It is a service
used to keep secret the content of information from all bos¢éhauthorized to have
it. Here the objective of encryption is to alter the messagsuch a way that only
authorized persons can decrypt and read the message. hntokcrypt the mes-
sage one has to have a key. Depending on how the keys are wsednwubdivide
encryption into two categories. These are:

1. symmetric-key encryption and

2. asymmetric-key encryption (which shall be handled inti®ad.5).

Characteristic of the symmetric-key encryption is the faet both the sender and
the receiver of an encrypted message have a common secret(&eg Fig. 1.4-1).

In order to encrypt the message also referred to as plaintext, the sender uses the
function £ together with the key

Cc = Ek(m)

to obtain the ciphertext The ciphertext is transmitted via a channel which is com-
monly accessible. The secret kkynowever has to reach the receiver via a secure
channel. The receiver can now recover the original messaggh the decryption
function D from the ciphertext with the aid of the secret kel

m = Dy(c).

Thus the encryption functiof has to be invertible.

»
Ll

k k
i secure channel l
E D

> >c >
unsecure channel

m—> —>»m

Fig. 1.4-1: Symmetric-key encryption system with encryption funiotig, decryption function
D and secret ke (m = message; = encrypted message).

When an encryption scheme is designed one should assunie ainalt) are known
to the public, and obtaining the messagefrom ciphertextc merely depends on

1.4 Symmetric-key Encryption

the secret key: (principle of Kerckhofif. In practice, the principle of Kerckhoff is principle of Kerckhoff
not always used. That means that the encryption scheme is&eget. There are

two reasons for this: one can obtain an even higher sectrityigh this additional

secrecy. This is of special importance when one wants t@pratsystem not only

against cryptographic attacks but also against attacksenardware. Secondly, the

use of a weak and inadequately examined algorithm is coedehtough secrecy.

When the technique is used in mass products it is better toresthat, in the long

term, the algorithm cannot be kept secret.

Example 1.4-1: Simple encryption system

Let M = (mq, m2, m3) be the set of messages afid= (cy, ¢z, c3) the set of
ciphertexts. There are precisaly= 6 bijections from)/ to C'. Each key; from

the key spaceé(= (ky, k2, k3, k4, k5, k¢) can at any time serve as a member of
one of these bijections. Let, for example, the followingebtjon be assigned to
key k,:

Ek;g (ml) = Cq, Ek2 (mg) = C3 andEkz (mg) = Cy .
The decryption functiorD for key k, is then:
Dkg (Cl) = m, Dkg (02) = Mg andez (Cg) =My .

When participantd wants to transmit a message = mj to participantB, a
key, for examplé:,, is chosen and then interchanged in a secure and authentic
way. ThenA can encrypt the message= m, with £ and obtain the ciphertext

c3 = Ey,(ma2),

which is transmitted td3 via an unsecured channel. Participavho receives
ciphertextc; and knows the secret k&y can compute the plaintext belonging
to it by usingD:

Dk2 (63) = Ma.

The way we defined the encryption function in the previousygda is not very
effective. For each key, one bijection was defined. It is nafiective when the key
is integrated in a functio®’ through mathematical operations.

An encryption system is said to be secure when it is able tccomee the following
attacks:

e Ciphertext-only attack:
The attacker tries to deduce the decryption key or plairtigxdnly observing
the ciphertext.

1 Introduction

block ciphers

Feistel Ciphers

DES
IDEA

e Known-plaintext attack:
The attacker has a quantity of plaintext and correspondipigectext and tries
to determine the secret kéyor decrypt further ciphertexts.

These two attacking scenarios can be expanded by vari&etghiosen-plaintext
attacks or chosen-ciphertext attacks. Here the attackecluaose the plaintexts or
ciphertexts he knows. Another variant is that the chosets tean be picked out
adaptively. These attacking scenarios are relevant fonsgtmc-key encryption as
well as for asymmetric encryption.

The methods for symmetric-key encryption can be furthedéid intoblock ciphers
and stream ciphers. Block ciphers divide the messaggto blocksm, ms, ... of
a fixed length. Typical values for the length of a bloek are 64, 128 or 256 bits.
Normally all blocksm; are encrypted with the same kiyand a ciphertext block;
(of the same length) is built. A block cipher can be used imower working modes.

Many block ciphers like the DES belong to the group-eistel CiphersThe advan-
tage of these ciphers is that one has a lot of freedom whegridegithe function
E, and at the same time the guarantee that the decryptiondarigtexists and that
this function can be expressed explicitly.

Examples of well known and frequently used block cipherd2#& (Data Encryp-
tion Standard) antDEA (International Data Encryption Standard). Both are algo-
rithms with a block length of 64 bits. DES has a key length ob&6 while IDEA
has a key length of 128 bits. The days of the simple DES are etedibecause the
keys of length 56 bits used in DES are now vulnerable to exheusearch attacks,
which try out all possible keys. This is why the effectivene$ DES is increased
through multiple application (for example Triple DES).

Example 1.4-2: Simple substitution ciphers

Let the plaintext symbols be the numbers from 0 to 9. Let thyeildee a number
between 1 and 9. The encryption functightransforms a plaintext numbet
and the key as follows:

c¢= f(k,m) =m + k mod 10.

The decryption is carried out by subtracting the kdyom the received cipher-
textc:

m = f*(k,c) = ¢ — k mod 10.
Now letk = 3 and the message = 8 is to be encrypted:

c= f(3,8) =11 mod 10 = 1.

1.4 Symmetric-key Encryption

Decryption:
m= f*(3,1) = =2 mod 10 = 8.

Such a substitution cipher is not very secure because the:kegn easily
be detected through frequency analysis of symbols in thiateht and in the
ciphertext.

Beside block ciphers there astream ciphersn symmetric-key enryption. They stream ciphers
do not encrypt the message block-wise, but symbol-wise hacctirrently used

keystream alters from symbol to symbol. Formally, an addiitream cipher (see

Fig. 1.4-2) is a functionf which produces a keystream, 1 < ¢t < [with the

lengthl > n from a secret key: with the lengthn. The message:, which is to

be encrypted, has message symbols. This is illustrated as the message symbol
sequence

m=1miy,Ma,...,My

and is combined with the keystreamto produce the ciphertext sequengeria a
symbol-wise XOR operation:

Ct = Z¢ + my.

The decryption is carried out in such a way that the receivéneencrypted mes-
sage sequence produces the same keystreanwith the functionf and the secret
key k. The receiver recovers the message sequentbrough a symbol-wise XOR
of keystreany; and ciphertext sequence

my = 2¢ + ¢4.

The keystream sequencgis a pseudorandom bit sequence. It should, besides cer-
tain statistical features, correspond to further cryppyic standards.

k
secure channel i
f

k
Zt Zt
m, ———»C, > —> m,

>
unsecure channel

Fig. 1.4-2: Principle of an additive stream cipher.

The prototype of all stream ciphers is tme-time-padwhere it is assumed thatOne-time-pad
the keystream sequence is a random sequence and the lengtlof the keyk

has to be at leagt where! is the length of the message. If the key is only used

once then this technique is absolutely secure, and itsifgcan even be proven
theoretically. However, it has the disadvantage that tlyehles to be as long as the

1 Introduction

plaintext. When the same key is used several times the systarhe cracked with

a known-plaintext attack. In practice it is unusual to usen@-@®me-pad. Instead a
pseudorandom sequence generator is used for generatikgytbigeam sequence
2. Here the advantage is that only a short secret informasimeéded to initialize

the pseudorandom sequence generator. As in the case ofdabbeks, only a short

secret information has to be transmitted from the sendédraodceiver.

Example 1.4-3: Additive stream ciphers
A wants to transmit t@ the encrypted message sequence

m=0,1,0,1,1,1,0,1

with an additive stream ciphed and B choose a suitable keystream generator.
Then they interchange via a secure and authentic channsl & W&h which

the keystream generator is initialized. Let the generatodyce the keystream
sequence

2=1,0,1,0,1,0,1,1

at A as well as aB as both have the common and secret keyhe ciphertext
sequence is obtained through a symbol-wise XOR with the message segue
m and the keystream sequence

c=m+z=1,1,1,1,0,1,1,0.

The ciphertext sequeneecan now be transmitted via an unsecure channel and
the participantB can recover the message sequencthrough a symbol-wise
XOR with the aid of the key stream sequence

m=z+c¢=0,1,0,1,1,1,0, 1.

1.5 Asymmetric Encryption

A major problem which is inherent to the previously explaireymmetric-key
encryption techniques is the distribution and adminigiradf the symmetric key

k. When two participantsl and B want to communicate, they must first exchange
a secret key:4 5. For this they must have a secure channel, so that the keyecan b
transmitted secretly and with integrity. Integrity meathst the receiver can detect

if the message was changed during the transmission. Therttigeanumber of par-
ticipants in a network that want to communicate, the morécdit the problem
becomes. When there aié participants communicating with each other, each pair
of participants must exchange a secret key. Hence

N(N —1)
2

1.5 Asymmetric Encryption

keys must be transmitted and stored secretly. Another possibility is to carry out the
whole communication via a central trusted third party. In this case dritgy pairs

have to be generated, distributed and stored. The key management is easier, when
asymmetric techniques are used. Concepts and ideas of asymmetric cryptography
are based on the research of W. Diffie and M. Hellmann in the mid 70s ([Diffie76a]).
The first asymmetric encryption system was the RSA technique which was proposed
in 1978 by R. Rivest, A. Shamir and L. Adleman ([Rivest78a]).

The principle of asymmetric encryption is as follows (see Fig. 1.5-1): each patrtici-
pantT’ of the system has a private kéy = k, and a public keyt, = k. of T..

kq is kept secret and, is made public. Now, when a second participant wants to
send a message to participantl’, he has to obtain the public key, for example
from an electronic directory similar to a telephone book. The encryption function
E assigns the ciphertext to the message by using thékey

C = Ek’e (m)

Participantl’, to whom the ciphertextis sent, uses his private kéy on ¢ with the
decryption functionD:

m' = Dy, (c).
k, private key ks public key
n S > C > C p D » 11
unsecure channel

Fig. 1.5-1: Principle of asymmetric encryption.

The functionst’ and D must have the following properties:

1. correct decryption:
the correct plaintext must be reproduced. This means that

m' = Dy, (c) = Dy, (Ey,(m)) =m
for all plaintexts m,

2. asymmetric-key property:
itis practically impossible to recover the private Keyfrom the public key..
The same applies to the corresponding functions: it is practically impossible
to deduceDy,,(.) from Ex_(.).

10

1 Introduction

When the principle of asymmetric encryption was descrilmees could see that
no keys had to be exchanged secretly for encrypted comntioric&8ut there is
another problem: when someone wants to send a messageitippatt/’, he must

be sure that the public key @f, which he gets from a public key register, is the
actual public key off". If an attacker manages to replace the public key af the
database with his own key or when he puts the key otherwisiadualation, he can
decrypt all messages sentfo Thus, the public keys must be authentic. This can
be obtained by using secure registers or digital signaamd<ertificates.

Asymmetric encryption techniques not only facilitate kepmagement and key
exchange for users, but can also be used for digital sigemtlnfortunately the
known asymmetric techniques are not as efficient as many syrimakey encryp-
tion techniques. That is the reason for combining, in pcagtasymmetric and
symmetric-key techniques as a hybrid technique (see FBg2)L.When a message
m IS to be encrypted and transmitted, the sender initiallgpees a symmetric ses-
sion keyk. The session key is encrypted with the public kewf the receiver using
an asymmetric techniqug,,, and the message is encrypted with the kel using

a symmetric-key techniqui,,,,:

1 = Easy,ke (k)
and
Coy = Esymk(m).

The receiver obtains the ciphertextsandc, and decrypts them in the following
order:

k= Dasy,kd (Cl)

and

m = Dsym,k(CZ)7

wherek, is the secret key of the receiver for the asymmetric techeiqu

k,: public key
authentic channel
k,.: private key

c » C % k
"unsecure channel ik

> cnga—b m
unsecure channel -

Fig. 1.5-2: Principle of a hybrid encryption system.

1.6 One-way Functions 11

1.6 One-way Functions

One-way functions are a basic building block of cryptogsapg¥lany primitives
like asymmetric cryptography, hash functions, digitahsiggres or pseudorandom
bit generators are based on them. A one-way funcfianX — Y is a function
whose valug) = f(x) is easily computable, but the preimagéor essentially all

is computationally infeasible. The terfor essentially alimeans that, for instance,
there can be a table for a small number of preimages, whidairwan: for a given
y. The termeasily computableneans that can be determined in polynomial time,
and computationally infeasibleneans that: for a giveny cannot be, on average,
determined in polynomial time (see Fig. 1.6-1).

easy to compute

TN

x—» f —>»y

infeasible to compute

Fig. 1.6-1: Principle of a one-way function.

If fis a bijection f : X — X) itis also called a one-way permutation. A one-
way function is calleccollision-freewhen it is practically impossible to find two collision-free
different valuesc andz’ in the preimage seX with f(x) = f(2/).

The one-way functions introduced so far can be used by alicgzants equally.

Modern cryptography requires a further concept, namelypteanager can only

be computed easily from when a secret value is known. This concept is achieved

by a trapdoor one-way function. thapdoor one-way functiofi: X — Y is a one- trapdoor one-way
way function for which there is a secret information so tht function is easily function
invertible. One example for this is to square moduio

f(z) = 2* mod n,

with n = pq, wherep, g are prime numbers. The computationof= f(z) can be
carried out in polynomial time. Without knowingandgq, x from a giveny cannot
be determined in adequate time. When the factorization & known, effective
algorithms exist to determine In this case the trapdoor information is thpandg
are known.

12

1 Introduction

collision

collision resistant

1.7 Cryptographic Hash Functions

Cryptographic hash functions belong to the group of one-fuagtions (see Sec-
tion 1.6). Hash functions are important elementary segcangchanisms which are
especially used to protect authentication and integritye$sages. A further exam-
ple is the computing of electronic signatures where, irtste#fasigning a message
m, the cryptographic hash valigm) is signed.

A cryptographic hash function is an algorithm which maps any messageon

a hash value (test valué)m) of a fixed length. Without loss of generalization we
only consider the binary alphabet with the symbidglsl }. Formally a hash function
Is then defined as

he{0,1) — {0,1}"

wheren gives the fixed length of the hash values. The vai(e) should be effi-
ciently determinable and it should be computationally asible to determinen
from h(m) (see Fig. 1.7-1).

easy to compute| |

N,

“infeasible to compute

Fig. 1.7-1: Principle of a hash function.

A collision(m, m’) of h is a pair of messages for which # m’ andh(m) = h(m’)

is valid. A hash functiort is called (weakly)collision resistantwhen it is difficult

to find a collision(m,m’) for a givenm. Sometimes it is sufficient that the hash
function used is collision resistant. Others, like onesduseelectronic signatures
for instance, need stronger properties. A hash fundti@ncalled strongly collision
resistant (or collision-free) when it is practically imgdse to find any collision
(m,m’).

Hash functions are usually applied on a block basis, i.e.ssagen is divided into
blocks of a fixed length (e.g. 64 bits) and each block is cosgmé using the hash
function. The compressed values are concatenated to giveatsh functiork(m).

In this process the last block to be compressed might have fildxd up by zeros
(i.e. padded) to give the full length (e.g. 64 bits).

1.7 Cryptographic Hash Functions 13

The hash functions MD4 and MD5 were designed by R. L. Rivedt&rDusse in
1990 and 1992 respectively. The abbreviation MD stands fEssage digest. MD4
provides hash values with a length of 128 bits. MD5 is a stifegrged version of
MDA4. It is more complex than MD4, but similar in design. Therelepers explain
that 264 operations are required to find two distinct messages withstime hash
value, and abou?'?® operations to find a message yielding a pre-specified hash
value. According to recently published attacking method34Nis no longer regar-
ded as secure.

In 1992 the American National Institute of Standards anchmetogy (NIST) pro-
posed to standardize a dedicated hash function, whosendeaggsimilar to the one
of MD4 and MD5. This technique generates hash values withgtheof 160 bit. In
1993 it was published as Federal Information Processingdata (FIPS 180) and
is now referred to as Secure Hash Standard (SHS).

When messages are transmitted, intentional or uninteadtfanlts can occur. They
can be caused by technical defects or failures of the conuation technology, but
also by aimed manipulations of attackers. In order to dedadt correct uninten-
tional faults, methods of coding theory are used. To eachsaggswordn of the
length/ a valid code wordn’ of the lengthl’; I’ > [is assigned. With the informa-
tion added ton, fault detection or even fault correction can be carried ©he code
word m’ is sent to the receiver, is received as code wofdand is checked if itis a
valid code word.

The methods of coding theory are not sufficient to protectsagss from attackers
because the attacker can send, instead of the valid codermipathother valid code
word to the receiver. The receiver cannot detect the maaiijonl as it becomes a
valid code word.

In order to protect oneself against manipulations, digitghatures or hash functi-
ons in combination with a symmetric key can be used. Digitalatures solve the
problem with an asymmetric approach and have further upefyderties. We will
introduce a solution based on hash functions.

When a message is to be transmitted from a sender to a receiver, a secrek key
must be chosen and exchanged first, like it is in symmetricption systems. The
sender has first to compute the hash val(e) of the message: and then encrypt

it using the secret key asE,,, ,(h(m)). Finally, the tupetn, E;,,,, (h(m)) is sent

to the receiver. The receiver can check the correctnessottteived message'.
For this purpose the receiver computes the hash funétioerl) and then uses the
secret keyk on h(m') to calculateEy,,, ,(h(m')). The authentity of the message
(m = m/) is given in cas&sy,,, r.(h(m)) = Esymi(h(m'))".

1 In fact, the functiong’s,,,, », andh must fulfill some requirements to provide message authen-
tity. A description of these requirements is beyond the saxfjthis course. For more details,
see [Menezes96a] on page 366.

14

1 Introduction

1.8 Entity Authentication

Authentication is one of the most important of all infornmettisecurity objectives.
Until the mid 1970s there was the general belief that secascy authentication
were intrinsically connected. With the discovery of hagictions and digital signa-
tures, it was realized that authentication and secrecy walg independent and
separate information security objects [Menezes96a].

Authentication attempts to solve following problems witlgmtographic methods:

e How can | identify myself to another person, beyond all dGubt

e How can an information system check the access authonzafia user?

e How can | be sure that a message is originated from the ireticsgnder?

A typical example for entity authentication is to prove aielentity to a computer,
for instance an ATM (automated teller machine). The ATM nhestsure that the

person who has the credit card is actually the owner of tieatitcard. In this case
a PIN (personal identity number) has to be keyed in.

In the real world we recognize people by their appearande\ber or their voice.
We perceive personal characteristics of persons to authémthem. When a com-
puter checks the personal characteristics of a personsttédied biometric authen-
tication. Examples for this can be:

e lIris scan

e Fingerprint

e Face recognition

e \oice recognition

e Recognition by measuring typing speed or other behaviooahétrics.

In electronic systems these techniques usually do not waHowt problems or the
costs of a biometric system might be too high. That is theaashy in cryptogra-

phy methods are examined, in which, for authentication,ragrehas to submit a

secret information or has to prove that he is in possessianceftain information.
Examples of secret information are:

e Password

e PIN

e Symmetric key

e Asymmetric key pair

e The solution of a problem which cannot be solved in polyndtimae.

The different techniques which prove that one has a sedmhation can be clas-
sified according to the following criteria:

e Whether the secret must be transmitted directly to the eerdr if a value is
sent to the verifier which is computed with the secret.

e Ifthe secret is needed for verification.

1.9 Key Management Techniques 15

Besides entity authentication discussed here, there i@ foe message authenti-
cation, with which the origin and integrity of a document isyed. For this, digital
signature or symmetric techniques are suitable. They aedoan hash or encryp-
tion functions.

1.9 Key Management Techniques

Security services based on cryptographic mechanisms aismme cryptographic

keys to be distributed to the parties which are involved imownication before cryptographic keys
securing the communication. The secure management of Kegseis one of the

most critical elements when integrating cryptographictions into a system. Even

the most ingenious security concept will be ineffectivehié tkey management is

weak.

Key management includes the

e (Qeneration,

e certification and authentication,
e establishment and distribution,

e escrow / recovery,

e storage, update and destruction,

of keying material. These topics will be discussed in détatchapter 9. Key mana-
gement techniques depend on the underlying cryptogragtimtques, the intended
use of the keys and the implied security policy. The appetpmrotection of keys is

subject to a number of factors, such as the type of applicédiowhich the keys are

used, the threats they face, or the different states therkeysassume. Primarily,

depending upon their type, keys have to be protected agéisosure, modifica-

tion, destruction and replay.

1.10 Public Key Infrastructure

A major advantage of asymmetric key cryptography over sytrimkey crypto-
graphy is that the key distribution problem is easier to eaokymmetric key dis-
tribution systems are expensive and hard to manage. In degtrity applicati-
ons with imminent man-in-the-middle attacks, symmetristegns require expen-
sive and cumbersome secure communication lines, facaetrheetings or courier
services. In asymmetric cryptosystems the public key cadisteibuted without
the fear of compromising the secret private key. Neverdsglkey management in
public key cryptography is still a difficult and complex igsu

Many currently emerging applications in the field of infoina technology rely on
the principles of asymmetric key cryptography. The bastusgy related features
that public-key systems can supply are confidentialitya d@egrity, authentication,
and non-repudiation. Typical real-world examples are:

1 Introduction

Secure E-mail The need for a secure messaging environment for the Intesroét
great importance. Although in the past the public awarefardbe problems
regarding insecure e-mail was very low, the spread of detdbut global
surveillance systems immediately produced great condeyatdhis issue.

Secure electronic paymentAt the moment, many payments in Internet-based e-
commerce transactions are based on credit cards. Secleigotronic credit
card payments can be increased by applying asymmetric kgyography.
For example, a mechanism for authentication of involvediggfcustomers,
merchants, banks) can be provided. Furthermore, the a@ditand payment
information should be encrypted during the transaction.

Access control The most common used prevailing method of access controkin ¢
porate and open networks is to employ weak authenticatitim passwords.
Passwords that can be remembered (and thus be used) by hearanaven
if they have a reasonable length, normally have such a lovogyttthat dic-
tionary attacks are readily successful. Even though stphisd methods for
useful password selection do exist, these methods are tolbecumbersome
for casual users or users simply do not bother to use thencd{&ncan be
advisable to replace low entropy passwords with large pgtessymmetric
keys.

Authorization Allowing a user to access a computer system is a special férm o
authorization. Other forms of authorizations are, e.gatlt@orization to pro-
vide medical advice over the Internet, the authorizatiorie¢as the content of
a video on demand stream, the authorization to spend mortég iname of
a company, etc. Such authorizations can be realized withlsedcauthoriza-
tion certificates, which bind a special form of authorizatio a public key.
The holder of the corresponding private key is then able tvgthat he or
she is allowed to carry out the certified action.

Electronic Signature The recent evolution of the Internet into an open and glo-
bal communication platform has greatly stimulated elegtraommerce and
Internet-based business-to-business transactions. &easing number of
transactions are carried out online which leads to a demandrf electro-
nic equivalent of traditional contracts. Especially golans from the lea-
ding industry nations were under pressure from businesstpviders of
e-commerce solutions to quickly adopt legislation of el@uic signatures.
Emerging electronic signature acts include the use of aigignatures as
a legal replacement of hand-written signatures. In Felr@@01, the Ger-
man 'Bundestag’ approved the adoption of the Europeanrel@ctsignature
directive. The directive uses the temtectronic signaturenstead ofdigital
signatureand defines different types of electronic signatures.

2 Only random passwords have a maximal entropy.

1.11 Recommended Literature 17

"Electronic signature” means data in electronic form wlaohattached to or
logically associated with other electronic data and whietve as a method
of authentication.

Furthermore, the directive also defines an advanced etectsgnature:

"Advanced electronic sighature’ means an electronic aigre which meets
the following requirements:

a. itis uniquely linked to the signatory,
b. itis capable of identifying the signatory,

c. itis created using means that the signatory can maintadenhis sole
control and

d. itis linked to the data to which it relates in such a manhet aany
subsequent change of the data is detectable.”

In practice, this will most often be achieved by digital sapres with explicit
support of non-repudiation.

It can be seen from the examples above, that asymmetric kpyography is app-
lied in diverse disguises. For all these applications tectifely work, sophisticated
key management and distribution systems have to be cotetiruthe key manage-
ment system for applications of asymmetric key cryptogyaplcalledpublic-key
infrastructure (PKI) A typical PKI consists of hardware, software, the people-wo
king to administer and maintain the infrastructure, as \asllpolicies regarding
security, privacy and liability. In chapter 10 we will havdaok at the basics of
public-key infrastructures. We introduce identity cectifies, explain certification
structures and give an overview on important PKI standdilds X.509, PKIX or
OpenPGP.

1.11 Recommended Literature

There are many good reference books on cryptography. Hermeveion some
books which can be useful for further study.

[Menezes96a]: An extensive reference book for cryptogyaBhsic mathematical
principles as well as cryptographic primitives and proteee illustrated in detail.

[Buchmann99a]: A detailed illustration of basic mathemetprinciples for cryp-
tography, especially of the number theory. All importanirptives of cryptography
are illustrated in detalil. It also offers separate chagterthe factorization of integer
numbers, prime number tests and solutions to the discrgégitbm problem.

[Schneier96a]: like [Menezes96a] it is very extensive,lbss formal and systema-
tic.

[Stinson95b]: A book that treats the most interesting tejitcryptography. Many
examples and excercises.

18

2 Mathematical Background

set

operations

axioms

elements

subset

equal sets

2 Mathematical Background

The algebraic part of this chapter is intended as an intrii@lu¢o some funda-
mental algebraic systems such as groups, rings and field$ufoer reading we
recommend the following books: [Herstein86] for abstragehra, [LidI94] for fun-

damental algebra and finite fields, [Koblitz94], [Jacksdr®7 an introduction in

number theory, [Buchmann99], [Menezes96], [Koblitz98]dtgorithms in number
theory and finite fields.

2.1 Sets and Mappings

An algebraic system can be described as a set of objecthwgeith some opera-
tions for combining them. In our short introduction we firegn with the notion of
thesetS as a collection of objects, calledement®f S. The elements of the sét
can be combined, in one or several ways, for obtaining onae netements of this
setS. These ways for combining elementsére callebperationson S. Then we
try to condition or regulate the nature 8fby imposing certain rules or axioms and
define the particular structure ¢h Theseaxiomsact as a license to reach certain
mathematical objectives.

2.1.1 Set Theory

Here we only give a short overview of the basic notions andaipmns from set
theory. As mentioned above, a setcan be described as a collection of distinct
objects callectlement®f S.

NOTE
The following notation will be used throughout:

1. N denotes the set of natural numbers; that is, thé&et, 2, ...}.
2. Zdenotes the set of integers; thatis, the{set , —2, —1, 0, 1, 2,...}.

3. Qdenotes the set of rational numbers; that is, thg $eti, b € Z, b #
0}.

4. IR denotes the set of real numbers.

To denote that a given elemedntis an element o5, we writea € S. The setl’
will be said to be assubsetof the setS, if every element off" is an element of.

In this case, ifa € T implies thata € S, we write7T C S. In terms of the basic
terminology of sets, two setS and7" areequal (written S = T)) if they consist
of the same set of elements, iE.C S andS C T. Thus, the standard method
for demonstrating the equality of two sets is to prove thaséhtwo relations hold
for them. In contrast to the previous case, if at least oné@bipposite containing
relations is not verified, the two setsand7" are said to b&ot equaland this will

2.1 Sets and Mappings 19

be denoted b{/" # S. A subsetl’ forms aproper subseodf S'if 7' C S andT # S,
i.e. if S contains more elements thdh As a particular set, themptyset is a set empty set
having no elements. It is a subset of every set and is denetkd a

Supposing that the set$ and B are subsets of a given s&t we now deal with

methods for constructing other subsetssdfom A andB. In this regard we intro-

duce thaunionof A andB denoted asl U B, as the subset ¢f containing elements union

of S that are elements of or elements of3. The "or" we have just used means that

the elements ofl U B can be contained iA, in B or in both sets. Byntersectiorof intersection
A andB, written A N B, we mean the subset 6fconsisting of those elements that

are both ind and inB. Two sets4 and B are said to bélisjoint, if their intersection

is empty. Although the union and intersection are definedviorsets, they can be
generalized to an arbitrary number of them.

The third operation we can perform on sets is difeerenceof two setsA and B. difference

The difference is denoted by — B and consists of the set of elements that aré in

but not in B. Under the consideration thatis a subset of the sét, the difference

S — A defines the complement dfin S and is denoted byl’. Another construction

we can realise on the setisand B is thecartesian productwritten A x B. The set cartesian product
A x B defines the set of all ordered paits b) wherea € A andb € B. We write

Ax B={(a,b)|a€ A, be B}.

Two pairs(aq, b;) and(as, b2) are said to be equal if and onlydf = a, andb; =
b,. Generally, the cartesian product can be defined on an ampitumber of sets
A, Ay, .. A, We write

Al XA2 X ...An:{(al,ag,...,an) | a; GAZ'}.

We now consider the cartesian product of a4etith itself, A x A. If the setA is
finite with n elements, then the sef x A is also finite and contains® elements.
Instead of referring to subsets of the cartesian productamerefer taelations

A binary relationR on A itself is a subset of the cartesian produttx A, i.e. binary relation
R C A x A. The elements, b € A are said to be related (a is related to b), if

(a,b) € R. We further denote a binary relation on the gdeas~. The relation~

can have one or more of the following properties:

1. Reflexivity: Foralla € A,a ~ a(i.e.(a,a) € R).

2. Symmetry: For alb, b € A, a ~ bimpliesb ~ a (i.e if (a,b) € R, then
(b,a) € R).

3. Transitivity: For alla, b, c € A, a ~ bandb ~ cimpliesa ~ ¢ (i.e.(a,b) € R
and(b, c¢) € Rimplies(a,c) € R).

The binary relations which possess all three features wreedi above are very
important. Such relations are callequivalence relationsA formal definition fol- equivalence relations
lows:

20

2 Mathematical Background

equivalence class

function, mapping

image

inverse image

Definition 2.1-1: A binary relation~ on the setA is said to be an equivalence
relation on A, if it is reflexive, symmetric and transitive.

Example 2.1-1:
Let S be the set of all integers. Givenb € S, definea ~ bif a — bis an even
integer. We can show that this is an equivalence relation.on S

1. Sinced = a — ais evena ~ a (reflexivity).

2. Ifa~ b, thatis, ifa — bis even, them — a = —(a — b) is also even, thus
b ~ a (Symmetry).

3. Ifa ~bandb ~ ¢, then botha — b andb — ¢ are even, thug — ¢ =
(a — b) + (b — ¢) is also even, proving that ~ ¢ (transitivity).

After the definitions of binary relation and equivalenceatign, we now introduce
the concept of arequivalence classvhich plays an extremely important role in
mathematics.

Definition 2.1-2: If A is a set and- is an equivalence relation oA, then the equi-
valence class aof € Aisthe sef{x € A | a ~ x}. Itis denoted by!(a).

In Example 2.1-1, the equivalence class:aonsists of all the integers of the form
a + 2m, wherem = 0,+1,+2,.... In this example there are only two distinct
equivalence classes, namel}(0) andci(1).

2.1.2 Mappings

One basic concept in mathematics is that éfirectionor mappingfrom one set to
another. The definition of a function from one set to anotlerlme given in a formal
way in terms of a subset of a cartesian product of these sets:

Definition 2.1-3:If S and 7" are nonempty sets, then a mapping frénto 7" is a
subsetM of S x T so that for everys € S there is a unique € 7' so that the
ordered pair(s, t) isin M.

Informally defined, a mapping (or functiorf) from one setS to another sef’ is
a rule that assigns to each element S a unique element € T, i.e. given an
elements of the setS, there is only one elemenin T that is associated toby the
mappingf. The mappingf from S to 7" will be denoted byf : S — T'. Theimage
of s € S'is the element € T" which mappingf associates with. It is denoted as

t=f(s).

We now consider the inverse case: given a mapping — 7 and a subset C T,
the setB = {s € 5 | f(s) € A} is called theinverse imageof A under f and

2.1 Sets and Mappings 21

is denoted byf~!(A). f~1(t), the inverse image of the subdet C T consisting
only of the element € T is of particular interest.

Now that we have briefly looked at mapping we shall single oate of them.

1. LetS be an arbitrary nonempty set. A mappingofx S — S is called a
binary operationon S. binary operation

2. LetT be a nonempty set, and I8t= 7" x T be the cartesian product @f
with itself. The functionf : 7' x T' — T, defined byf (t,,t2) = t;, is called
theprojectionof 7" x T" onto its first component. projection

3. LetS and7 be nonempty sets, and kgtbe a fixed element &f. The function
f S — T defined byf(s) = t, for everys € S is called aconstant function constant function
fromStoT.

4. LetS be a nonempty set. The functigh: S — S, defined byf(s) = s for
everys € S, is called thadentity functionon S. identity function

5. Two mappingg andg from one sefS to another are declared equal if and equal mappings
only if f(s) = g(s) for everys € S.

Now we introduce some types of mappings by the way they behave

Definition 2.1-4: The mappingf : S — 7' is onto or surjective if everyc T surjective mapping

is the image undef of somes € S; that s, if and only if, given any € T, there is
ans € S sothatt = f(s).

Definition 2.1-5: A mappingf : S — 7T is one to one (written 1-1) or injective injective mapping
if for sy, # soin S, f(s1) # f(s2) inT'. In other words,f is 1-1 if f(s1) = f(s2)
implies thats; = s, (distinct objects have distinct images).

Definition 2.1-6: The mappingf : S — T is said to be a 1-1 correspondence or

bijection if f is both 1-1 and onto. bijective mapping

If we have a mapping : S — T and a mapping : 7" — U, we can introduce an
operation of combining mappings under certain circum&anthe most obvious
combination off andg is to form their product defined by the mapping f from
SintoU, sothat(go f)(s) = g(f(s)) for everys € S. The mappingjo f : f — ¢

is denoted asompositioror productof the mappingg andg. composition of
: ... Mmappings
For three mappingg : S — T, g : T — U andh : U — V, the generahssociative

law holds, i.eh o (go f) = (hog)o f.

22

2 Mathematical Background

semigroup

identity element

inverse element

2.2

In this section we introduce some topics of elementary abydbspecially the basic
definitions and properties of groups, rings and fields wiltbaesidered.

Groups, Rings and Fields

2.2.1 Groups

The theory of groups is one of the oldest parts of abstraebaégas well as one
particularly rich in applications. In order to give a fornafinition of a group, we
first introduce the notion of semigroup

Definition 2.2-1: A semigroup is a paifG, %) of a setG and an operation: with
the following properties:

1.xis a binary operation on the sét, i.ex: G x G — G.

2.« is an associative operationi.e. foralla,bec G : (axb) xc=a* (bx*c).

A semigroup (&, *) is calledcommutativeif the binary operatios on G is com-
mutative, i. e. forallab € G, axb = bx*a.

Definition 2.2-2: A pair (G,) is called a group, if it satisfies the following axioms:
1. (G, %) is a semigroup.

2. There is an element € G, called identity element so that for all € G :
a*xe=exaq=a.

3. For eacha € G, there is an element™!' € G, called inverse of a, so that:

a*a_lza_l*a:e.

The group(G, *) is an abelian (or commutative) group, if the group operatios
commutative.

The associative law guarantees that expressions such+as, * * * a,, With a; €
G,1 < j < n, are unambiguous, since no matter how we insert parenthtases
expression will always represent the same elemen®.ofTo indicate then-fold
composite of an element € G with itself, wheren € N, we shall writea™” =
aa - --a(n factors a) if we use multiplicative notation. We call’ thenth power of
a. If we use additive notation for the operatieon G, we writena = a+a+---+a
(n summands).

Following the customary notation, we have the followingesul

Multiplicative Notation

Additive Notation

a " = (a—l)n

(—m)a = n(—a)

nm

aa n+m

=a

na +ma = (n+m)a

(an)m — anm

m(na) = (mn)a

2.2 Groups, Rings and Fields 23

Forn = 0 € Z, one adopts the conventiaf = ¢ in the multiplicative notation and
0a = e in the additive notation, where the last "zero" represdrgsdentity element
eof G.

Example 2.2-1:

1. LetG be the set of integers with the usual addition + as the groapasp
tion. The ordinary sum of two integers is a unique integer dnedasso-
ciativity is a familiar fact. The identity element is= 0 (zero), and the
inverse of an integer is the integer-a, because + (—a) = (—a) +a =
e = 0. We denote this group b¥.

2. The set consisting of a single element {e}, with the operat defined by
e = e x e, forms a group. The sole element of the group {e} is the idgnti
element and its own inverse element.

3. LetG be the set of remainders of all the integers after divisiol bythat
is,G ={0,1,2,3,4,5} —and leta x b be the remainder of division by 6
of the ordinary sum of andb. The existence of an identity element and
of inverses is again obvious. We can see that O is the idegigtyient of
this groupG, since for each elementof the setG = {0, 1, 2, 3,4, 5}, the
remainder of division by 6 of the ordinary sum@tind 0 delivers, i.e.
fora € G,ax0 = 0x*a = a. Each element € G possesses an inverse
in G, e.g. the element 1 aff has 5 ofG as inverse, since the remainder
of division by 6 of the ordinary addition of 1 and 5 deliverg tidentity
element 0. In the same manner we find out that the element Q42ard
5 respc. have the inverses 0, 4, 3, 2 and 1. It requires somputation to
establish the associativity ef This group can be readily generalized by
replacing the integer 6 by any positive integer

Another natural characteristic of a groapis the number of elements it contains.
If this number is finite, the group’ is said to be dinite group The number of finite group
elements in a finite group is called theder of G and is denoted bjG|. order of the group

It might be desirable in some interesting cases to deal wifirapriate parts of

the groupG, which are smaller, over which we have some control, and @atbat

the information gathered about them can be used to get relevrmation and

insight about? itself. Note here that the behaviour of these part& afepends on

the group operation. The parts of are calledsubgroupsand will be defined in subgroup
what follows.

Definition 2.2-3: A nonempty subsét/ of a group(is said to be a subgroup @f
if, under the group operatioRr, M itself forms a group.

24

2 Mathematical Background

order of group element

generator

Example 2.2-2:
Let M be a set of even integers, ¢ C Z. The setV closed under the ordinary
addition + forms a group, since

1. ifa,b € M,thena+0b € M. Thatis, ifa andb are even, thea + b is
even, and

2. the setM possesses the element 0 as identity element, and

3. every element a ol possesses an invergea) so thata + (—a) =
(—a)+a=0.

Subsequently/ is a subgroup of the grougZ, +), becausé/ C Z and(M, +)
is a group.

We now consider the order and some further properties ofrihigpgelements.

Definition 2.2-4: Let g be an element of the group. The order ofy is the least

positive integed so thatg® = e, provided that such an integer exists. The order of
g is defined to be infinite, if does not exist.

We shall introduce the set

(9) ={¢" | k € Z}.

Definition 2.2-5:1If g € G exists so thatg) = G, G is said to be cyclic and is a
generator ofG.

Example 2.2-3:

We consider again the group of item 3 of Example 2.2-1. We remember that
G =1{0,1,2,3,4,5} and that the group operatiens defined to be the remain-
der on division by 6 of the ordinary sum afandb. We now want to determine
the set(1). It must be clear that the expressigh introduced in the definition

of (g) with g € G, is relative to the used group operation. In our example, we
have:

g" =gx*gx... xg(kmultiple).

2.2 Groups, Rings and Fields 25

So, we get:
1x0=1
1x1=2
1x1x1=3
1x1lx1x1=4

I1x1lx1x1x1=25
1x1lx1*x1x1x1=0
Txlx1x1x1x1lx1l=1

If we continue this computation, we always obtain an eleroéttie group’ as
a result. Thus, we can write:

(1) = {0,1,2,3,4,5} = G.

We conclude that 1 is a generator of the gréupnd that’ is a cyclic group.

2.2.2 Rings

In most number systems used in elementary arithmetics #nertsvo distinct binary
operations: addition and multiplication. Examples arevjgted by the integers, the
rational numbers, and the real numbers. We now define a typlgelbraic structure
known as aing that shares some of the basic properties of these numbensyst ring

Definition 2.2-6: The triple(R, x, o) is called a ring, if the following properties are
verified:

1. (R, %) is an abelian group with identity elemefi. O is called the zero
element of the ring. zero element

2. The group operation is associative, that iSa o b) o ¢ = a o (b o ¢) for all
a,b,c € R.

3. There is an element; € R so that for each elemente R : aolyr = 1goa =
a. 1 is the multiplicative identity of the ring.

4. Foralla,b,c € Ryao(bxc)=(aob)x(aoc),(a*xb)oc=(aoc)x*(boc),
i.e. the operatior is distributive ovee.

The ring (R, x,0) is a commutative ring, if the operation o is commutative. An
elementa € R of the ring(R, %, o) is invertible or unit if it is invertible in (R, o).
The set of unit elements in a ringR, *, o) forms a group under the operation o
which is called the group of the units of R and is denoted &Y, o).

2 Mathematical Background

Example 2.2-4:
The set of integer& with the usual operations of addition and multiplication is
a commutative ring, since

1. (Z,+) is an abelian group with zero element 0, and

2. the group operationis associative, that iga - b) - ¢ = a - (b - ¢) for all
a,b,c € Z, and

3. 1 is the multiplicative identity element of the rifzgy since for each ele-
menta € Z:a-1=1-a=a,and

4. foralla,b,c € Z,a-(b+c) = (a-b)+(a-¢), (a+b)-c=(a-c)+ (b-c),
i.e. the operationis distributive over+, and

e

the operationis commutative.

2.2.3 Fields

field The next algebraic system we will consider ifedd. It plays an important role in
geometry, in the theory of equations, and in certain partaiaiber theory.

Definition 2.2-7: A commutative rind K, x, -) is a field, if for alla € K, with a
0k (O is the zero element of the set K)is invertible or a unit.

Example 2.2-5:

1. (Z,+,-) is not a field, since the only non-zero integers, which passes
inverse related to the multiplicatiorare 1 and -1.

2. (IR,+,-) is a field withIR being the set of real numbers,and- are the
ordinary operations: addition and multiplication.

2.3 Number Theory

The present section is intended as an introduction to thie baacepts of number
theory. Several central topics in this section such as pniamebers and congruences
are very important not only in cryptography, but in many stife fields.

2.3 Number Theory

2.3.1 Divisibility

First we introduce the notion afivisibility of integers. divisibility

Definition 2.3-1: Leta,b € Z. We say that: dividesb if there is an integemn so
that:

b= an.

In this caseu is said to be a divisor df andb is a multiple ofa. The divisibility of
b by a is denoted by: | b. To indicate that: is not a divisor ob, we writea t b

Example 2.3-1:
5| 125 and—8 | 360, sincel25 = 5 - 25 and360 = (—8) - (—45).

315.

Theorem 2.3-1: If a andb are integers withb > 0, then there are integergand
r, With0 <r < b, so thata = gb + 7.

In the previous theorem, the integecan be determined as:

q=|a/b] = max{a € Z; o < a/b},

whereq is the quotientof the division ofa by b. The symbol|a/b| denotes the quotient
largest integer less than or equal{t. The integer is called theemainderof the remainder
division of a by b and is denoted by mod b.

Example 2.3-2:
If a=18andb =4, thenq =4 andr = 2.

2.3.2 Representation of integers in different bases

Positive integers can be expressed in various ways. Theamdrepresentation is
used in the decimal system. For example, the integer 234 eavritien in base 10
as follows:

234 =2-10+3-10" +4-10".
The same number can be written in base 6 as:
234 =1-6>4+0-6+3-6"+0-6" = (1030)g,
orin base 2 as:
234 =1-2741-2041-2°40-2*41-2°+0-22+1-2' +0-2° = (11101010)s5.

Generally, each integer> 0 has aunique representation in base

28 2 Mathematical Background

representationofan b (b € Z,b > 1). We write

integer in baseb
n

a=ap b+ a0 a0 ag b ag 0 =) anl,
i=0

where0 < a; < b, for 0 < i < n anda,, # 0. We write

a = (anan_1an_2...a1a),.

Example 2.3-3:

1. For machine computations, it is preferable to write thsifpe@ integers
in the binary representatiaid = 2). For example the integer 47 will be
represented as follows:

47=1-2540-24+1-22+1-2241-2" +1-2° = (101111),.
2. The integer 47 can be expressed in base 8 as follows:
47=5-8' 4+ 7.8 = (57)s.

Since8 = 23, we can convert the integer 47 from packets of base 2 to base
8. For this purpose we group three digits in the binary repregion of
47 from the right. We obtain:

47 = ((101),(111),), = (57)s.

2.3.3 Greatest common divisor

Having introduced the concept of a divisor of an integer, vlervaw deal with the
common divisor concept of theeommon divisoof two (or more) integers.

Given two integers andb, the integer is a common divisor of andb, if ¢ | « and
greatestcommon ¢ | b. A notion of greatest common divisas a very important one. It is the largest
divisor - possible common divisor af andb and is formally defined as:

Definition 2.3-2: Leta, b, c andd € Z with d > 0. d is the greatest common divisor
of a andb denoted! = gcd(a, b) if:

1.d|aandd|b

2. whenever | a andc | b, thenc | d.

2.3 Number Theory 29

Example 2.3-4:
The common divisors of 12 and 18 atd, £2, +3, +6, andged(12, 18) = 6.

ged (20, 30) = 10 andged(—12,8) = 4.

We notice that the greatest common diviged(a, b) of two integers: andb always
exists and is unique. Furthermore, it can be written as atinoembination of: and
b. This combination is however, not unique. For instance,

2cd(24,9) =3=3-9+(=1)-24 = (=5) - 942 24.

Theorem 2.3-2: If a,b € Z, are not both 0, then their greatest common divisor
ged(a, b) exists, is unique, and moreover can be written as linear ¢oation
of a andb, i.eged(a, b) = xa + yb for some suitable integersandy.

How does one go about finding the greatest common divisor ofittegers: and
b? The simplest, but inefficient way, is to find all common divisofa andb and
then choose the greatest of them. Another way is to emploticeédean algorithm
which is a nontrivial efficient old algorithm. It will be disssed in the next section.

2.3.4 Euclidean Algorithm

The Euclidean algorithmis an efficient algorithm for computing the greatest conEuclidean algorithm
mon divisor of two integers that does not require the faztdron of the integers. It
is based on the following simple theorem.

Theorem 2.3-3: Leta,b € Z. Then,
1. ifb =0, thenged(a,b) = |b],
2. ifb # 0, thenged(a, b) = ged(|b], amod |b]) .

The previous theorem enables the computation of the gtead@smon divisor
ged(a, b) as follows:

We suppose, = a,r, = banda > b > 0, then we introduce the notation
r;v1 = r;—1 mod r; for each integef > 1 andr; # 0.

Then, we compute;,; = r;_; mod r; fori =1,2,3... until we obtain for a fixed
19 > 1.

Tig+1 = 0.
Then, the greatest common divisoris.
If a« = 0resp.b =0, thenged(a,b) = bresp.ged(a, b) = a.
Example 2.3-5:

We want to determingcd(110,40). Using the notation introduced above, we
obtain the following table:

30

2 Mathematical Background

Extended Euclidean
algorithm

i 0 1 2 3
Ty 110 40 |30 |10 | O

From the table we get, = 0, i.e.ig = 3 andrs = 10 is the greatest common
divisor of 110 and 40, i.e.

ged (110, 40) = 10.

2.3.5 Extended Euclidean Algorithm

The Euclidean algorithm can be extended so that it not orgydgithe greatest
common divisor of two integers a and b, but also integers xyasdtisfying the
linear combination:

ax + by = ged(a, b).

This algorithm is called th&xtended Euclidean algorithand is very
important, since it can be used to compute a multiplicativeiise in
groups (see Section 2.3.7).

Corollar 2.3-1: For all a,b,n € N, the equatiorux + by = n has two integers
x andy as solution ifged(a, b) dividesn.

This corollar means that the equatien+ by = ged(a, b) is always solvable.

Given two integers andb as input, with the Extended Euclidean algorithm the two
unknown integers andy as well as the greatest common divisouandb can be
determined so that

ax + by = ged(a, b).

This will be illustrated in what follows:
Letro = a,r = b,7o = a mod bandq, = |%].
If o £ 0, then:

r3 =711 mod 1 andgy = L:—:J

Generally, we continue with this notation untjl= 0:

Tit1 = Ti—1 mod r; andqi = Lﬁ_—le 1< <n.

We start withzy = 1,70 = 0,27, = 0,y; = 1 and compute in every further iteration
Tiy1 andy;; as:

Tiy1 = ;T + Ti_q,

Yiv1 = ¢Yi + Yi—1

2.3 Number Theory 31

for 1 <i < n. Letn be defined so that,,; = 0. Then, the integers andy (the
solutions of the equation) can be computed as:

x=(—-1)"z,
y = (=1)""y,.

Example 2.3-6:
Givena = 146 andb = 20, we want to solve the equatidn6 - x + 20 - y =
ged(146, 20) with the three unknowns, y andged (146, 29).

The following table shows the steps of the Extended Euchdggorithm to solve
the equation:

i 0 1
T 146 20
qi

T

WlwIN]|W
o

Nl lw]|oN

Yi

From the table we obtain = 3, sincer, = 0. Then we get:

= (—1)%z3 and
(_1)3+ly3-

Regarding the table, we hawve = 3 andy; = 22. Sox = —3 andy = 22. Thus,

xr
Y
gcd(146,20) = 146 - (=3) +20-22 = 2.

2.3.6 Prime numbers

We now focus our attention on an ultra-important class oftpesintegers, namely

theprime number®r simply the primes. These numbers play a major role in cryprime numbers
tography, since they are essential for the realization ofynasymmetric algorithms

and other cryptographic protocols. For example the RSAipiay system uses

prime numbers (see chapter 5). In this section, we introgwitee numbers and

give an overview of their properties which are relevant fgptographic applicati-

ons.

Prime numbers are numbers that have no divisors other thad theamselves, such

as 2,3,5,7,11, 13,17, etc. All primes are odd, except 2 —daddést" prime. The

number 1 is considered neither prime wompositeA formal definition of primes composite
will be given in what follows.

32

2 Mathematical Background

relatively prime
numbers

Euler phi function

Definition 2.3-3: An integerp > 1 is said to be prime if its only positive divisors
are 1 and p. Otherweisgis called composite.

Example 2.3-7:
The numbers 2, 11, 13 and 2269 are prime. The numbers 4, 6 && &2
composite.

Can we build integers from primes in a very precise and welingéd manner? This
question is made clear by one important theorem callefut@amental theorem of
arithmetic

Theorem 2.3-4: Every integern > 2 can be written as product of prime powers:

k
— ()
n = pz)
=1

with p; # p; for 1 < i < j < k. This decomposition is unique up to rearran-
gement of factors.

Example 2.3-8:
The number 392 has the factorization into the priieand7:

392 = 23 . 72
=7.2%

But, if we do not consider the rearrangement of the prigtesnd7?, we assert
that the factorization of 392 is unique.

Before we describe some properties of prime numbers, wedate the notion
of relatively prime numbersintegersa and b are said to be relatively prime, if
their greatest common divisor is one, iged(a,b) = 1. We further introduce two
important number-theoretic functions, namely Eader phi functiondenotedp(n)
and the functionr(x).

The Euler phi functionp(n) gives the number of natural numbers, betwéemd

n inclusive, which are relatively prime to. For instance, to find>(6) we must
consider each of the numbers 1,.2, 6. Here 2, 3, 4, 6 are not relatively prime to
6, sinceged(2,6) =2 # 1, ged(3,6) = 3 # 1, ged(4,6) = 2 # 1 andged(6,6) =

6 # 1. However, the integers 1 and 5 are relatively prime to 6. Th(s) = 2. For

a formal definition ofp(n) with n > 1, we write

p(n) =[{1 <m <n—1]ged(n,m)=1}|.

Ther(x)-functionr(z) denotes the number of primes belowFor instancer(2) =
1, because we count 2 as the first primé¢]0) = 4, since there are four primes
below 10, namely 2, 3,5, and 7.

2.3 Number Theory 33

Property
We now specify some properties of prime numbers withoutyirapthem.

1. Ifn= Hle pit andm = Hle plt, thenged(n, m) = %, prmofs,

) i=11%

2. If pis prime, thenp(p) =p — 1.

3. If n,m > 1 with gcd(n, m) = 1, thenp(nm) = ¢(n)p(m).
4. 1fn =TI, pf', thenp(n) = n- [, (1 — 1),

5. Forn >5,0(n) > s

6. lim, .., =2 = 1. Consequently, for a large integefz) can be approxima-

z/Inz

ted byz/Inz.

~

For everyr > 17, w(x) > &

Inx”

8. Forz > 1,7(x) < 1255065 ~.

Example 2.3-9:
1. ¢(8) =4, since forevery: € {1,3,5,7} ged(x,8) = 1.
2. p(2269) = 2268, since 2269 is prime.

3. p(64) = p(2°) = 64(1 — 1) = 25.

2.3.7 Congruences

We are all familiar with examples ahodular arithmeticeven if we have never
considered them to be different ways of calculating. Onernomexample is given
by counting hours. On a clock 3 hours added to 4 o’clock is Toolc 3 +4 =7.
But 2 hours added to 11 o’clock is 1 o’clock! Similary 3 houtdbstracted from
5 o’clock is 2 o’clock but 3 hours substracted from 3 o’closkli2 o’clock. In
this arithmetic system 12 takes the place of zero and numdeih differ by 12
or a multiple of it are considered to be the same. With thigeagh the previous
example can be written in mathematical notation as:

34+4=7 mod 12
24+11=1 mod 12
5—2=3 mod 12
3—3=0 mod 12.

For example the notatiohi+ 11 = 1 mod 12 will be read as "2+11 is

congruentto 1 modulo 12". We remember that 12 and all multiples of 12teaa-
ted as zero and that, as a result, numbers which differ by épteubf 12 are the

34

2 Mathematical Background

same, we can perform addition and substraction just as.Migatan also use the
multiplication in the same manner:

4.-5=20 =8 mod 12

5-(=1)=(-5H) =7 mod 12

3:-8=24 =0 mod 12
3:-(8=2)—7-(4—13)=281 =9 mod 12.

However, when we begin using division the results appean evere strange. Let
us find the following divisions modulo 12: 10/5, 27 /5, 5/ 7 @&#H3. In the first
case the result of dividing 10 by 5is 2, since = 10 mod 12. In the second case
the numbers 27 and 15 differ by 12, so they are treated as bedrgame

3-5=27 mod 12.
Thus27/5 = 3 mod 12. Similarly5/7 is 11 because
7-11=5 mod 12.

The division2/3 mod 12 does not exist. To explain this we firstly calculate the
multiples of3 mod 12:

Multipler Multipler

Olo|N|lojla]|~|lW|IN]|F|O

(=Y
o

3.
0
3
6
9
0
3
6
9
0
3
6
9

=
=

Certainly 2 does not appear as the value of any of these riadfip0, ..., 3- 11, but
does that show that it could not be the value of any multipl@ft does, because
any other number must be congruent modulo 12 to one of the etstfd, . . ., 11,
so that its product with 3 would be congruent to one of the peteB - 0, ..., 3 - 11.
For instancey7 = 6-12+5 =5 mod 12so tha - 77 = 18 - 12+ 3 -5 =

3 -5 mod 12 and similarly -34 = 2 mod 12 so that3 - (—34) = 3 -2 mod 12.
After giving these examples with modular arithmetic modL®y we will discuss
the congruence topic in a general form.

2.3 Number Theory 35

Definition 2.3-4: Leta, b € Z andn € N. One saysgq is congruent t&d modulon congruence
and writesa = b mod n, if n is a divisor of(a — b).

Example 2.3-10:
36 = 12 mod 4, since4 | (36 — 12),i.e4 | 24.

The relation congruence modulo n, ize. mod n, possesses the following proper-
ties:

1. Reflexivity: since for alk € Z,a = a mod n.
2. Symmetry: since foralt, b € Z, if a = b mod n, thenb = a mod n.

3. Transitivity: since for allu,b,c € Z, if a = b mod n andb = ¢ mod n,
thena = ¢ mod n.

Hence, we conclude that the congruence modulo n egavalence relatioon the
set of all integers.

We now give some useful properties of congruences moduloiohwdre easy to
prove. For alla, b, c,d € Z, if a = b modn andc = d mod n, then the following
holds:

1. —a=—-b mod n.
2. a+c=b+d mod n.
3. a-¢c=b-d mod n.

4. a/c=b/d mod n.

In item 3 of the above listed properties, if we consider thecsgd cased = ¢ and

b = d), we obtaina® = »®* mod n. Using the item 3 again with this special case
(a = candb = d) we geta® = b*> mod n. After applying that fork — 1 steps we
deduce

a* =bv" mod n,

for any natural numbek.

Theequivalence class of an integers the set of all integers congruenttanodulo equivalence class
n. It will be denoted by: + nZ. Formally defined, we write

a+nZ={beZ|b=a modn}.
It works out that, in fact

a+nZ={a+nZ|zel}.

2 Mathematical Background

Example 2.3-11:
The equivalence class of 2 mod 7 is the set:

24+7Z={2+(7-0),24 (7T-+1),24 (7-+2),2+ (7- £3),.. .}
={..., =19, —12, =5, 2,9, 16, 23,...}.

From Theorem 2.3-1, we now recall that each integean be written as:

a=kn—+b with0<b<n, k& Zandn € N.

If we use the notation of congruences modulo n, we can write:
a=0b modn,with0 <b<n,neN.

Hence, each integer is congruent modulo n to one and onlyrdegedr between 0
andn — 1, since0 < b < n.

We define the set of all equivalence classes modulo n dengt&yhZ and call
residue classes the elementsesidue classesAlso the setZ/nZ explicitly contains the elements
nZ, 1+ nZ,2 + nZ, ...,(n — 1) + nZ. If we choose an arbitrary element of each
residue classZ, 1 + nZ, 2 + nZ, ..., (n — 1)nZ, we form a set holding as a set
of representativesor the residue classés/nZ. Any set of representativesr the
complete set of residue classes is calledcamplete set of residues modulo n
residues modulo n
Example 2.3-12:
The residue classég/3Z consist of the elements (se®H 3Z,1 + 3Z and
2 + 37, where

3%Z={..., -9, -6,-3,0,3,6,9,..}
1+3Z=1{..,-8 =5 -2 1,4,7,10,...}
24+3Z=1{..., -7, -4,-1,2,58,11,.. }.

If we choose an arbitrary element of each residue dds$ + nZ and2 + nZ,
we get a set of representatives for the residue class&s (resp. a complete set
residues modulo 3), i.e {0, 1, 2}, {0, 7, -4}..

There is an infinite number of possible complete sets of vesidut a computer
always useg0,1,2,...,n — 1} as a standard set.

Definition 2.3-5: The integers modulo n, denoté&q, is the set of (equivalence clas-
ses of) integer$0, 1, 2, ..., n — 1}. Addition, substraction and multiplication i,
are performed modulo n.

2.3 Number Theory 37

Since the se¥./nZ and the seZ,, have the same mathematical behaviour, we only
use the set,,.

Example 2.3-13:

1. Z¢=1{0,1,2,3,4,5} is a complete set of residues modulo 6.

2. InZg:

5+4=3 mod6
5-4 =2 mod 6.

We introduce the sét; defined as: definition of Z;,
Z; ={a € Z, | ged(a,n) = 1}.

In particular, ifn is a prime, thetZ; ={a€Z|1<a<n-—1}.

Example 2.3-14:

7y ={1,2,4,5,8,10,11,13, 16,17, 19, 20}
7% ={1,2,3,4,5,6}.

We will now return to the operations in modular arithmetigrmprecisely we will
only look at division modulo n. So we can explain more adegjyathy the divi-
sion of 3 by 2 modulo 12 does not exist. First we begin with teéngtion of the
multiplicative inversen Z,,.

Definition 2.3-6: Leta € Z,,. The multiplicative inverse of a modulo n is an integemultiplicative inverse
x € Z, So that:

ar =1 mod n.

If such anz exists, then it is unique andis said to be invertible or unit. The inverse
of a is denoted: !,

Claim

a is invertible inZ,, if and only if gcd(a, n) = 1.

38 2 Mathematical Background

Example 2.3-15:
1. 2is notinvertible irZg, sinceged(2,6) # 1.

2. 2isinvertible inZ; and has the inverse 4, singe4 =1 mod 7.

divisionin z,, Definition 2.3-7: Leta, b € Z,. Division ofa by b in Z,, is the product of: and

b~—! modulo n and is only definediifis invertible.

Example 2.3-16:

1. Division modulo 12 of 2 by 3 does not exist, since 3 is noentile in
Lo, |€gcd(3,]_2) 7& 1.

2. Division modulo 12 of 27 by 5 delivers 3, since

27/5 mod 12=27-5"" mod 12
=27-5 mod 12,(5' =5 mod 12)
=135 mod 12,(135 =3 +11-12)
=3 mod 12.

We look at how to find the multiplicative inverse in the &t

computing of the Given an element € Z*, we want to find thenultiplicative inverse ' of a € Z;,
multiplicative inverse j e, we must determine an element Z: so thatax = 1 mod n. In this case, the
congruenceiz = 1 mod n implies thatn | (ax — 1), i.e. there is an integér so
thatax = 1 + nk. This can be written as:

ar —nk = 1. 2.3-1

Since the integers, © € Z;, we haveged(a, z) = 1 and Eq. 2.3-1 will be written
as:

ax + n(—k) = ged(a, n), 2.3-2

and, if we puty = (—k), we obtain:
ax +ny = ged(a,n).

Corollar 2.3-1 says that the equation + by = ged(a, b) will always be solvable
and its solution will be determined by the two integesndy. We can now use the
Extended Euclidean algorithm to find such integeesdy.

2.3 Number Theory 39

Example 2.3-17:
We want to find the multiplicative inverse of 16 #i,. So we must solve the
equation:

167 + 21y = ged(16,21) = 1.

For this purpose, we use the Extended Euclidean algoritlthobtain the table
by permuting the notation af; andx resp. byy; andy:

qi

Rl DN
AlW|lO|FR,|W®W

Ti

From the table we obtain = 3,y = (—1)3-3 = -3 andz = (—1)3"! - 4 = 4,
ie.

16-4+21-(-3) =1

16-4=1+21-3
16-4=1 mod 21.

The multiplicative inverse of 16 i3, is 4.

One of the important results of modular arithmetic, whiclused in public cryp-
tography, is given in the next theorem called fBRinese remainder theorernt Chinese remainder
enables resolving of simultaneous congruence equations. theorem

Theorem 2.3-5: Letmy, mo, ..., m, € N, with gcd(m;, m;) = 1 for eachl <
i < j < n. The system of simultaneous congruences:

Tz =a; mod my

T =ay mod my

r =a, modm,

has a unique solution

n

T = (Z a;y;M;) mod m,

i=1

wherem = [[_, m;, M; = - andy; is the solution of the congruence:

y;M; =1 mod m;, foreachl <i < n.

40

2 Mathematical Background

quadratic residue
modulo n

Using the Chinese remainder theorem, we can decompose &atiopen a given
group in operations in its subgroups.

Example 2.3-18:
We want to solve a system of congruences

=2 mod3
r =4 mod b.
We have:

my = 3, mo = 5.
We calculate:

m=my-my = 15,

Mlzﬂ:5,
my
Mgzﬁ:?)
mgy

The solution of the congruences (e.g. with the use of theriebad Euclidean
algorithm)y;5 =1 mod 3 andy;3 =1 mod 5is 2 and 2 resp. Finally

2
= (Z a;y; M;) mod m
i=1

r = a1 My + asya My mod m
r=2-2-5+4-2-3
r=44 mod 15

= 14.

We verify that:

14 =2 mod 3
14 =4 mod 5.

We now introduce the notion of quadratic residue modulo ntaatlof the square
root of an integer modulo n.

Definition 2.3-8: Leta € Z, a is called quadratic residue modulo n, or square

modulo n, if there isiz € Z; so thatz? = a mod n. If such az does not exist,
thena is called quadratic non residue modulo n.

Q. (resp. Q,)) denotes the set of all quadratic residues (resp. non residmedulo
n.

2.3 Number Theory 41

Definition 2.3-9:Leta € Z}. If x € Z; andz? = a mod n, thenz is called a
square root otz modulo n. square root modulo n

Example 2.3-19:
If we calculate the values of an integefrom the congruence? = a mod n
in Z3; we obtain:

1?=1=1 mod?7
22=4=4 mod?7
32=9=2 mod?7
42=16=2 mod 7
52=25=4 mod 7
62=36=1 mod 7.

We conclude that the quadratic residues modulo 7 are 1, 24antile the
quadratic non residues modulo 7 are 3, 5, and 6. Thus,

Q7 ={1,2,4} andQ, = {3,5,6}.

2.3.8 Some algebraic systems formed by the Sg&t,

This section summarizes some important results which aedetethroughout this
course. We remember that the Zetcontains the elements 1,2, ..., n— 1, where
n IS a positive integer.

1. The pairZ,,+) consisting of the sét,, and the operation addition modulo n
forms an abelian group and is calladditive group(Z,,, +) has 0 as identity additive group
element. Each elementof the setZ, has an inverse-a. The order of the
group(Z,, +) is |Zy,| = n.

2. The pair(Z,,-) consisting of the seZ, and the operation multiplication
modulo n is not a group, since with reference to multiplizatinot all ele-
ments ofZ,, have an inverse. For example, 2 has no inversg;in

3. The pair(Z:,-), where- is a multiplication modulo n, forms a group with
identity element 1. Such a group is called thaltiplicative groupof Z,,. In multiplicative group
contrast tdZ,,, each element df., closed under the operations invertible.
Note that per definition each elemenbf Z* satisfiesged(a,n) = 1. The
order of Z; is defined to be the number of elementsZf, namely|Z;|. It
follows from the definition of the Euler phi function thgt; | = ¢(n). If an
elementw € Z? is of orderyp(n), thena is a generator or primitive element primitive element
of Z:. If Z! has a generator, théfj is cyclic. Generally ifZ} is cyclic, then
the number of generators @f; is o(¢(n)). As an example we consider the
multiplicative groupZ:. We will determine the order of each elementZjf

42

2 Mathematical Background

polynomial

finite fields
Galois fields

coefficients
degree of polynomials

monic polynomial

therefore, we compute the power of each elemeiiadnd list the results in
the following table:

) 0 1 2 3 4
1° mod 5 1 1 1 1 1
29 mod 5 1 2 4 3 1
3% mod 5 1 3 4 2 1
4% mod 5 1 4 1 4 1

The table summarizes some properties of the elements of bt g :

a. The order of the elements 1, 2, 3and 4 resp.is 1, 4, 4, and 2.

b. (2) and(3) are identical tdZ;, i.e. they are generators &f .

HenceZ; is cyclic.

C. Z: hasp(|ZE]) = ¢(4) = 2 generators which have the ordé&:| = 4,
namely 2 and 3.

4. The tuple(Z,,+, -) consisting of the se¥,, and the two binary operations
addition modula: (4) and multiplication modula (-) forms a commutative
ring. But it does not form a field, since not all non-zero elatsdave multi-
plicative inverses. HowevefZ,+, -) is a field if and only ifn is prime.

2.4 Finite Fields and Polynomials

The topics that we consider in this section involve the cphoé polynomialand
that offinite fields over polynomial§Ve note that the most important application of
polynomials is the construction of finite fields which ardedGalois fields These
fields play a dominant role in some scientific areas such gsagyaphy, digital
communications, etc.

24.1 Polynomial over a Ring

Let (R, +, -) be an arbitrary ring. A polynomial ovéR is an expression of the form
() = apa"™ + ap_12™ ' 4+ ...+ ayx + ag,

wheren is a non-negative integer and the elements R, € {0,...,n} are called
coefficient®f the polynomialf (x). The largest integer. for whicha,, # 0 (zero-
element of the ringr) is thedegreeof f and is denoted byeg(f). a,, is also called
the leading coefficient of . If f(x) = agandag # Og, then the polynomiaf has
degree 0. The polynomial is said to benicif its leading coefficient is equal to
1. The set of all polynomials over the rifig in the indeterminente is denoted by
R|x].

2.4 Finite Fields and Polynomials 43

Example 2.4-1:

The expressiorf(z) = 4z* + 2z* + 1 is a polynomial over the rin¢Zs, +, -),
l.e f € Zs (the operation + andare closed under the sét and are performed
modulo 5). The degree ¢fis 4, since 4 is the highest power.othat occurs in
the expression of (z) with a non-zero coefficient.

Arithmetic operations and equality in R|x]:

Forf(x), g(x) € Rlx] with deg(f) = n,deg(g) = m,n > m, let
f(x) = anz™ + ap_12" ...+ arx + ay, and
g(2) = bpx™ + b1 2™+ 4 by + by,

one gets:

1. The polynomialg’ andg areequalif and only if their corresponding coeffi-
cients are equal, thatis = b; fori > 0.
2. The addition off andg is defined as:

(f 4+ 9)(x) = (an + bp)x"™ + (Ap_1 + bp_1)z" " + ...+ (ag + by).

3. The multiplication off andg is defined as:

(f9)(@) = Cngmz™™™ + ... + co,
wherebyc;, = Zf:o a;bp_; for0 <k <n-+m.

Theorem 2.4-1: (R[z], +, -) with the above introduced operatiossand- forms
a commutative ring called the polynomial ring ovr

The only arithmetic operation iR[z|, which we have not dealt with yet, is the
division of two polynomialsf andg, where each of them is iR[x]. This will be
shown in what follows.

Definition 2.4-1:If f, g € R[z]| with g(x) # 0, then ordinary polynomial division
of g by f yields polynomialg andr € R|x] so that

g(x) = q(x)f(x) + r(z), wheredeg(r) < deg(f).

Moreover, the polynomialkgandr are unique. The polynomialis called thequoti-
ent while the polynomiat is called theemainderand is denoted by = ¢ mod f.
For this notation, we sayis equal tog modulof.

Example 2.4-2:

We consider two polynomialgand f of Zs[z] with g(z) = 225 + 2* + 42 + 3
and f(z) = 322 + 1. The division ofg by f in Z;[z] yields the quotieng(z) =
423+ 22% 422+ 1 and the remaindef(z) = 2z +2. Note thatdeg(r) < deg(f).

44

2 Mathematical Background

finite field

irreducible polynomial

factorization of
polynomials

2.4.2 Finite Fields

In this section we will briefly introduce the concept of finftelds. Thereafter, we
will describe their structure.

Definition 2.4-2: A finite fieldK, is a field with a finite number of elements. The
order of the fieldk, is the number of its elements.

Now, we will describe the structure of finite fields. First weroduce the notion
of anirreducible polynomigl since irreducible polynomials are indispensible for
constructing finite fields. Moreover, each polynomialff[z] can be written as
product of irreducible polynomials in an essentially urd@gquanner.

Definition 2.4-3: Let f € K,[z] with deg(f) > 1. f is irreducible in K [x] (or
prime in K,[z]), if it cannot be expressed as a product of two polynomials jix|,
each of positive degree.

Theorem 2.4-2: Any polynomialf € K,[x] of positive degree can be written as
f=cfit . fik,

wherec € K, fi'... f* are distinct monic irreducible polynomials in
K, [z],and ey, ..., e, are positive integers. Moreover, this factorization is-uni
gue apart from the order in which the factors occur.

We remember from Definition 2.4-1 that by dividing the polymal ¢ € K [x] by
f € K,|z], we obtain a unique quotieptand remainder, where

g =qf +randdeg(r) < deg(f).
This formula can also be expressed as:
g=r mod fwithdeg(r) < deg(f),

and we say § is congruent to- modulof". Before we continue to discuss, what the
equation

g=r mod fwithdeg(r) < deg(f)

means, we will see some properties of congruences.
Letg, h, g1, h1, s be elements ok, [z]. The following properties hold:

1. ¢ = h mod f if and only if ¢ and h result in the same remainder upon
division by f.

2. g=g¢ mod f,i.e.the relation congruence modiile K [z] is reflexive.

3. If g = h mod f,thenh = g mod f, i.e. the relation congruence modulo
f € K,[x] is symmetric.

2.4 Finite Fields and Polynomials 45

4. If g = h mod f andh = s mod f, theng = s mod f, i.e. the relation
congruence modulg € K [z] is transitiv.

5. If g = g1 mod fandh = h; mod f, theng+ g, = h+ h; mod f and
g-g1=h-hy mod f.

From items 2, 3, and 4, we conclude that the relation congeigrodulof € K,[z]
is an equivalence relation.

Any polynomial in K ,[z] is congruent modulg to a unique polynomial of degree
at mostdeg(f) — 1, since the polynomial (resp.q) is unique andleg(r) < deg(f).
Moreover, the equivalence classiof K [z] is defined as the set of all polynomials
g which are congruenttomodulof € K [x], i.e the equivalence classoft K]
consists of all polynomialg € K,[x] so that

g=r mod f.

We now consider a case of great interest for cryptographptiagiions where
K,[z] = Z,[z] andf is an irreducible polynomial irZ,[z]. Note that the set,
consists of the elements1, ..., p — 1, wherep is prime. Hence, we can define the
set of all equivalence classes modylavhich will be denoted by, [z]/ f.

The setZ,|x]/f closed under addition and multiplication modyidorms a field
with the orderp™, wheredeg(f) = n. The fact thatf € Z,[z] is an irreducible
polynomial guarantees that all elements of theZsgt]/ f will be invertible.

Furthermore, all fields over various irreducible polynolsiaith a fixed degree
have the same structure and various representations ofigiéielements. One says
that all those fields are isomorphic.

For this reason the notation of the above defined field wily oefer to the prime
and the degree. This field can be denoted ltyF'(p"), because there is an irredu-
cible polynomial inZ,[z| for each positive integet.

GF(p") is called Galois fieldp is thecharacteristic of the fieldndGF(p) is the Galois field
prime field

Example 2.4-3:

1. f(x) = 23+ 2+ 1 with deg(f) = 3 is an irreducible polynomial i,],
since it cannot be expressed as a product of two polynomidk [ix],
each of positive degree.

2. We construct the finite fiel& F'(8):
For the construction of/F'(8) = GF(2%) we use the above irreducible
polynomialf(z) = 23 +z + 1. The elements of/ F'(8) are the polynomi-
als:0,1,z,x + 1,2% 2% + 1, 2% + 2, andz?® + z + 1, i.e GF(8) contains
all polynomials inZ,[z| of degree at most 2. The arithmeticG¥'(8) is
performed modulgf(z) = z* + x + 1. To compute the product of two
elements inG F(8), we multiply the two polynomials and we divide by
f(z) = 2+ +1 and then we get the remainder of this division as result.
The addition inGF'(8) is the usual addition of polynomials it} [z].

46

2 Mathematical Background

For example, lef; (z) = 22 + 1 and fy(z) = 2> + = + 1 be two elements
of GF'(8). We will compute the addition and the multiplication fand

o

a.

fil@)+ folx) = (@ + D)+ (2> +z+ 1)
=@ +2*)+z+(1+1)
=0 +2+0

=XT.

b. Now we will compute the product of, and f> in GF'(8). First, we
calculatef; - fo = 2* + 2® +x + 1 and thereafter divide it by (z) =
2% + x + 1. We obtain:

R R T G N D [T
=2>+r modaz®+az+1
=2?+2 mod f.

The product off; and f; in GF(8) deliversz? + . The following
table summarizes all possible multiplications of the nemzele-
ments of the field7 7'(8). The notatioruya;ay substitutes that of the
polynomialasz? + a1z + aq.

001 | 010 | 011 (100 | 101 | 110 | 111

001) 001] 010 | O11 | 100 | 101 | 110 111

010 010 | 100 | 110 011 | 001 | 111} 101

011 | 011 | 110 | 101] 111 | 100 | OO1 | O10

100 | 100 | 011 | 111 | 110 | 010 | 101 | OO1

101 | 101 | 001 | 100 | 010 | 111 | 011 | 110

110 | 110 111 001 | 101 | 011 | 010 | 100

111) 111 | 101 | 010 | OO1 | 110 | 100 | 011

From the table, it can be seen, that all results of the midafibn
are also elements of F'(8).

2.4 Finite Fields and Polynomials 47

Another operation irGF'(p") which we have not dealt with yet is the computa-
tion of the multiplicative inverse of a polynomial modyland the exponentiation
modulof. The reader is referred to [Menezes96].

We introduce the notion of grimitive polynomial,since it may be preferable in primitive polynomial
some applications to use a primitive polynomial for definanfinite field.

Definition 2.4-4: Let f(x) be an irreducible polynomial itZ,[z| of degreen and
p a prime. f(x) is a primitive polynomial ifr is a generator of the multiplicative
groupGF (p")* (GF(p")" = GF(p") —{0}).

Example 2.4-4:

In Example 2.4-3 the polynomigl(z) = 2® + x + 1 is primitive, sincez is
a generator of the multiplicative groug/F'(23))*. All elements of(GF(2?%))*
can be obtained as poweromodulof(z). This is shown in the next table.

' modaz®+z+1

N~N|jojloa]lh~r|lWIN|R|O]|—
S
+
—_

Besides the degree, there is another important integechwdpecifies a non-zero
polynomial over a finite field, namely itsrder. The definition of the order of a order of the
polynomial is based on the following claim. polynomial

Claim

Let f € Z,[z] be a polynomial of degree» > 1 with f(0) # 0, then there is a
positive integee < p™ — 1 so thatf(x) dividesz® — 1.

Since a non-zero constant polynomial divides1, these polynomials can be inclu-
ded in the following definition.

Definition 2.4-5:Let f € Z,[x] be a non-zero polynomial. If(0) # 0, then the
smallest positive integerfor which f (=) dividesz® — 1 is called the order of and
is denoted byrd(f) = ord(f(z)). If f(0) = 0, thenf(z) = z"g(x), whereh € N
andg € Z,[x] with g(0) # 0 are uniquely determinedyd(f) is defined to equal
ord(g).

48

2 Mathematical Background

The order of the polynomiaf is sometimes called the period ffor the exponent
of f. The order of an irreducible polynomigican be characterized in the following
alternative fashion.

Corollar 2.4-1: If f € Z,[x] is an irreducible polynomial oveZ, of degreen,
thenord(f) dividesp™ — 1.

As a method for determining the primitivity of a polynomiaéwan use the follo-
wing theorem.

Theorem 2.4-3: Let f(x) be an irreducible polynomial wittf (x) € Z,[z] of
degree n and p prime. We suppose that the factorizatigri ef 1 is known.
Letpy, po, ..., p; be the distinct prime factors @f* — 1. f(x) is primitive if
and only if foreachk, 1 < k£ < t:

W=V £ 1 mod f(z).

2.5 Complexity Theory

Generally, the word security is utilized in three contextgsormation theoretical
security, computational security and system theoretealsty.

The information theoretical security, which is also caltedconditional security”,
is a measure which regards the security of cryptosysteniuititplacing a bound
on the amount of computation that an attacker can do. A csystem is defined to
be unconditionally secure if it can not be broken, even wifinite computational
resources.

The computational security (security in sense of compjetkieory) is a measure
which regards the computational effort required to breakyptosystem. We might
define a cryptosystem to be computationally secure if the dlgerithm for brea-
king it requires at leaslV operations, wheré/ is some specified, very large num-
ber. Using this notion, many cryptosystems based on veficdlif mathematical
problems have been constructed.

By developing a cryptosystem which is system-theoreficadicure, the designer
tries to construct the system in a way that will resist all wnocryptoanalytic
attacks. In other words, the designer must consider ak sththe art technology
in the area of cryptoanalysis.

The Vernam cipher, called a one-time system or one-timeipadprovable uncon-
ditionally secure cipher against a cipher-only atfad¢kowever, this cipher has no
practical importance. The security of all other cryptosyss is based on the com-
putational effort required to break it. That is why the treaht of the complexity
theory is very important in cryptography. With complexibebretical analysis we
can estimate the security of the cryptographical algorithm

3 See [Menezes96] on page 192.

2.5 Complexity Theory 49

The main goal of complexity theory is to provide mechanisarcfassifying com-

putational problems according to the resources neededite #em. Generally,

the required resources aime, storage space, random bits, number of processors,

etc., but the main focus is on time. By time we meanrtiiening timeexpressed in running time
number ofoperationsthat is needed for solving a problem. Hereagorithmcan operation
be seen as a tool to solve a well-specified computationalgmofMenezes96]. algorithm

In the context of complexity theory, trmomputational securitpf a cryptosystem
depends on the existence and exploitation of problems krasAmard computatio-

nal problems. But how can we characterise the computatdfiigulty of arbitrary
problems. In most cases an estimation of the running time algorithm that ena-
bles us to solve the required problem, is a criterion to meathe computational
difficulty of such a problem. However, an exact predictiortled running time of

an algorithm is impossible. Hence, only an approximatianlmaachieved. For this
purpose, we use the so callaglymptotic running timee. we analyze how the run- asymptotic running
ning time increases as t&eof theinputincreases without bound. In this approackime
the input size of an algorithm means the total number of etded to represent
the input in ordinary binary notation using an appropriateceling scheme [Mene-
zes96].

This section deals with theesymptotic notationsiamely theD)—, (02—, ©—, 0—, and asymptotic notation
w-notation. Thereafter, we introduce some complexity @as3 N P andco— N P.

25.1 Asymptotic Notation

By means of asymptotic notations, we can describe the rgrimme of an algo-
rithm. Before we give an abstract definition of the asymptotation, we will

look at a simple algorithm, namely the Eucledian algorithmd ¢hen estimate its
running time. Furthermore, we will see how the running tiniéghe algorithm can
be expressed in some asymptotic notations.

First we start with the running time of some arithmetic opierss, namely the addi-
tion and the division. In what follows andb are two integers that can be written in
binary representation as:

a= (ag_1ak—2...a1a0),

b= (bi1bi_s ... bibo),.

a is ak-bit integer and is al-bit integer. We want to illustrate the addition@and
b in the following example.

50 2 Mathematical Background

Example 2.5-1:
If we choose: = 10010 andb = 110, then the bit addition ai andb is computed
as follows

10010

+ 00110
carry 11
11000

Since(l = 3) < (k = 5) we need to add two O to the left 6f= 110 so thata
andb have the same bit length. The addition of two bits is called ageration.
The addition ofz andb requiredk = 5 bit operations.

Generally, the addition of &-bit integera and al-bit integerb requiresmax(k, 1)
bit operations. The running time for the additionaondb can be estimated by
Time(k-bit + [-bit) = max(k,1).

We informally introduce thé)-notation and denote the time required to execute one
bit operation byO(1). Considering this we can describe the running time by

Time(k-bit + [-bit) = O(max(k,1)).

The division of two integera andb is illustrated by the following example:

Example 2.5-2:
We choose: = 110101 andb = 101. The division ofa by b is performed as
follows

-1010+011

(RSN

SN
= O
=
o
=
1l
=
o
=

o O
o =
o =

(S

o
EME)

o O
© =
© =

o
=Y
=Y

To dividea by b we need 4 substractions of numbers having 3 bits each. Note
that the bit length of the obtained quotient is 4 and the loigtk ofb is 3. That
is, we need)(4 - 3) to compute the division.

Generally, if the quotient of the division ofa by b hasm bits, then the time required
to compute the division is at mo&k(l - m).

2.5 Complexity Theory 51

The estimated running time for all arithmetic operationsusmarized in the fol-
lowing table [Buchmann99].

Operation Bit complexity
Addition a + b O(mazx(k,1))
Subtraction a — b O(maz(k,1))
Multiplication a - b Ok -1)
Division a = gb + r O(l-m)

The Euclidean algorithm is needed to compute the greatestnom divisor of two
integersa andb with a > b > 0 (see Section 2.3.4). To estimate the running time of
the Euclidean algorithm, we proceed as follows.

We putr, = a andr; = b and compute the divisions:

ro = qir1 + 1o 0<ry <y,

T = (oTo + 73 0<T3<7’2,
ro = (3r3 + 14 0<ry<rs,
Tio—2 = Qio—1Tig—1 T Tig 0 <1y <Tig—1,

Tig—1 = QigTig -

As mentioned in Section 2.3.4 the greatest common divisarafdb is r;, (i, is @
fixed indice for whichr;, ; = 0).

To estimate the running time of all steps of the algorithmceesider that the num-
ber of bit operations for the divisian= qyb + r is at mostength(b) - length(qo).
And so the time for the divisiom;_; = ¢r; + 741 IS limited by length(r;) -
length(q;) < length(b) - length(q;). Thus, the total time for the algorithm can
be written as

O(length(b)(length(q1) + length(q1)) + . .. length(g,)).

Note that

a=qb+re>qab=q(@ro+13)>q q-12> ... > (q1 Q@ Gy)-

Thus, the running time of the Euclidean algorithm to compléegreatest common
divisorged(a, b) is equal taO(k - 1) althoughO (k- 1) is an upper bound for the exact
running time. The fact that this is only an upper bound mustdresidered when
estimating the running time of an algorithm in the worst case

Now we will introduce the asymptotic notation. The asymigtabtations are defi-
ned in terms of functiong andg, wheref andg are two functions of the positive
integersn which take positive real values

52

2 Mathematical Background

25.2 O-notation

We denote by)(g(n)) the set of functions
f(n) € O(y(n))
for which there is a positive constanand a positive integet, so that
0 < f(n) < cg(n)foralln > ny. 2.5-1

This means thaf(n) does not grow asymptotically faster thatn) to a certain
constant multiple and that is bounded by to the constant multiple. Instead of
f € O(g(n)), one usually writes

If f(n)is a sum of terms, then only the dominant termfofs considered. The
dominant term is the term that grows the fastest agets larger. For example, if
f(n) = an® + bn? + c anda, b, c are positive integers, then only the term?
determines the behaviour ¢fn) asn gets larger.

Using theO-notation, we can describe the running time of an algoritlirit.deno-
tes the time complexity of an algorithm afid= O(n), then doubling the size of
the inputn doubles the running time of an algorithm.lIf= O(2") then adding 1
bit to the size of the input doubles the running time of theatgm [Schneier96].

Hence, with theD-notation, we can classify algorithms according to thigre or
space complexitiesAn algorithm isconstantif its complexity is independent of
n. An algorithm islinear if its time complexity isO(n). Algorithms can also be
quadratic, cubicand so on. An algorithm is callegkponentialf its complexity is
O(#'™) with t constant angf (n) a polynomial. To see the difference between these
complexities we give the following example.

Example 2.5-3:

The following table [Schneier96] shows the running timesdiferent classes
of algorithms withn = 10°. We assume that the unit of time to compute an
operation is lus.

Class Complexity Time at 10° O/s

Constant 1 lus

Linear n 1s

Quadratic n? 11.6 days

Cubic n? 32 years

Exponential | 2" 10301-006 times the age of the universe

The computer can complete a constant algorithm in a micarek@ linear algo-
rithm in a second and a quadratic algorithm in 11.6 days. lld/take 32 years

2.5 Complexity Theory 53

to compute a cubic algorithm. This is not practical. Notd thidne constant: in
O(n¥) grows by 1 fromO(n?) to O(n?) the complexityO(n*) grows from 11.6
days to 32 years. Computing an exponential algorithm is lespgSchneier96].

2.5.3 ()-Notation

In contrast to thé&)-notation, the2-notation provides a lower bound to the function
f. This can be seen in the definition@fg(n)).

f(n) € Q(g(n))
if there is a positive constantand a positive integef, so that
0 <cg(n) < f(n) forall n > ny.

This means thaf(n) grows at least as fast asymptotically @) to a constant
multiple. TheQ2-notation is used to bound the best-case running time of gor al
rithm, e.g. the shortest running time for an input sizdnstead off € Q(g(n)),
one usually writes

We remember that the running time of the Euclidean algorithiie worst case
was expressed a3(k -). Needless to say, the best running time of the algorithm
can be achieved if only one step to the greatest common diwiscandb is needed.

In other words, under the consideration that b > 0, the greatest common divisor
of a andb will be b itself. In this case, withy = a andr; = b (see the notation
introduced in Section 2.5.1) we have

To = q17T1 + 0.
That isged(a, b) = = b.
Supposing thay; is am-bit integer the best running time of the Euclidean algonith
can be expressed yasQ(l - m), wherel is always the bit length df.

25.4 f-notation

The#-notation is related to th@- andS2-notations. The expressigitn) = ©(g(n))
means thaf (n) = O(g(n)) andf(n) = Q(g(n)). The functionf also has an upper
and lower bound, i.e.

if there are positive constants, ¢, and a positive integer, so that
0 <cig(n) < f(n) < cog(n) forall n > ny.

The definition ofd(g(n)) implies that each element of the #ét(n)) is asymptoti-
cally non-negative, e.gf(n) is non-negative wheneveris sufficiently large.

54

2 Mathematical Background

Related to the Euclidean algorithm, the running time exged$yd shall describe
the running time in theaverage casef the algorithm. That is the average run-
ning time over all inputs of a fixed size, expressed as a fanaif the input size
[Menezes96]. The average running time of the Euclidearrilkgo is also bounded
between the lower bourtd(l - m) and the upper bound(k-m). It can be expressed
by 6(% - m).

255 o-notation

The case wherg(n) is an upper bound fof (n) that is not asymptotically tight is
described by the-notation. We formally define

f(n) € o(g(n))
if for any positive constant > 0 there is a constant, > 0 so that
0 < f(n) < cg(n) forall n > ny.

Regarding the definition of)(g(n)) ando(g(n)) we conclude that the equation
0 < f(n) < cg(n) is the same for the two notations. The relatitim) = o(g(n))
implies that

lim M =0.

n—o0 g(n)

The expression(1) is often used to denote a functigiin) whose limit is 0 as:
approachesc.

2.5.6 w-notation

We use the notatiorfi(n) = w(g(n)) if g(n) is a lower bound forf (n) that is not
asymptotically tight. We write

f(n) € w(g(n))
if for any positive constant > 0, there is a constami, > 0 so that
0 <cg(n) < f(n) forall n > ny.

The relationship between the-notation and the-notation is similar to that of
the 2-notation and thev-notation considering the constantThe relationf (n) =

w(g(n)) implies

2.5 Complexity Theory 55

2.5.7 Properties of the Complexity Notations

For any functionsf(n), g(n), h(n) andi(n) the following relations are true [Mene-
zes96][Cormen89]:

1. f(n) =0O(g(n))ifandonlyifg(n) = Q(f(n)).

2. f(n) =0(g(n)) ifand only if f(n) = O(g(n)) and f(n) = Q(g(n)).
3. Reflexivity:

4. Symmetry:
f(n) =0(g(n)) ifand only if g(n) = 0(f(n)).
5. Transitivity:
If f(n) = O(g(n)) andg(n)
6. If f(n)=O(h(n))andg(n)
I £(n) = O(h(n)) andg(n)

O(h(n)), thenf(n) = O(h(n)).
O(h(n)), then(f + g)(n) = O(h(n)).
O(l(n)), then(f - g)(n) = O(h(n)l(n)).

(
(

™~

2.5.8 Complexity classes

We define apolynomial time algorithmas an algorithm having the complexitypolynomial time
O(n*), wherek is a constant. Algorithms whose complexities &rg/(™)), with ~ algorithm
t a constant andl(n) a polynomial ofn are calledexponential time algorithmsA exponential time

subexponential time algorithia an algorithm with the complexity™. algorithm

. .)) .) . subexponential time
There is a given way to classify the running time of algorighmetween polynomial algorithm

time and exponential time. For this purpose, we give thewalhg definition.

Definition 2.5-1: Letn be a positive integer. Let be a real number between 0 and
1 and letv > 0 be a constant. Then

Lo, v] = O ntnn)) =)
In particular

Lalt, o] = O("™) = O(n) and

La[0,] = O(e"") = O((in()")

An L[u]-algorithm is an algorithm that, when applied to the integdras a running
time of the formL,,[u, v] for some constant. In particular, a polynomial time algo-
rithm is anL|0]-algorithm and the exponential time algorithm is &f]-algorithm.
By a subexponential time algorithm we mean/an|-algorithm for some: < 1.

56

2 Mathematical Background

complexity classes

decision problems

complexity classP

classN P
certificate

As mentioned above, for a fixed input an algorithm with comipyeO(n*) has
generally a polynomial running time. That is, the algoritismractically efficientf
the constant multiple (we mean the constantintroduced in the definition of the
O-notation) and the numbérare small. The algorithm with the complexity(2")
is absolutely not efficient

We remember that a principal task of complexity theory isléssify problems into
complexity classewhich characterize something of their intrinsic compataal
properties. Problems that can be solved with polynomia tahgorithms are called
tractable In contrast, problems that cannot be solved within polyabtime are
calledintractable

Using the concept of polynomial and exponential time alfons, we can specify
some complexity classes suchiasV P, andco — N P. We notice that the problems
considered by the theory of computational complexity @eeision problems.e.
problems which have YES or NO as an answer. Not all problemsl@cision pro-
blems, as shown by the following problem:

Input: Given a grapld: with m nodes andn edges. Let, be a node ot.

Question: Find the shortest path that start frgrypasses through all other nodes of
G and returns td@-.

Clearly, this is not a decision problem. There may be more tre answer to this
problem, since many different paths, starting frognand returning tay,, can be
given.

2.5.9 Complexity classP

Thecomplexity clasg’ is the set of all decision problems that are solvable in poly-
nomial time. In this approach, we remember that the polyabtime algorithm
with complexityO(n*) is considered as practically efficient only if theconstant$
and the numbek are small. In other words the claBscontains all problems whose
solutions are feasible with regard to the computationalueses. For example, pro-
blems as addition, multiplication and exponentiation @fl rrumbers belong to the
classP.

2.5.10 Complexity classVP

Thecomplexity clas®V P is the set of all decision problems for which a YES answer
can be verified in polynomial time given some extra informiaticalled acertificate
[Menezes96].

We can imagine that a decision problem is\i#® if a person with unlimited compu-
ting power can give a positive answer to the question andeptfoig so that another

4 That are the constantsn equation (Eq. 2.5-1).

2.5 Complexity Theory 57

person can verify that the answer is correct in polynomrakti His proof that a
YES answer is correct is called a certificate.

Example 2.5-4:

1. We consider the following decision problem:
Input: Positive integerd/ andb.
Question: DoesV have a factor in the intervéd, b|?

This problem is generally not in the clasgs since it is known as a hard
problem and cannot be solved in polynomial thne

If the person with unlimited computing power asserted thatanswer is
YES, e.g. he can solve this problem which is unsolvable fothen he
must deliver a certificate for his answer, e.g. he must givietagers’ so
that2 < ¥ < kandd’ | N. If such¥' is given, we can verify tha' | N
(the YES answer) in polynomial time, that is, this problermisv P.

2. With regard to cryptography, if a person looks at a cipghéit and can
guess a plaintext: and a keyk, then he can verify in polynomial time
whether the ciphertext corresponds to a plaintext encrypted with the
key k. We notice that this attempt is not available in all clasSesphers,
I.e. one-time pads. This problem also belongs to the dlaBs

2.5.11 Complexity classo — NP

Thecomplexity classo — N P is the class of all decision problems for which a NQlassco - NP
answer can be verified in polynomial time using an approprattificate [Mene-

zes96]. The definition of the clags — N P is similar to the one of the class P,

but forco — N P a certificate must be given with respect to the NO answer.

Example 2.5-5:
We treat the same problem of Example 2.5-4 item 1.

Supposing that a person with unlimited computing powergN® as answer
and gives as certificate the complete prime factorizatioWpfve can see in
polynomial time one of the factors in the interyal b}, simply by dividing each
number of the complete prime factorization 8f by N. The division can be
done in polynomial time. That is, the NO answer can be verifigablynomial
time. Thus, this problem belongs the— N P class.

5 This is known as the factorization problem, see the nexisec

58

2 Mathematical Background

N P-complete

2.5.12 Complexity classVPC

There are specific problems i P which are at least as difficult to solve as any
other problem inVP. Such problems are denoted &$’-completeproblems. In
other words, if one would have a polynomial time algorithm o N P-complete
problem, then one would also have polynomial time algorghor all other NV P

problems. The class af P-complete problems belongs to a class which is denoted

by NPC.

Fig. 2.5-1 illustrates the relationship between the coxipleclassesP, N P, co —
NP,andNPC. We can see tha® C NP andP C co — NP, since each problem
solvable in polynomial time can be verified in polynomial&nV PC' C N P since
N PC'is defined as the hardest problemsh\ik.

co-NP N NP

Fig. 25-1: Relationship between complexity classes.

2.6 Hard Problems in Number Theory

In this section we will consider some algorithms that solve basic problems in
number theory, namely:

1. The factorization problem:

Given a composite, factorize it into its prime powers, i.e. find the primegs
and the exponents(1 < i < j < k andp; # p;) so that

k
€
i=1

2. The discrete logarithm problem:

Given a cyclic grougz with generatory and an element, find an integer:
so that:

xT

oa=7".

The integer: is called the discrete logarithm efto basey.

2.6 Hard Problems in Number Theory

These two problems are the basis of many cryptographic gotsg@nd algorithms
and enable to achieve the main cryptographic goals such rdglentiality, data
integrity and authentication.

The factorization problem can be splitted into two partsstir we must find out
whether the integet is prime or composite, this is callgimality test Secondly primality test
if the integern is composite we try to find the factors.

2.6.1 Primality Tests

We mainly consider probabilistic primality tests with thaléwing property: Ifn
successes to pass a primality test, then it may be prime.piisses a whole lot
of primality tests, then it is very likely to be prime. if fails one primality test, it
is definitively composite. In the following we introduce semprimality test algo-
rithms.

Trial Division
First we introduce the following theorem.

Theorem 2.6-1: If n € N is composite, then is divisible by one of the prime
numbers< /n.

By the trial division, if we want to test the primality of a niner n, we divide it
by each prime< /n. If n is divisible by one of these primes, theris composite,
otherwisen is prime.

Example 2.6-1:

Letn = 1153. The trial division ofn by the primes< /1153 = 33, namely 2,
3,5,7,11,13, 17,19, 23, 29 and 31 do not deliver any primsalivTherefore
1153 is prime.

Of course, for a large odd integer this method is an extremely time-consuming
one. Other primality tests introduced in this section astdia

Fermat’s test

The basis of many efficient primality tests is Euler's theorand Fermat’s little
theorem that will be introduced next:

Theorem 2.6-2: (Euler’s theorem)

If a € Z7, thena?™ =1 mod n.

Example 2.6-2:
If n = 6anda = 5 € Zj, we verify that5?©® =52 =25 =1+ (6-4) = 1
mod 6.

60

2 Mathematical Background

Carmichael number

Theorem 2.6-3: (Fermat’s little theorem)

Letn be a prime. lfgcd(a,n) = 1thena”™' =1 mod n.

Example 2.6-3:
Letn =7 anda = 2, 7 is prime andged(7,2) = 1, we verify that

2771 =64=1+(7-9)=1 mod 7.

Fermat’s theorem implies thatif*~! # 1 mod n, thenn is composite. In other
words, if the integern. does not pass Fermat's test, thers definitively composite.
However,a”~! =1 mod n does not automatically imply the primality of In this
casey can be prime or composite. This is illustrated by the follogvexample.

Example 2.6-4:
Despite the fact that the number= 341 satisfies the congruence

23171 =1 mod 341 with ged(2,341) =1,

341 is not prime, sincg4l = 11 - 31. We say that 341 is pseudopriméo base
2. The same number, namely 341, is not pseudoprime to bas&8, s

3311 =56 mod 341 with gcd(3,341) = 1,
1 mod 341.

There are numbers that are composite, even though they satisfy the equation
a =1 modn, 2.6-1
for everya with ged(n, a) = 1. These numbers are calledCarmichael numbers
Definition 2.6-1: A Carmichael number is a composite integesatisfying
n—1 _

a =1 modn
for everya with ged(n, a) = 1.
Example 2.6-5:
561 = 3 x 11 x 17 is the smallest Carmichael number, i.e. we get
> t'=1 mod 561

for every integer satisfyingged (561, a) = 1.

2.6 Hard Problems in Number Theory

Using Fermat'’s test we cannot verify if an integds prime. But if (Eq. 2.6-1) holds
for many numbers, we conclude that is probably prime, since pseudoprimes for
a given base are known to be rare. Hence Fermat’s test is a probabilistitod.

Miller-Rabin Test

The Miller-Rabin test is more effective than the Fermat&.t€or example: With
the Fermat’s test we cannot determine whether 561 is primetwiVe will see that
using Miller-Rabin test, we get the information that 561 prime.

In order to explain the Miller-Rabin test, we define numbeasndd as follows:
s =maz{r € N: 2" dividesn — 1}
with n an odd natural number. We put:

(n—1)
25
With respect to the notation given above we introduce theviohg theorem:

d:

Theorem 2.6-4: If nis a prime andzcd(a,n) = 1 witha > 2, then either
ad=1 modn
orthereisan € {0, 1,..., s — 1} so that

a*4= -1 mod n.

The Miller-Rabin test is based on the previous theorem aadbles us to find out
whether an integet is prime or not.

Example: [Buchmann99]
Letn = 561. The Fermat’s test cannot determine whether 561 is prime@nr n
since 561 is a Carmichael number.

Using the Miller-Rabin test we obtain:

n — 1 =560 ands = 4 is the maximal number so that | 560.

(n—1) 560
5 = =3

Leta = 2 andged(2,561) = 1.

il =

We have

2% = 263 mod 561
2235 =166 mod 561
2435 = 67 mod 561
2835 = 1 mod 561.

2 Mathematical Background

Thus, 561 is not prime, since neither
2% =1 mod 561
nor

2735 = _1 mod 561 forr € {0,1,2,3}.

2.6.2 Factorization

The security of some cryptographic systems relies on thiewalify of the factoriza-
tion problem. In fact, it is difficult to decompose a large aageggern into its prime

powersp;‘, that is to writen as:

k

e;

o= 10
=1

with p; # p; for1 <i < j <k.

This section deals with algorithms for the factorizationlgem, we introduce trial
division and Pollard’s rho algorithm.

Trial division

We want to find the prime powers of a composite numhbdfirst we determine all
primesp below a fixed bound3. Generally, a typical bound i€)°. Having a list of
primesp smaller thanB we determine the largest integ€p) so that

pE(p) | n.

Example 2.6-6:

We want to determine the prime powers which are factors 08335LetB =
50. The list of primes below 50 is 2, 3, 5, 7, 11, 13, 17, 19, 23,319,37, 41,
43, 47.

We start with computing the prime power$?) so thatp®) | 525825:

21525825, thatise(2) =0

525825 _ \eons

175275 _ corom,
3

58425

— 19475 but 3 19475.

2.6 Hard Problems in Number Theory

63

Thus,

5925825
33

e(3) =3 and = 19475.

We now go to the next prime, namely 5:

19475 _ 3805,
5

@ =779 and
5

54 779.

Soe(5) = 2. We get
525825 = 3 - 5 - T79.
If we continue this way, we obtair(19) = 1 ande(41) = 1 and then

525825 = 3% .52.19 - 41.

Note that the trial division is inefficient for large valuet . For example, the
utilized inputn in RSA is in the order of 700 bitd{(n) = 700 bits, i.e.n ~ 27%).
We must perform/n = 23%° divisions in the worst case to find a factor of
Assuming that our computer executes 35 million operatiomie second, we need
approximatelyl0'°! years to find a factor of. Generally, the trial division is of no
significance for cryptographic applications.

Pollard’s rho method

Pollard’s rho algorithm is a factoring algorithm for findisgnall factors of a com-
posite integer. In the Pollard’s rho method, we choose atiomg from Z/7Z,, into
itself, for example a polynomial function such f&r) = 2% + 1. Let z, be a ran-
domly chosen element. We define the sequence;, =, . .. SO that

Tit1 :f(l'z), f0r2:1,2,3

We hope to find two elements; and x;, which are in different residue classes
modulo n, but in the same residue class modulo a divisor oh rother words,
we suppose

xr; = x; mod p, wherep is a prime.
In this casep | z; — xx. Butp is unknown. Therefore we proceed as follows:

We search for the terms; and z;, modulo n, we first verify whetheged(z; —
xk,n) > 1. If this occurs and ifged(z; — 2, n) < n thenged(z; — x4, n) is a
non-trivial factor ofn.

64

2 Mathematical Background

Example 2.6-7:
Let n = 91. We would like to factorizen. By choosingf(z) = z? + 1 and
ro = 1 we get:

r=1241=2
$2:$%+1
=224+1
=5
1’321’34—1
=524+1
= 26

We haveged(x; — xg,91) = ged(ze — 21,91) = ged (w3 — 21,91) = 1 and

ged(z3 — x9,91) = ged(26 — 5,91)
= ged(21,91)
=7 <91

Hence, the number = 7 is a divisor of 91. Note thail = 7 - 13 and

T3 =25 mod 7
26=5 mod 7.

Assuming that the functiofi(z) = 22+1 modp behaves like a random function, the
expected time for Pollard’s rho algorithm to find a facposf » is O(,/p) modular
multiplications. This implies that the expected time to fandon-trivial factor ofn

is O(n'/*) modular multiplications [Menezes96].

We need)(,/p) pairs (;, ;) to find a collision inp elements:; (Birthday paradox).
Sincep can be found it (/) divisions (trial division), Pollard’s rho algorithm has

the complexityO(/v/n) = O(n'/*).

In our example of the previous section, the factorization ef 27 with Pollard’s
rho algorithm would need0** years to find a factor of.

2.6.3 Discrete logarithm

The security of many cryptographic techniques such as E&Bancryption, EIGa-
mal signature and the Diffie-Hellman key agreement depeod tipe difficulty of
the discrete logarithm problem. The description of thidypem is given in the fol-

2.6 Hard Problems in Number Theory 65

lowing: Let G be a cyclic group of order. Let v be a generator aff anda be an
element of the groupr. We want to determine the unique smallest integeo that:

a =" 2.6-2

r = log, «vis called the discrete logarithm afto basey.

We keep the notations far, v, x, n, and their corresponding meanings throughout
the next sections.

NOTE:

1. From the mathematical point of vie&, does not have to be cyclic. In
cryptographic applications it is preferable to choosas a cyclic group
and~ as a generator d@¥. This ensures the existence:of

2. Generally, logarithm problems are not easily solvabkbe@vise cryp-
tographic systems which are based on the difficulty of the Bibjems
would be considered insecure.

In this section we describe some algorithms for solving thepbBoblem in special
cases.

Exhaustive search

We determine/®, v, 42, ... until the resulix is obtained.

Example 2.6-8:
The solution o = 26 mod 131 with exhaustive search delivers

26° =1 mod 131

26' =26 mod 131
262 =21 mod 131
26° =22 mod 131
26' =46 mod 131
26° =69 mod 131
26° =91 mod 131
26" =8 mod 131.

Hencex = 7.

Exhaustive search is impractical for a large value.dh cryptographic applications
the order of group i$> 2!%°. That is we need!%® — 1 group operations to find the
discrete logarithm. The time needed to find discrete logariior n = 2'% is in the
order of10% years.

66

2 Mathematical Background

Baby Step Giant Step Algorithm

The baby step giant step method permits to solve the DL pmoblieis faster than
the exhaustive search but it consumes more storage space.

In the baby step giant step method, we proceed as follows:

Letm = [y/n], where
[vn] =min{a € Z;a = v/n}.

Any numberz can be expressed as follows (see Theorem 2.3-1):
r=qm-+r, with 0 < r <m.

EqQ. 2.6-2 can be written as:

T qm—r

V=T =

hence

-

(v™)? = ay
We compute the sd? called the "baby step" that is defined as:
B={(ay™",r): 0 <r <m}.

If the pair (1, o) is contained in the se&B for some integer, thenz = rq. In this
case, the discrete logarithmhas been found.

Otherwise we compute the elemefit§')? for ¢ = 1, 2,.. . until we find an element
(v™)? that is equal to a first component in the baby step set.gh.dte such an
element. Then we get

(,ym)QO — a,y—ro.
This equation can be written as:

mgot+ro —

Y

Thus, the discrete logarithmhas been determined:
T = qom + 1o.

The computation of the elemer(tg™)? is called "giant step".

Example 2.6-9: [Buchmann99]
We want to solve the DL problem:

57 =3

in the groupZs, ;.

2.6 Hard Problems in Number Theory

67

The order of the group is = 2017 — 1 = 2016. We determinen = [/2016] =
45.

The baby step is
B={(3-57",r);0 <r < 45}.

Forr = 0 we obtain the pair (3,0).

Forr = 1 the first component of the pair 8- 5! mod 2017. First we must
determine the inverse of 5 ifi;);,. We gets~! mod 2017 = 807. Then

3-51 mod 2017 =3-807 mod 2017 = 404.
Forr = 2 we get

3:572 mod2017=3-25"!1 mod 2017
=3-1775 mod 2017
= 1291.

And so the computation of all pairs &f delivers

B ={(3,0), (404, 1), (1291, 2), (1065, 3),
(213,4), (446, 5), (896, 6), (986, 7),
(1004, 8), (1411, 9), (1089, 10), (1428, 11),
(689, 12), (1348, 13), (673, 14), (538, 15)
(511,16), (909, 17), (1392, 18), (1892, 19),
(1992, 20), (2012, 21), (2016, 22), (1210, 23),
(242, 24), (1662, 25), (1946, 26), (1196, 27),
(1046, 28), (1016, 29), (1010, 30), (202, 31),
(1654, 32), (1541, 33), (1115, 34), (223, 35),
(448, 36), (493, 37), (502, 38), (1714, 39),
(1553, 40), (714, 41), (1353, 42),
(674,43), (1345, 44)}.

The computation of the elemen(s'®)? mod 2017 for ¢ = 1, 2, ... gives
45, 8, 360, 64, 863, 512, 853, 512, 853, 62, 773, 496, 133, 1951
1064, 1489, 444, 1827, 1535, 497, 178, 1959, 1424, 1553.

68 2 Mathematical Background

The calculation is stopped when= ¢, = 22, since 1553 is contained as first
component in the pair (1553,40) of the baby step set. Weget 40 and sub-
sequently

T = qom + 1o
= (22-45) + 40
= 1030
= 1030 mod 2017.

Thus,5'%9% = 3 mod 2017.

We needO(y/n) modular multiplications to determing, since0 < r < /n. To
determine the giant step we ne@d./n), sinceq can be equal tq/n in the worst
case.O(y/nlgn) is needed to make comparison between the elemenis arfid
that of the set of giant step. Under the assumption that tbepgmultiplications
need more time thatg n, the running time of baby step giant step algorithm is
O(y/n). The algorithm requires storage fox(,/n) group elements [Menezes96],
these group elements are the & \/n) elements of the baby step.

69

3 Stream Ciphers

In Chapter 1 it was already explained that encryption systeam be subdivided in
symmetric and asymmetric systems as well as in block andraet@phers. In this

chapter stream ciphers, which belong to the symmetric @tiory techniques, are
presented in more details. Design and analysis of streanercgystems as well as
the most well-kown encryption systems are introduced.

When a block cipher is used, a long messagds divided into blocksm =

mg, m1, ..., my_1 Of the same length. Here the blocks have usually a length of
n = 64, 128 or 256 bits, depending on the processing lengihthe block cipher.
When stream ciphers are used, the message to be encrygtedlso divided into
blocks. Here, however, only short blocks of lengtloccur. In this case we do not
speak of a division into blocks, but into symbols. Usually- 1 or n = 8 bit. The
encryption of the single symbolis; is carried out through a state dependent unit.

3.1 Classification of Stream Ciphers

In the literature, the symmetric stream encryption systaraslassified in

1. synchronous stream ciphers and

2. self-synchronizing stream ciphers.
In the following sections the two classes are introducedanentletail.

3.1.1 Synchronous Stream Ciphers

Fig. 3.1-1 depicts a symmetric, synchronous stream eriorypystem. The sender

can be found on the left and the receiver on the right side. \Wh&ynchronous

stream ciphelis used, the sender and the receiver of an encrypted mesasage kynchronous stream
to compute the keystream synchronously at any time > 0 for encryption and ciphers
decryption.

Sk > k S 2
- secure channel -
(62
]
m h c » -1
t > C h
“unsecure channel ! m,

Fig. 3.1-1: Synchronous, symmetric stream cipher.

&

70

3 Stream Ciphers

encryption function

next state function
output function

keystream generator

binary additive stream
cipher

The keystreamx; is generated independently from the plaintext messagefand t
ciphertext. The encryption of the message symbals > 0, can be described by
the following equations:

O¢4+1 :f(at7 k)?
2 :g(gtv k)v

Ct :h(Zt, mt),

wheret > 0 is valid. The system has a state variablevhose initial stater, can
either be known publicly or be determined from the secretikkdy order to be able
to carry out the encryption, trencryption functiorh must clearly be invertible. The
function f is called thenext state functiomndg is called theoutput function The
functionsf, g andh are known publicly.

When the receiver of the ciphertext sequence > 0, knows the secret kely and
the initial statery, he can decrypt the ciphertextas follows:

Oty1 = f(gtu k)u
2y = g(atvk)v

my = h_l(Zt, Ct).

When the values of ando, of sender and receiver correspond at any e on
both sides, the same keystreanis generated.

The functional unit which consists of the stateand the functiong andyg is called
keystream generatoits task is to generate the keystream sequencehich is
similar to a random sequence, from the kegnd the initial state,. In Section 3.2
we will introduce various methods for designing keystreanegators.

A special type of synchronous stream ciphers istimary additive stream cipher
Here the symbols arey, ¢, 2z, € GF2) and the function. corresponds to the
binary XOR operation.

We would like to mention here that each block cipher in the OR@&le putput
feedback modecan be used as a synchronous stream cipher. A summary of the
single operation modes for block ciphers is given in Chagter

A ciphertext symbot; that is modified does not cause error propagation, but islead
to a wrong decryption of the symbel. Consequently, an attacker is able to make
changes to symbols at selected positibimsthe plaintext and see what this change
causes in the ciphertext. Thus, it is absolutely necesbatytditional mechanisms
are employed in order to provide data origin authenticagiot data integrity.

However, when a symbol is inserted or deleted in the cipkeseguence, the syn-
chronization between sender and receiver is disturbedeglinmbols of the cipher-
text that follow can not be decrypted correctly. Thus, itdasonable to use mecha-
nisms such as inserting synchronization marks or a frequémitialization of the
generator.

3.1 Classification of Stream Ciphers 71

3.1.2 Self-synchronizing Stream Ciphers

Besides synchronous stream ciphers, there are sd$fesynchronizing stream self-synchronizing
ciphers but they are hardly used in information and communicatigstesns. In stream ciphers
this case the keystrearpdepends on the kely and a fixed numbérof previously

generated ciphertext symbols.

The encryptionof a sequence of plaintext symbois, ¢ > 0, can be described by encryption
the following equations:

Oy = (Ct—l7 Ct—l41y -+, Ct—l),
2t = Q(Uu k))

Ct = h(Zt, mt).

secure channel

S, :(Ct—l"'act—l)

!

> G

t t unsecure channel

Fig. 3.1-2: Self-synchronizing, symmetric stream cipher.

The state of the encryption system is formed by ftipeevious ciphertext symbols
and is described as;. The functionh has to be invertible so that the decryption
process can be carried out correctly.

The decryptionof a ciphertext sequencg, ¢t > 0, can be carried out by using thedecryption
following operations:

Oy = (Ct—lu Ct—l41y -+, Ct—l),
2z = g(oy, k),

my = h_1<Zt, Ct).

Encryption and decryption are depicted in Fig. 3.1-2.

When a symbol of the ciphertext sequenceis inserted or deleted, self-
synchronizing stream ciphers are, unlike synchronousustreiphers, capable of
re-establishing proper decryption upon receivingiphertext symbols correctly.
However, if a ciphertext symbol is modified, then decryptdmup to/ subsequent
symbols may be incorrect and there is an error propagation.

It is hard to assess the cryptographic security of self{sgomtizing stream ciphers
because the keystreamdepends on the ciphertext as well as on the plaintext. That
is why they are hardly used in modern communication systems.

72

3 Stream Ciphers

properties of random
sequences

one-time pad

information theoretical
approach

It has to be mentioned that every block cipher in the CFB magehér feedback
modg can be operated as a self-synchronizing stream cipher.

3.2 Design of Keystream Generators

This section about stream ciphers continues describingnigdods of designing
keystream generators. Keystream generators are a majdinigublock of synchro-
nous stream encryption systems. A keystream generator wtesphe keystream
sequence: = z,z,... from the keyk. The sequence is a pseudorandom
sequence and it should be statistically similar to a randadruaiformly distributed
sequence. In the special case that keystream sequencelsyanbérom GF2), a
random sequence is characterized by the following pragserti

e Balanceness of the single sequence elemétits:= 0) = P(z = 1) = 0.5 for
allt > 0.

e Statistical independence of the single sequence elempiszy, z1, ..., 21) =
P(z).
The only stream encryption system which produces such arkeays is theone-
time pad Let m = mg,mq,..., my_, be the message sequence consisting/of
sequence elements, of GF(2), which is to be encrypted and transmitted. Then a
random keystream = zg, z1, ..., zy_1 Which must have at least the same length
N as the message sequence is necessary. The sequéaseto be available for
both sender and receiver and it must not be accessible tahoreaed persons. The
encryption is then carried out with

= my + 2
and the decryption with
my = ¢+ 2

fort > 0. In practice the disadvantage of the one-time pad is thagghder and the
receiver must have the same keystreamhich has to be transmitted via a secure
channel. Here it has to be considered that the keystrehas to be just as long as
the message: which is to be encrypted. C. Shannon could show that the iome-t
pad, from an information theoretical point of view, is to legarded as perfectly
secure.

When aninformation theoretical approacfor assessing and designing an encryp-
tion system is used, it is assumed that the attacker has itedirmemory location
and computing power for the attack. Although only ciphereaxly attacks are con-
sidered, it is allowed that the attacker knows a finite subsege of the plaintext.
An attack is assessed as successful when the plaintext sethet key can be given
with the probability of 1 after having observed the ciphetrte Thus, an encryption
system is regarded as perfectly secure when the attackermad@btain informa-
tion (transinformation’ (m, ¢) = 0) about the plaintextn and the keyk although

he observed the ciphertext

3.2 Design of Keystream Generators 73

As it turns out, this information theoretical approach ig practical. Therefore,

it is attempted not to use a truly random keystrearfor encryption. Instead,

a deterministic algorithm is used for generating the kegstrz. A pseudoran-

dom bit generato(PRBG) generates a pseudo random keystream sequence PRBG
(20,...,2nv_1) € GF2)" of length N from a short keyk = (ko,...,k_1) €

GF(2)! of lengthl:

PRBG: GF(’2)l — GF(Q)N, (]{30, e kl—l) — (ZQ, e ZN_l).

The number of possible output sequences is at most a snwlbfianamely2! /2%,

of all possible sequences of lengii The intention is to take a small random
sequence in form of the keyand to expand it with PRBG to a sequence of much
larger length, in such a way that an attacker cannot effigigistinguish between
output sequences of the PRBG and truly random sequences.

The basic requirements on a PRBG can be checkestidtistical testsfor example: statistical tests
1. Frequency test (frequency of "0’s" and "1's"),
2. Serial test (frequency of tuples),
3. Poker test (frequency of non-overlapping blocks of lanyt
4. Runs test (frequency of runs),
5. Autocorrelation test (autocorrelation of output segqasmare measured).

When a PRBG passes certain selected tests, its cryptogragtability is still not

shown. The output sequences of a linear feedback shiftteedlsSFR) with a pri-
mitive feedback polynomial of degréepass several statistical tests, but wixén
output symbolg;, are observed, the initialization of the linear feedbackt shgis-

ter and hence the remaining sequence elements are préelictab

A basic requirement for using a PRBG in cryptography is thatkeyk is suffi-
ciently long so that an attacker cannot perform an exhaeistarch via all possible
initial states. In applications with real time requirengeand high throughput rates
it is necessary that a keystream hitcan be generated in polynomial time or even
in linear time.

In 1984 Blum and Micali ([Blum84]) defined eryptographic secure pseudo ran-CSPRBG
dom bit generato(CSPRBG) as an algorithm which has additionally the follogvi

property:

e There is no polynomial time algorithm which can determine tiext bit with
a probability significantly greater than 0.5 from observihg subsequence
20, - - -, 2 Without knowing the key.

This definition for a CSPRBG is equivalent to a characteioradf Yao from 1982
([Yao82)):

e There is no polynomial time algorithm which can distinguigttween the output
of the generator and a truly random bit sequence with a pilbyatgnificantly
greater than 0.5 without knowing the key.

74

3 Stream Ciphers

Blum-Blum-Shup
generator

In [Blum84] examples for generators are given, whose sgcean be proven
under the assumption that efficient algorithms of a welldinanumber theore-
tic problem (determination of the discrete logarithm) does exist. This desi-
gning method which leads to a CSPRBG is also described aslegrityptheoretical
design method.

However, these examples do not have a practical meaningnasult require too
much memory and computing time to generate the sequentesygh it is poly-
nomially restricted. Yao’s results have made it possiblgive the desired crypto-
graphic security on the basis of all statistical tests foiaby sequences which can
be carried out in polynomial time.

As an example of a CSPRBG we would like to introduce Biem-Blum-Shub
generator It is based on the assumption that integer factorizatioimogbe carried
out in polynomial time. The method of generating the keystre = z, ..., z2y_1
from the secret ke¥ works as follows:

1. Setup:

Determine two random and distinct primgandq with a bit length of about
[/2 and each congruent Bomod 4.

Letn = pq.
2. Initialization:
Map the keyk on the integer. It is demanded that < s < n — 1 and
ged(s,n) = 1is valid.
Computer, = s mod n.
3. Generation of the keystream sequenee zg, . . ., zy_1:
Carry out the following steps far < ¢ < N — 1:

a. ryq = xf mod n.

b. z, = least significant bit of:;, ;.

Example 3.2-1: Blum-Blum-Shup CSPRBG [Stinson95]

1. Setup:
Suppose = 383 andq = 503. p andq are primes ang = ¢ = 3 mod 4,
since

p=2383=3+(95-4),and
g =503 =3+ (125 - 4).

We computer = p - ¢ = 192649.

3.2 Design of Keystream Generators 75

2. Initialization:
Let s = 101355. We havel < (s = 101355) < n — 1 = 192648 and
ged (101355, 192649) = 1. We compute

To =s? modn

= 1013552 mod 192649
= 20749.

3. Generation of the keystream sequenee z, . . ., zy_; With N = 20:

The least significant bits; of eachz;,;(z;.; = 7 mod n), which cor-
respond to the output of the Blum-Blum-Shup generator, asengn the
following table:

Tab. 3.2-1: Bits produced by the Blum-Blum-Shup

generator
t Ty Binary representation of z; | z;_1
0 20749
1 143135 100010111100011111 1
2 177671 101011011000000111 1
3 97048 10111101100011000 | O
4 89992 10101111110001000 | O
5 174051 101010011111100011 1
6 80649 10011101100001001 1
7 45663 1011001001011111 1
8 69442 10000111101000010 | O
9 186894 101101101000001110 | O
10 177046 101011001110010110 | O
11 137922 100001101011000010 | O
12 123175 11110000100100111 1
13 8630 10000110110110 | ©
14 114386 11011111011010010 | O
15 14863 11101000001111 1
16 133015 100000011110010111 1
17 106065 11001111001010001 1
18 45870 1011001100101110 | ©
19 137171 100001011111010011 1
20 48060 1011101110111100 | O

When, in practice, PRBG generators are designed for crygpdgc applications

the so-callegsystem-theoretical approack mostly used. Here, one tries to desigrystem-theoretical
a generator consisting of components with statistical @riags which can be mathe-approach
matically controlled. Basic components are, for examjahedr or non-linear feed-

76

3 Stream Ciphers

fundamental attacks

LFSR

back shift registers with regular or irregular clock coht®@ne attempts to fulfill
certain design objectives and requirements of keystreguoesees and, at the same
time, to design a generator which is resistant to all knoviacis. Fundamental
attacksare:

1. Exhaustive search through the entire key space
Linear substitutions

Divide-and-conquer attack

Statistical defects

Unconditional correlations

o 0k~ WD

Conditional correlations.

In the next section we shall discuss the mathematical qesuni of binary
sequences and their generation by means of linear feedlbsitkregisters. An
important property of sequences is the linear complexitictvican be effectively
computed with the Berlekamp-Massey algorithm.

3.3 Binary Sequences and Linear Feedback Shift
Registers

Many generators proposed in the literature have a shifstegivithlinear feedback
(LFSR) as a basic component. Such an LFSR of lehgtinsists of stages which
store at time [elements

Sty St41y -+ o5 St4l-1

of the finite field GK2), which consists of the elemen{8, 1}. The! elements from
the state of the LFSR at timteare summarized to a state vector

St = (Stv St41y- -+ St-i-l—l)T‘

When the step to ¢ + 1 is carried out the elements of the stages are shifted one
position to the left. Here the sequence element_; is output and the sequence
element which is stored on the left side of the stage is deteunby the linear
feedback of the storage elements of the LFSR as follows«chet,..., 1 €
GF(2) be the feedback coefficients, then the sequence elemeid determined as

-1

Sty = E CjSt4j

Jj=0

by thel stored sequence elements of the linear feedback shifteegnsequently,
a binary sequence

S = S0,51,52,. ..

can be generated with a given initialization of the stageh wy, s;, ..., s_; and
[feedback coefficients. The binary sequence is describdimhes shift register

3.3 Binary Sequences and Linear Feedback Shift Registers 77

sequenceThe feedback coefficients of the LFSR are summarized todkmbed LSFR sequence

feedback polynomiale GF(2)[x] feedback polynomial
-1
c(x) = 2’ — Z ;.
=0

The theory of LFSRs is mathematically completely developédortunately, this
does not apply to shift registers with non-linear feedbazkhat LFSRs serve as
major building blocks of keystream generators.

Now we want to explain the terms period and pre-period of afyisequence =

S0, S1, - . .. EVery finite and autonomous state machine with output, Xangle an
LSFR, generates an output sequenc&hich starts with gpre-periodof length
to > 0 and is then followed by thperiodicpart with a cycle length o, namely

St4+p = St

fort > ty. Such a sequence is callalfimately periodicand when, = 0 is valid it ultimatively periodic
is calledperiodic. The period of the sequenceas defined as the smallest cycle offequence
lengthp for which period of a sequence

St4+p = St
is still valid fort > ¢,.

A finite and autonomous state machine whose state is stogetiimary memory of
lengthl can produce an output sequence with a maximum possibleddZrig/hen
we just consider a state machine with a linear next-statetitum, for example an
LFSR, an output sequence with a maximum petibd- 1 can be produced due to
the fact that the zero state is mapped onto itself.

The existence of pre-periods with > 0 can easily be shown for an LFSR. When
co = 0isvalid, thenty, > 0, and forc, = 1,ty = 0 is valid. In the later case all
output sequences of the LFSR are periodic.

The valuep of the period of the output sequences of an LFSR of lehgtn easily
be expressed by the valaethe exponent of the feedback polynomiét) of the
LFSR. The exponentof a polynomialk is the smallest integer for which

clx)|z® =1

is valid. The maximum value of the exponertb a polynomial of degrekis 2! — 1.
Such a polynomial is also denoted as primitive.

Theorem 3.3-1: Let the feedback polynomialz) € GF(2)[x] belonging to the
LFSR be irreducible and is the exponent af(x). Then every sequence pro-
duced by this LFSR, except for the zero sequence, has tluslperi

The definition mentioned above can be generalized for anynpohials (see
[LidI94]).

If p is the period of a sequencethen this sequence can be produced by an LFSR
with the feedback polynomialz) = a7 — 1.

78

3 Stream Ciphers

Example 3.3-1: Computing of the exponent

We will write a program for the Crypto-Interpreter, whichtelenines the
exponents of all polynomials of degree 4. In addition, itidddndicate whe-
ther the poloynomial is irreducible and/or primitive.

The Crypto-Interpreter programme:

PROCESS conput e_exponent ;

DCL c, expo i nteger;
DCL primirr bool ean;

START;
TASK c: =16;

MACRO whi | e (¢<32);
TASK expo: =pol y\ _order(c);
TASK irr:=is_irreducible(c);
TASK prim=is\ _primtive(c);
CALL writeln(’c=",c);
CALL writel n(’ Exponent =", expo);
CALL writeln(’is\ _irreducible ,irr);
CALL writeln(’is_primtive ,prim;
TASK ¢ : = c+1;
MACRO wend(| oopl);

STOP;
ENDPROCESS;

The result of the calculations are summarized in Tab. 3.3-1.

3.3 Binary Sequences and Linear Feedback Shift Registers

79

Tab. 3.3-1: Determination of the exponent, irreducibility and

primitivity of all polynomials of degree 4

c exponent irreducible primitive
x? 1 no no
2t 41 4 no no
4w 3 no no
4+l 15 yes yes
xt + 2?2 2 no no
2t + a2 +1 6 no no
42?42 7 no no
422 +r+1 7 no no
z* 4+ 23 1 no no
zt4+ a3 +1 15 yes yes
2t 4+ 2% 4o 7 no no
a4+l 6 no no
2t 4+ 2% + 22 3 no no
3422+ 1 7 no no
4+t 4 no no
4t 4?41 5 yes no

Example 3.3-2: Period of the output sequences of an LFSR
We consider the LFSR with the irreducible feedback polyradmi

cx)=z*++ 2>+ +1,

which has the exponeft This is valid, as:(z) divides the polynomial®—1 and
notz* — 1. Thus, the LFSR only produces, besides the zero sequentersees
of period5. The output sequences of the LFSR of periodan be subdivided
into three categories, with each of them having five sequence

..),(0,0,1,1,0,0,...),

1.

1,0,0,0,1,1,..
0,1,1,0,0,0,. ..

0,1,0,1,0,0,..
1,0,1,1,1,1,...
1,1,1,0,1,1,...

(

() (
(0,1,0,0,1,0,...), (

(),(1,0,1,0,0,1,
() (

() (

.),(0,0,0,1,1,0,

9 171707070717

) 170707170717

) 07 17 17 17 1707
9 171707171717

)
)
)
)
)

,(1,1,1,1,0,1, ..

,(0,0,1,0,1,0,...),

Js

Theorem 3.3-2: The period of a sequence of an LFSR with irreducible feed-
back polynomiat(x) of degred is a divisor of2! — 1. The sequence has the

maximum perio@' — 1 exactly, when(z) is primitive.

80

3 Stream Ciphers

Example 3.3-3: Determination of the state and the output of a LFSR
We want to determine the state and the output of an LFSR bygtksenCrypto-
Interpreter. We use an LFSR with the feedback polynomial

clx) =zt +2*+2°+z+1,

and the initial state, = s = (1,0, 0, 0)”. The Crypto-Interpreter programme is
as follows:

PROCESS | f sr_out put ;

DCL t integer;

DCL c,state t, Ifsr, out_t integer;

DCL state_ s charstring;

START,;

TASK ¢ : = 31;
TASK state\ t := 1;

CALL Ifsr_init(lfsr,c,state t);

TASK t: =0;

MACRO whi | e (t<11);
TASK state t := Ifsr_state(lfsr);
TASK state s := bin(state_t);
CALL writeln(’State of the LFSR ’',state_s);
TASK out t := Ifsr_run(lfsr,1);
CALL writeln(’ Qutput of the LFSR ',out t);
TASK t : = t+1;
MACRO wend(| oopl);

CALL | fsr_exit(lfsr);

STOP;

ENDPROCESS;

The output of the program is summarized in Table 3.3-2.

3.3 Binary Sequences and Linear Feedback Shift Registers 81

Tab. 3.3-2: Determination of
output and state
of an LFSR

State Output
(1,0,0,0) 1
(0,0,0,1)
(0,0,1,1)
(0,1,1,0)
(1,1,0,0)
(1,0,0,0)
(0,0,0,1)
(0,0,1,1)
(0,1,1,0)
(1,1,0,0)
(1,0,0,0)

Olo|IN|ojO]lRr]JWINIFP|O]| =+

PlRP|O|O|O|FR]|P|]O|O|O

=
o

Sequences generated by an LFSR with a primitive feedbagkpwaiial are often
referred to as maximum sequencesnoisequences. Maximum sequences are of
special importance in cryptographic applications due wirtlarge periods. The
existence of primitive polynomials for any degrieis secure. The number of primi-
tive polynomials of degrekover the field GR2) is

p(2' - 1)
l Y
whereasy depicts the Euler function.

A(l) =

Moreover, it has to be mentioned that thesequences fulfilGolomb’s randomness

postulatesThese criteria were established by S.W. Golomb in 1967Haracteri- Golomb’s randomness
zing the suitability of a sequeneeas a pseudorandom sequence. A subsequenc@astulates
consecutive, identical symbols of maximum length are dieedras a-un. A run of

"0’s" is called a gap, while a run of "1's" is called a block. IGmb’s randomness

postulates for a sequeng@f periodp are as follows:

G1: In each period of a sequensgthe number of "1’s" differs from the number
of "0’s" by at most 1.

G2: In each period of a sequenese1/2¢ of all runs have length. For each of
these lengths, there are equally many gaps and blocks. Phieaton of G2
only makes sense fawhere the sequence h2is! runs of any length.

G3: The autocorrelation functio@'(7) of the sequence is constant fol < 7 <
p—1.C(0) = C(p) = 1is valid.
The autocorrelation functio@'(7) is defined as
A(r) — D(7)

C(r) = #,

3 Stream Ciphers

whereA(7) is the number of similar sequence elements between thersegpiand
a shift of s by 7 positions. The value ab(7) is determined a®)(7) = n — A(7).

Example 3.3-4: Golomb’s randomness postulates
Now we would like to check if the sequence

s=1,0,0,0,1,1,1,1,0,1,0,1,1,0,0, . ..

of period 15 fulfills Golomb’s randomness postulates. Thgsaces has eight
1's and seven 0’s, hence it fulfills G1. The sequence has 8 ks of length 1
and two of length 2, with which criterion G2 is fulfilled. AS(7) = —1/15 for
1 <7 < 14 is valid for the autocorrelation function, G3 is also fu#l.

In the previous sectionsi-sequences have been introduced as pseudorandom
sequences due to their large period and as they fulfilled @lo®randomness pos-
tulates. However, we will see that LFSR sequencesrarskquences are easily
predictable. First we want to show that you can set up a ¢glasatlable system of
linear equations for determining thhéeedback coefficients by using orily conse-
cutive sequence elements. As a result we can identify theeseg elements of the
entire period of the sequense

Let s be an LFSR sequence which was generated by an LSFR with arownkn
feedback polynomial of degréeFurthermore, the sequence elements are determi-
ned by:

-1

St = E CjSttj
Jj=0
-1

St141 = E CjSt41+4j
Jj=0

-1

Sty21-1 = E CjSt4l—1+j5-

3=0
We thus obtain a system of linear equations foritheknownsc, . .., ¢;_1:
St St41 -+ St4i-1 Co St+1
St+1 St42 - .- St C1 B St141
St4l—1 St - -+ St420-2 Cl—1 St4+21-1

After these explanations it is clear that LFSRs cannot baidened for cryptogra-
phically relevant pseudorandom sequence generators. \ldovikey are important
building blocks for constructing suitable generators.

As a further quality criterion for cryptographically suila sequences we can con-
linear complexity ~ sider thelinear complexity L(s) of a sequence. L(s) denotes the length of the

3.3 Binary Sequences and Linear Feedback Shift Registers 83

smallest LFSR, with which the sequence&an be generated. A designer should
be able to give the exact value or the lower bound for the timemnplexity of
the output sequences of its generator. The linear complexia given sequence
s can effectively be determined by using the Berlekamp-Masdgorithm. This
technique was established in 1969 ([Massey69]) and wasalig used for deco-
ding BCH Codes. A comprehensive description of this teammigan be found in
[Fumy94].

In the last section we found out that linear feedback shijfisters used as keystream
generators are not sufficiently secure. More secure generiaased on linear shift
registers can be designed by adding the output sequenche ehift registers to
high nonlinear combinations. Furthermore, additionajjstacan be added or irre-
gular clocking can be introduced. There are many suggestiotie literature, but
here we would like to concentrate on three generators be¢has properties, such
as period or linear complexity of the output sequence, caanag¢yzed easily: the
nonlinear filter generator, the combiner generator and dnebiner generator with
memory.

3.3.1 Nonlinear Filter Generator (NLFG)

This generator (see Fig. 3.3-1) consists of an LFSR with @lfaek polynomiat €
GF(2)[z], of whichn stage positions (also called taps or phases) (v1, ..., 7),
with 0 < v < 7% < ... <, <[-1, are added to a Boolean functign:
GF(2)" — GF(2) and the output

2t = f(st‘i"}/l? ceey 3t+wn)

fort > 0 is formed, wheres = s, s1, . .. is the output sequence of the LFSR. The
combining functionf is referred to as filtering function.

i i
l k7 lsvn

f —

Fig. 3.3-1: A nonlinear filter generator.

84

3 Stream Ciphers

3.3.2 Combiner Generator Without Memory

In the case of the combiner generator without memory (se€8R3eR) the sequences
s; = s;0,5;1, .., are generated by LFSRs with feedback polynomialsf degree
l;,1 < j < n, and combined with a Boolean functigh: GF(2)" — GF(2) in
order to obtain the keystream sequence.

The keystream sequengeof the combiner generator is determined by

2y = f(Sl,t, Sy Sn,t)

for t > 0. In this case the functiofi is called a combining function.

A 4

Fig. 3.3-22 A combiner generator without memory.

In order to avoid correlation and divide-and-conquer &dam a combiner genera-

tor without memory, the functiori should be balanced, should have a high degree

of correlation immunity, should have a high algebraic degned should have a high
nonlinearity. Unfortunately, there is a tradeoff betweedmgh order of correlation
immunity and a high algebraic degree of nonlinearity in Bawol functions. This
disadvantage can be overcome by using combiner generatbrsnemory.

3.4 Software-based Keystream Generators 85

3.3.3 Combiner Generator With Memory

In contrast to a combiner generator without memory, the ¢oertgenerator with
memory (see Fig. 3.3-3) ha¥ bit memory. The state of the combining unit at
time¢ is described as, € GF(2)" andn input sequences; = s;,s;1,...,1 <

Jj < n, are added to it. The sequenggis generated by an LFSR with feedback
polynomialc; of degred;, 1 < j < n. The keystream sequencés computed with
the combining function : GF(2)" x GF(2)M — GF(2), and the state at timet- 1

is formed with the next state functidn: GF(2)" x GF(2)M — GF(2)M. The next
state transformation and the generation of the output averitbed by the following
equations:

U1 = F(Sl,ta sy Sn,tvyt)v

2t = g(sl,tu oty Sn,tayt)'

LY
Y

.

Fig. 3.3-3: A combiner generator with memory.

Examples of combiner generators with memory are the suromagenerator of
Massey and Rueppel ([Rueppel86]) and thggenerator which is used as a
keystream generator in the Bluetooth transmission tecigyolvhere packet data
are stream encrypted at the air interface.

86

3 Stream Ciphers

RC4

3.4 Software-based Keystream Generators

Besides shift register-based keystream generators, ergneder of software-based
stream encryption systems can be found in the literature.gémerators are called
software-based because they can be implemented effgctivdl the instructions
of common microprocessors or high level programming laggsasuch as C, C++
and Pascal. RC4 is probably the best-known software-basgstrkam generator.
We would like to describe this software in more detail.

RC4(Rivest Cipher Nr. 4) is a software-based stream cipherhwvias designed in
1987 by Ron Rivest for the company RSA Data Security ([RR2Bt This method

works with a variable key length dfbytes,0 < [< 256, and outputs 1 byte per
operation step. The sequence of these bytes can be used ystradea to encrypt
the plaintext.

The name RC4 is copyrighted by the company RSA Data Seciihty.algorithm

could be kept secret until 1994, when the method was puldighehe Internet
via an anonymous electronic mailing list and the Usenet Né&wsip sci.crypt.
Currently, it is suggested to publish the algorithm under tlame of Arcfour as
a Request for Comments at the Internet Engineering TasleRtEd F) ([Kauko-

nen99)), so that the use of the RC4 algorithm is not impedaddaiemark rights or
licences.

RC4 is implemented in various commercial products, suchaasd Notes, Apple
Computers’s AOCE and Oracle Secure SQL. The algorithm s @ded in nume-
rous security layers of network protocols for link or seestonnections. Examples
of this are the link encryption of the packet service in thiékute and digital Ame-
rican mobile communication standard, in the SSL-Proto8elc(ire Socket Layer
and the successor of the TLS-Protoctighsport Layer Secujaused for encryp-
ting message packets. It is also used to encrypt the trans@docol of the Internet
application SSH%ecure Shélland in the IPSec Internet Standa&e¢urity Archi-
tecture for the Internet Protochl

We would now like to describe RC4 in a more general versiondestribe it as
RC4<n,l), wheren indicates the bit length of the memory words and variables
and/ the number of words of bit length of the secret kel. The parametet is

in the range of) < | < 2™. Hence, the key has a length of [bit. The form of
the RC4, described in [Rivest92] and [Kaukonen99], themesponds to the RC-
(8,1) algorithm. It is remarkable that instead of 8 bit, the geheeasion generates

in paralleln bit as a keystream sequence in one operation step, and thieectq
memory location for the table takes a valuen@f' bit.

In its initialization phase the RC#-, () algorithm puts up a tabl§ by using the
secretkey: = (ko, ..., ki—1),0 < k; < 2"—1and0 < ¢ < [—1.Inthe second phase
the tableS is modified in each time stefand the keystream word, 0 < z, < 2"—1
andt > 0, is generated from a certain table entry. The table: (sq, ..., son_1)
consists oR™ word entriess;, with) < s; < 2" — 1 and0 < < 2" — 1.

3.4 Software-based Keystream Generators

87

1. Initialization phase:
The tableS = (so, . .., son_1) IS initialized with the keyk = (kq, ..., k;_1) as

follows:
a. Allocate the memory for tablé and initialize it withs; := i for 0 <
1 < 2™ —1.

b. The tableS is now modified in a loop having the counted < i <
2" — 1 with the help of keyk. At the beginning of the loop the variable
j is set to zero.

j = (j -+ S; -+]CZ modl) mod 2”
exchange the contents gfands;.

c. Due to security reasons, the kkyshould now be set to zero, i.e. be
removed from the memory. In the second phase thekkisyno longer
required.

d. Initialize the variables, j andt : i :=0;j := 0;¢ := 0.

2. Keystream generation phase:
A keystream word,, ¢t > 0, is generated with the help of the talfleand the
counters andj:

i:=(i+ 1) mod 2"

J = (j + s;) mod 2".
Exchange the contents efands;

h = (s; + s;) mod 2"

2y = Sy,

t=t+ 1.

Despite the attacks ([Knudsen98], [Mister98]) on weakemechodified ver-
sions of the RC4#, [) which can be found in the literature, the RC31-16)
technique is regarded as very secure when a secret key wetigéhl of 128
Byte is used. One disadvantage is the table size of 256 bitertime needed
to initialize the table.

Example 3.4-1:

To demonstrate the RC4 algorithm we will choaose- 4 andl = 2 (needless
to say, these parameters are too small to be secure, butrtiendeation of the
algorithm is simpler). Furthermore, we suppose that theeséeyk is set to
k = (ko, k1) = (3,11).

1. Inthe initialization phase of RC#, 2), we start with

S=(0,1,2,...,15)

3 Stream Ciphers

and obtain the Table 3.4-1.
Tab. 3.4-1: Initialization phase of RC-(4,2) with £k = (ko, k1) =

(3,11).
? J (S0, 81, 82, 83, 84, 85, 86, 57, 58, 59, 510 511, 512, 513, 514, 515)
0 3 (3,1,2,0,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15)
1|15 (3,15,2,0,4,5,6,7,8,9, 10, 11, 12, 13, 14, 1)
2 4 (3,15,4,0,2,5,6,7,8,9, 10, 11, 12,13, 14, 1)
3115 (3,15,4,1,2,5,6,7,8,9, 10, 11, 12, 13, 14, 0)
4 4 (3,15,4,1,2,5,6,7,8,9, 10, 11, 12, 13, 14, 0)
5 4 (3,15,4,1,5,2,6,7,8,9,10, 11, 12, 13, 14, 0)
6| 13 (3,15,4,1,5,2,13,7,8,9, 10, 11, 12, 6, 14, 0)
7115 (3,15,4,1,5,2,13,0,8,9, 10, 11,12, 6, 14, 7)
8| 10 (3,15,4,1,5,2,13,0,10,9,8, 11,12, 6, 14, 7)
9] 14 (3,15,4,1,5,2,13,0,10, 14, 8,11, 12,6,9, 7)
10| 9 (3,15,4,1,5,2,13,0, 10, 8, 14,11, 12,6, 9, 7)
111 15 (3,15,4,1,5,2,13,0, 10, 8, 14,7,12,6, 9, 11)
12] 14 (3,15,4,1,5,2,13,0, 10, 8,14, 7,9, 6, 12, 11)
13] 15 (3,15,4,1,5,2,13,0, 10, 8, 14,7, 9, 11, 12, 6)
14| 14 (3,15,4,1,5,2,13,0, 10, 8, 14, 7,9, 11, 12, 6)
151 15 (3,15,4,1,5,2,13,0, 10, 8, 14, 7,9, 11, 12, 6)

2. Keystream generation phase:

As yet the tableS has the value (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9,
11, 12, 6). In Table 3.4-2, we give the iteration steps foregating the
keystreanr;.

3.4 Software-based Keystream Generators

Tab. 3.4-2: Keystream generation phase using RC-(4,2) with k£ =
(ko, k1) = (3,11)

t i g h (S0, S1, S2, S3, S4, S5, S6, 7, S8, S9, S10, S11, 2t
812, S13, S14, 815)

0 1|15 (3,6,4,1,5,2,13,0, 10, 8, 14, 7, 9, 11, 12, 15) 2
1| 2 (3,6,1,4,5,2,13,0, 10, 8, 14, 7, 9, 11, 12, 15)

2| 3 (3,6,1,0,5,2,13,4, 10, 8, 14, 7,9, 11, 12, 15) 5
3] 412|141 (3,6,1,0,9,2,13,4,10,8, 14, 7,5, 11, 12, 15) 12
4| 5] 14| 14| (3,6,1,0,9, 12,13, 4, 10, 8, 14, 7, 5, 11, 2, 15)

5| 6111 (3,6,1,0,9,12, 7, 4, 10, 8, 14, 13, 5, 11, 2, 15)

6| 7115 (3,6,1,0,9,12, 7, 15, 10, 8, 14, 13, 5, 11, 2, 4)

7| 8 (3,6,1,0,9,12, 7, 15, 8, 10, 14, 13, 5, 11, 2, 4) 1
8| 9 10| (3,6,1,10,9, 12, 7, 15, 8, 0, 14, 137 5,11, 2, 4) 14
9| 10 41 (3,14,1,10,9,12, 7, 15,8, 0, 6, 13, 5, 11, 2, 4) 9
10| 11| 14| 15| (3, 14,1, 10,9, 12, 7, 15, 8,0, 6, 2, 5, 11, 13, 4) 4
11 (12| 3|15 (3,14,1,5,9,12,7, 15,8, 0, 6, 2, 10, 11, 13, 4) 4
12 (13| 14| 8] (3,14,1,5,9,12,7, 15,8, 0, 6, 2, 10, 13, 11, 4) 8
1314 9] 11| (3,14,1,5,9,12,7, 15,8, 11, 6, 2, 10, 13, 0, 4) 2
141 15 13 (3,14, 1,5,9,12, 7, 15, 8, 11, 6, 2, 10, 4, 0, 13) 14
15(0] O 6] (3 14,1,5,9,12,7, 15,8, 11, 6, 2, 10, 4, 0, 13) 7
16 1|14 14 (3,0,1,5,9,12,7, 15,8, 11, 6, 2, 10, 4, 14, 13) 14
17| 2| 15| 14] (3,0, 13,5,9,12,7, 15, 8, 11, 6, 2, 10, 4, 14, 1) 14
18| 3 141 (3,0,13,9,5,12, 7, 15, 8, 11, 6, 2, 10, 4, 14, 1) 14
19(4 0] (3,0,13,9, 11,12, 7,15, 8, 5, 6, 2, 10, 4, 14, 1) 3
20| 5 81 (3,0,13,9, 11,12, 7, 15, 8, 5, 6, 2, 10, 4, 14, 1) 8
21| 6121 11 (3,0,13,9,11, 12,10, 15,8,5,6,2, 7,4, 14, 1) 0
22| 7 (11 11 (30,13,9,11,12, 10,2,8,5,6, 15,7, 4, 14, 1) 0
23| 8 11| (3,0,13,8,11,12,10,2,9,5,6, 15,7, 4, 14, 1) 0
241 9 141 (3,0, 13,8, 11, 12, 10, 2, 5,9, 6, 15, 7, 4, 14, 1) 14
25| 10 14| 4 (3,0,13,8,11,12,10,2,5,9, 14, 15,7, 4,6, 1) 11
26 11| 13 (3,0,13,8,11,12,10,2,5,9, 14,4, 7, 15, 6, 1) 8
271 12 (3,0,13,8, 7,12, 10, 2, 5, 9, 14, 4, 11, 15, 6, 1) 13
28] 13 71 (3,0,13,15,7, 12,10, 2, 5,9, 14, 4, 11, 8, 6, 1) 2
29] 14 15| (3,0, 13, 15, 7, 12, 10, 2, 5, 6, 14, 4, 11, 8,9, 1) 1

90

4 Block Ciphers

4 Block Ciphers

In chapter 1 it was already explained that encryption systeam be subdivided

in symmetric and asymmetric systems as well as in block arehrst ciphers.
When block ciphers are used, a long messagés divided into blocksm =

mg, m1, ..., my_, Of the same length. Here the blocks have usually a length of
n = 64, 128 or 256 bits, depending on the processing lengtbf the block cipher.
Padding mechanisms are used to fill the last block when theages: is not long
enough so that the last bloek,_; is also ann-bit block. Then the single blocks
my, 0 <t < N — 1 are assigned to a time-invariant encryption functfoim order

to obtain ciphertext, = E(m,), wherek is the secret, symmetric key.

We speak of block ciphers when each of the message blogksf the message

m = mg, my,...,my_1 IS encrypted independently. The bit size of the message
blocksm,,t > 1, is calledn. As a fundamental building block, the versatility of
the block ciphers allows construction of stream cipherg (@®des of operation

in Section 4.2), pseudorandom number generators, mesatgenéfication codes
(MACs) and cryptographic hash functiohs

In this chapter techniques and design principles for blapkers are introduced.
Depending on the application, different requirements edisign of block ciphers
are made. Therefore, we try to depict basic design stepsefarre and practical
block ciphers. After that, the most important modi of opemratre explained, and
some important block cipher algorithms (DES, IDEA, AES) presented in detail.

4.1 Design Principles

In order to decrypt the ciphertexts= Ej(m) of a block cipher, the encryption
function £ for a fixed keyk has to be an injection. When andc are blocks of
lengthn bit, then E for a fixed key has to be a bijection, namely a permutation of
n-bit vectors. Ideally, each kel should have a different permutation. If a block
cipher implements each possible permutation, thetklegs to have a length of

log,(2"!) ~ (n — 1.44)2" bit

to represent alt”! permutations of an-bit vector. Thus, this enormous key length
makes true random block ciphers impractical, even for smalA block length
which is too small may be vulnarable to code book attacks metation attacks.
Nonetheless, one should consider the design objectiva tiaadomly chosen key
yields a permutation chosen as randomly as possible. Coas#y, for largen it is
necessary to find an implementation, which at least enswredain pseudorandom
selection of permutations.

6 Message authentification codes (MACs) and cryptograpdmst iunctions are dealt with in
chapter 7.

4.1 Design Principles 91

The parameters block lengthand key length should be chosen at least so large
that a data complexity of* as well as a processing complexity2is large enough
not to allow an attacker to carry out an exhaustive key seard® or 20 years.
Today, a block length of = 64, 128 and256 bits and an equally sized key length
are used.

The iterated-eistel cipherhas established itself as a common design principle fegistel cipher
block ciphers. Here the basic components usually consiatradtwork of substi-

tution boxes (S-boxes) and permutations of bit positiortsctvare referred to as

product cipers. It is attempted to obtain a sufficiently ctergncryption function

through an iterated application of these components. Figl4llustrates the prin-

ciple of a product cipher consisting of various stages ob®els and permutations.

Now, let a(g, h)-bit S-boxbe a mapping of-bit vectors on-bit vectors and g- S-boxes
bit permutation carries out exclusively a bijection on lsflions. Consequently,

an S-box can be realized by usihgBoolean functions withy inputs. Formally

a (g,h) S-Box is defined by a Boolean mappitg : GF(2)¢ — GF(2)", with
F=(f,...,f») andf; : GF(2)? — GF(2)for1 <i <.

Gordon and Retkin[Gordon82] formulated the followitgsign criteriafor crypto- design criteria for
graphically suitable S-boxes: S-boxes

1. Each output bit should be truely independent from eacttibjy, that means
that in the minimized Boolean expression, which denoteswapud bit as a
function of the input bits, all input variables should occuBoolean function
with this property is calledomplete

2. When an input bit is modified, it should, on average, chdradieof all output
bits. This property of an S-box is callédalanche effect

3. There should be no linear dependency between an outparidban input bit.

4. One should have no information about the output bits, ag bs the input
bits are unknown. This criterion is fulfilled when each of gassible output
vectors is equally distributed in the set of all output vestdn a bijective
substitution this is always valid, as in this case each dwpator exactly
occurs one time.

In the meantime modified and increased requirements for ¢isggd of S-boxes
have been developed in response of the new attack methoelguBistion about the
existence of linear factors in the S-boxes, which can be rgother things, used for
cryptoanalysis, plays a further important role. The S-lscxed permutations serve
as an inner structure of encryption functions. Block cigleee usually composed of
the applications of S-boxes and permutations of variouadsuafter the so-called
scheme of a Feistel cipher, which we would like to explairehiermore detail.

4 Block Ciphers

R » G o> X

A

L » R

Fig.4.1-1: Encryption principle of a Feistel cipher with one round.

Fig. 4.1-2: Decryption principle of a Feistel cipher with one round.
The Feistel cipher is based on the idea of using the sameduanct
G : GF(2)! x GF(2)"? — GF(2)"/?

for encryption as well as for decryption. The functiGfh for example, consists of
a product cipher. Here we assume that even and is the length of the key:
or a subkey derived from it. The plaintext blogk of lengthn bit is split into two
equally sized blocks. and R, each having a length of/2 bit: m = (L, R). Then
the ciphertext block: is, as shown in Fig. 4.1-1, put together from the blétknd
the bitwise XOR operation of block with the function value(k, R):

c=(R,L+G(kR) = (R X).

As the plaintext block? occurs unencrypted in the resulting ciphertext blocthe
plaintext blockm can be reconstructed out @fas shown in Fig. 4.1-2, and the key
k:

m = (G(k,R)+ X,R) = (G(k,R) + L + G(k,R),R) = (L, R) .

It should be taken into consideration that no special requénts on the function
G have been made and that the encryption scheme has been etecaypted with
the same function.

This principle does guarantee the bijectivity of the raaglencryption function and
the fixed keyk, but it obviously represents a rather weak cipher as oneofialich
plaintext block remains completely unencrypted. A highgmptographic security
can be achieved by repeated iteration of this scheme. H#ezedlit functionsG;
and subkeys$; can be used in different encryption rounids

4.1 Design Principles 93

k, k, k;

R H G)X > G, —> Y > G, > Z

L » R > X

v
I~

Fig. 4.1-3: Encryption principle of a Feistel cipher with three rounds

Z Y > X > R
€~) 4) 4 -
Y (G > X—»(G,)»>» R—G, L
ks k, k,

Fig. 4.1-4:. Decryption principle of a Feistel cipher with three rounds
Such arencryption roundy; with subkeyk; is then structured as follows: encryption and
decryption rounds

Ei(Li—1,Ri—1) = (Ri—1, Li-1 + Gi(ki, Ri—1)) = (Li, Ry),

whereinL; andR; are blocks of length /2 bit. An encryption steg; is selfinverse.
When

V(L,R) = (R, L),
is defined, we obtain

VoFE;oVo Ez’(Li—la Ri—l) =

=V o Eiy(Li-1 + Gi(ki, Ri-1), Ri—1)

= V(Ri—1, Lioy + Gi(ki, Rio1) + Gi(ki, Riy))
= (Li—1, Ri—1).

That means that the inverg&consisting of an- round ciphert
E=VoE,0oE _j0...0E0FE

is the mapping
D=VoFE oFyo...oF._j0kFE,.

Ciphers which have this property are called Feistel cipHersig. 4.1-3 encryption
and in Fig. 4.1-4 decryption of a Feistel cipher with threends are illustrated.

94

4 Block Ciphers

encryption and
decryption in ECB

4.2 Modes of Operation

A block cipher usually encrypts a plaintext; having a fixed length of bits.
Longer messages are divided into blocks with a fixed bloclgtlerof » bit:

mg, m1, ..., my_1. The simplest approach is to encrypt each block separajely b
using the same key. This mode of operation of a block cipher, also referred to
as ECB mode, has various disadvantages so that other modgeicttion have
been developed and standardized for encrypting long messagwhat follows,

we assume thak denotes the encryption function ahtthe decryption function

of a symmetric block cipher which is able to proceskit message blocks:;. The
symmetric, secret key i8. Here we describe the modes of operation as they are
standardized in [ISO91].

You can test the modes of operation with several ciphers théhava-applet given
as additional multimedia material on the book home page.

4.2.1 ECB mode

The Electronic Codebook Mod@ECB) of operation encrypts the message blocks
my, 0 <t < N — 1 Dby using

Cy = Ek(ﬂ’lt),
and decrypts the ciphertext blocksby using
my = Dk(Ct) .

The encryption and decryption process is illustrated in &ig-1.

secure channel

S

m, —p E - C > Cc, —F—P
I p n ! t n n
unsecure channel

Fig.4.2-1: ECB mode of operation for am-bit block cipher.

properties of the ECB The ECB mode of operation has the following properties:

mode

1. Identical plaintext blocks are encrypted to identicahartext blocks under
the same key:.

2. Message blocks are encrypted independently of each.dResprdering
ciphertext blocks results in correspondingly re-orderaihpext blocks. The-
reby, an attacker can re-order or substitute message blocks

4.2 Modes of Operation

95

3. Error propagation: One or more bit errors in a single aifgx block affect

the decryption of that block only.

For this reasons the ECB mode is not recommendable.

4.2.2 CBC mode

The Cipher Block ChainingCBC) mode of operation carries out tleacryption encryption and
with the following step: decryption in CBC

¢t = Ey(cio1 +my),

wherec_; is initialized byIV (initial vector) and the addition af,_; andm, corre-
sponds to the bitwise addition. Decryption is carried out by

my = Ci—q + Dk(Ct)

with ¢_; = IV. Encryption and decryption in CBC mode are illustrated in
Fig. 4.2-2.

secure channel

unsecure channel

Fig. 4.2-2. CBC mode of operation for am-bit block cipher.

The CBC mode of operation has the followipgpperties properties of CBC

1.

Identical plaintext and an identical value of #iéresult in identical cipher- ™°%

text. Changing théV or m, results in different ciphertext.
Re-arranging the order of ciphertext blocks affects yjg@awn directly.

Error propagation: A bit error i affects the decryption of andc,,,, whe-
reas the recovered plaintext_ , has bit errors precisely whergdid. Thus,
an attacker can directly affect the decryption of message Whenc;,; and
ci42 have been transmitted without errors, then is decrypted correctly.

The value otV does not have to be secret. Nonetheless, integrity andrauthe
tication of IV should be checked by the receiver.

96 4 Block Ciphers

4.2.3 OFB mode

Each symmetric block cipher can be operated inQlput Feedback Mod@FB)
of operation as a synchronous, additive stream cipher (ged R2-3). In this case,

encryptionand instead ofn-bit blocks,r < n-bit blocks are encrypted:
decryption in OFB
Ot - Ek(ft),

2z = Left(Oy, 1),
Ct = My + 24,

It+1 - Ot7

wheret > 0, I, andO; aren-bit blocks and the functioheft selects the leftmost
bits of then-bit block O;.

The decryption of the-bit ciphertext blocks:;, ¢t > 0, under the secret key, is
carried out as follows:

t — EIC(It)?
2 = Left(Oy, 1),
my = C¢ -+ 2ty

It+1 = Ot-

secure channel

Ot- 1
1

O
[]

n n

R

o3

t > ¢
unsecure channel

Fig. 4.2-3: OFB mode of operation for am-bit block cipher with an-bit keystrean;.

properties of OFB The OFB mode of operation has the following properties:

mode 1 Changing thd, results in the same plaintext being encrypted to a different
output.

2. The keystream, is not dependent on the plaintext.

3. Error propagation: a bit error in the ciphertexexclusively affects the cor-
responding bit in the plaintext;.

4.2 Modes of Operation 97

4. Forr < n the throughput of a block cipher in the OFB mode of operation
is decreased by the factofn, while the keystream, may be pre-computed,
since the keystream is independent of the plaintext

5. Thenitialization vector, does not need to be secret, but it should be changed
when the key is used again.

This version of the OFB mode of operation is described in P$PIn [Fips81] you
can also find an OFB mode of operation but it has a lower sgdenel. Since in
the OFB mode of operation the functidnis used for encryption and decryption,
it can not be used whef is an asymmetric cipher. The same applies to the CFB
mode of operation which is introduced in the next section.

4.2.4 CFB mode

Each symmetric block cipher can be operated in the so-c&lpter Feedback
Mode(CFB) of operation as a self-synchronizing stream ciphee (5g. 4.2-4).

secure channel

I

n r r

v r]

n

4

unsecure channel

Fig. 4.2-4: CFB mode of operation for am-bit block cipher withr-bit keystrean;.

The encryptionof r-bit plaintext blocksm,;, ¢ > 0, under the secret kely, can be encryption and
described as follows: decryption in CFB

Ot - Ek(It)
2z = Left(Oy, r),
Cy = My + 24,

It—‘,—l = ShlftLeft(It, 7’) + Ct,

while ¢t > 0, I, and O, aren-bit blocks and the functioShiftLeft(/;,) shifts the
n-bit block I, to the left byr positions (this corresponds to a multiplication with
2"), and in this process it removes all bits which are shiftegr then boundary.

98 4 Block Ciphers
The decryption of-bit ciphertext blocks:;, ¢ > 0, under the secret ke, works as
follows:

t — EIC(It)?
2z = Left(Oy, 1),
my = C¢ -+ Zt,
It+1 = ShlftLeft(It, T) + .
properties of CFB The CFB mode of operation has the followipgpperties

mode

Data Encryption
Standard

DES as a Feistel cipher

1. Different values ofl; result in the same plaintext input being encrypted to
a different output. The value adf, does not have to be secret. However, the
receiver should be able to check its integrity and authatitio.

2. Re-ordering ciphertext blocks affects the decryption.

3. Error propagation: Changing one bitdnaffects the decryption of the next
[n/r| ciphertext blocks. Proper decryption@frequires the preceding: /|
blocks to be transmitted correctly. Consequently, the CEBl@nf operation
is self-synchronizing.

4. As far as the encryption functiafi is concerned, throughput is decreased by
the factorr/n.

4.3 Data Encryption Standard (DES)

The Data Encryption StandardDES) was standardized in 1977 by the American
National Bureau of Standardd\BS), which is today calledNational Institute of
Standards and Technology NIS the form of aFederal Information Processing
StandardFIPS) and was published in the FIPS Publication 46 ([Fips8lbw, this
technigue has been adopted by other institutions as a sthrida.

The DES has always been criticized for the following reasons
1. The short key length Gf6 bits.

2. The secret design principles, especially the S-boxes sthe round func-
tion.

Nonetheless, DES was very common in many encryption predyctntil the mid
90s.

DES is aFeistel cipherwhich processes plaintext blocks of = 64 bit, using a
key k with an effective length of = 56 bits. The Feistel cipher consistsof= 16
rounds. The DES gets a kéy of length 64 bits, of whicky bits (8, 16,24, . ..,64)
are used as parity bits and the remaining 56 bits are summgxthp actual key.

From the keyk, 16 subkeys:;, 1 < i < 16, each havingl8 bits are generated for
each round of the Feistel cipher. In the following, the piext block is calledn =
(mq,...,me) € GF(2)% and the ciphertext block= (cy, ..., cs1) € GF(2)%.

4.3 Data Encryption Standard (DES)

99

First of all the plaintextn undergoes an initial bit permutatidi® and is divided
into 32 bit halves., and Ry. The blocks are assigned to a Feistel cipher ef 16
rounds:

Li = Ri—17

Ri = Li_y + G(k;i, Ri_1)
for 1 < ¢ < 16. In each of the 16 rounds the same funct{@ms used. The blocks
Lis and Ry are finally exchanged and undergo a bit permutafion' in order

to obtain the ciphertext block = (¢4, ..., cs4). The internal round functio is
composed of the following steps in round < ¢ < 16:

e Expanding the 32 bit-blociz; ; to 48 bits: F : GF(2)3? — GF(2)®,T =
E(R;_y).

e Bitwise XOR operation of” and the subkey, : 7" =T + k;.

e T’ is divided into 8 blocksB;,...,Bs with each having 6 bits7’ =
(By, ..., Bsg).

e Block B;,1 < j < 8, undergoes a substitutiéf) which transforms a 6-bit input
to a 4-bit outputsS; : GF(2)° — GF(2)*, B} = S;(B;). The eight substitutions
are summed up to functio$i.

e The 4-bit blocksB’, 1 < j < 8, are summed up to a blodk’ of length 32 bits:

T// = (Bi, .. ,Bé) - (Sl(Bl), .. .,Sg(Bg)) .

e 7" is bit-permuted by’ : 7" = P(T").

To sum up, the functiod for roundi can be described as follows:

100

4 Block Ciphers

R, k

32 48

48

+
48

7= (B, B, B, B B, B, By
$ededd

B'z‘ 313‘3'43'5‘3’5‘ B Vg'g

T" =

B,

32

4
P

32

T!N
Fig. 4.3-1: DES inner round function.

The inner round functiod- is illustrated in Fig. 4.3-1. A precise description of the
initial bit permutationIP, the expansion functiotv, the substitutionss;, the bit
permutation” and how the single subkeysare computed can be found in [Mene-
zes96], [Schneier96] or [Fumy94]. A related animation caridund on [Kad97].

4.4 International Data Encryption Algorithm
(IDEA)

IDEA (International Data Encryption Algorithiris an encryption algorithm deve-
loped at ETH in Zurich, Switzerland. A preliminary draft @EA was published
by Lai and Massey under the name PE®oposal Encryption Standaydn 1990
[Lai9l]. In 1991, after the publishing of the differentidtack by Biham and Sha-
mir[Biham93], Lai and Massey modified their block cipher mier to be resistent
against this attack and named it IPE®jroved Proposal Encryption Standardh
1992, the name IPES was changed in IDEA[Lai92].

IDEA is a 64-bit block cipher with a 128-bit key, and is gerlgraonsidered to be
very secure. It is considered among the best publicly knogarghms. IDEA is
patented in the United States and in most of the EuropeartreesinlThe patent is
held by the Swiss company Ascom-Tech.

4.4 International Data Encryption Algorithm (IDEA)

101

4.4.1 Design concept of IDEA

The design concept of IDEA is based on mixing operations ftobree different
algebraic groups. Supposing that andm; are two subblocks with 16 bit length,
these three operations are:

e Bitwise XOR of two 16-bit subblocksn; andm;, denoted bym; & m; in
(GF(2))!°. For example:

1100100110110001
@©0011100111101100

1111000001011101

e Addition modulo2' in Z3° denoted bym, B m;. This is an addition of 16-bit
numbers ignoring any overflow. For example:

1100001100110101
BH1110000110011010

1010010011001111

e Multiplication modulo2'® + 1 in Zi,,_ , denoted bym;) m;, where0 € Zy°
is associated witl!6 ¢ Z3ys..,- With this supposition, O is equivalent tel
mod 2'6 + 1 and the multiplicative inverse modufd® + 1 of 0 is 0. Actually,

(© is multiplication of 16-bit numbers ignoring overflow. Fotanple:

1010101111001101
C)1111000110111100

1000010101010011

The mixing of three different group operations in IDEA eresbtonfusion and dif-
fusion of the input bits. The confusion obscures the retetigp between the plain-
text and the ciphertext. With the diffusion, the redundaotthe plaintext will be
spreaded over the ciphertext. An attacker looking for tlredendancies will have
a hard job to find them.

4.4.2 IDEA Encryption

The plaintext block in IDEA is divided into four message eeiymmoms (N =
4). Each message bloek;, with 0 < ¢ < N — 1, has the bit size = 16.

102 4 Block Ciphers

Cipher key k

1th. round

2th. round

8th. round

Output
opera%on

| Output
16

Fig. 4.4-1: The computational procedure of IDEA.

IDEA uses 52 subkeys, each of 16 bit length. Using IDEA, thagstion (resp. the
decryption) of the plaintext (resp. the ciphertext) is parfed in eight rounds (see
Fig. 4.4-1) followed with an output transformation. Eachiloé 8 rounds requires 6
subkeys and in the output transformation only 4 subkeysegded. So, altogether
52 subkeys are needed.

In the following we describe in detail the most importantibuig blocks of IDEA:
the key schedule algorithm, the round transformafioand the output transforma-
tion.

The IDEA Key Schedule Algorithm

The IDEA key schedule algorithm derives 52 16-bit subkegsifthe 128-bit secret
key k. First the 128-bit secret kéyis divided into eight 16-bit subkeys. These are
the six subkeys for the first round and the first two subkeydHersecond round.
Then the keyk is rotated 25 bits to the left (that is, the operatiinftLeft(k, 25)

is performed) and again divided into eight subkeys. Thefimst are used in round
two; the last four are used as the first four subkeys of rourekthand so on until
all 52 subkeys are generated.

Now we adopt the following notation: For each roundl < r < 8), the four
message blocks input to the roundire denotedn(m} mi m; and the 6 subkeys
used in this round are denotéglk] kL kL kL kL. Hence, 48 subkeys are used in eight

4.4 International Data Encryption Algorithm (IDEA)

103

rounds. The remaining 4 subkeys from the 52 subkeys, whehsed in the output
transformation, are denotégk{ k9ks.

Round Transformation

As mentioned earlier, the IDEA algorithm consists of 8 rotmashsformations and
an output transformation. The round transformattomdexed by: takes four 16-
bit subblocks and performs the group operations accordirfgd. 4.4-2 with the
use of 6 subkeysj(.i), 1 < j < 6 to output four 16-bit subblocks.

léil) lé;) lé;) léi‘)
Oetmiom B 5 om0

Fig. 4.4-2: The round transformatioA.

In each round, the sequence of events is as follows (see Fig. 4.4-2) [Setetd:

1.

2.

S

Multiply m{ and the first subkey;.
Addm] and the second subkey.
Addm? and the third subkeys.
Multiply m% and the fourth subkey;.
XOR the results of steps 1 and 3.
XOR the results of steps 2 and 4.

Multiply the results of step 5 with the fifth subkéy.

104

4 Block Ciphers

8. Add the results of steps 6 and 7.
9. Multiply the results of step 8 with the sixth subkily
10. Add the results of steps 7 and 9.
11. XOR the results of steps 1 and 9.
12. XOR the results of steps 3 and 9.
13. XOR the results of steps 2 and 10.

14. XOR the results of steps 4 and 10.

Between each round the second and third output messagestdoekwapped. The
output of the round is the four message blocks that are thatsesf steps 11, 13,
12, and 14. After swapping the inner blocks, the input to téet mvill then be the
message blocks resulting from steps 11, 12, 13, and 14 sieelys We further
denote by cfc3c the output of the eight round (see Fig. 4.4-2).

IDEA Output Transformation

After performing the 8 round transformation of IDEA, an auttpransformation is
performed. It is shown in Fig. 4.4-3. It takes the output & éight round transfor-
mation as input and gives four 16-bit subblocks as outpuichvare attached and
in this way form the ciphertext block.

I I
K 4 K K® 4 K§
N He—wm I I
D
K Y \ 4
—0O—H]
L/ / K
Ea<—<-f<—-
\ 4
M oD
o< hd AL v
}K< »D
N2 After the 8th. round N
\ 4 \ 4 \ 4 \ 4
I

9
k(?) k(g) k(39) k(4)
I [

Fig. 4.4-3: The output transformation of IDEA.

4.4 International Data Encryption Algorithm (IDEA) 105

The output transformation consists of the following opiersd:

1.

2.

o >

Multiply ¢§ and k.
Add c§ andks.
Add c§ andky.
Multiply ¢§ andks.

Finally, the four message blocksg, ¢, ¢, andc; are attached to form the
ciphertext.

4.4.3 IDEA Decryption

The IDEA decryption algorithm is the same as the encryptigorithm except for
the used subkeys.

So the subkeys used for decryption are computed from thaesk fos encryption
according to Table 4.4-1[Schneier96], where the nota([k:}rjl_l and —%/ denote
the multiplicative inverse modul®'® + 1 and the additive inverse modut®® of &/
respectivelyp <i: <5andl <j <8orj =o:

Tab. 4.4-1. Derivation of the decryption subkeys from the encryption

subkeys.

Round Encryption subkeys Decryption subkeys

1 K5k k3 kykikL (k)" — kY — kg(kg) " KRS
—1 —1

2 kgkiksk3kikz (k§) — kY — K5(K5) "kik:
—1 —1

3 kokiksk3kikS (kg) = ki — ky(k3) “k{kS
—1 —1 5

4 kokikskskiks (k§) ~ — kY — k3 (KS) “kZk3

5 Kok k3 K3k RS (k§) " — K} — K3 (k) ik
—1 —1

6 kokP kS kKL ES (ko) — ki — k3(k3) " Kik3
—1 —1

7 kgk{kIkIkTRS (kg) ~ — k¥ — k3(k3) kik2
—1 —1

8 kg kRS k3K ES (kg) ~ — kT — k3(k3) kiks

Output kg kgkg (k$) ™" = ki — kb (kd)

transformation

The inverse round transformation used in the IDEA decrypéigorithm is equiva-
lent to the round transformatiafi, but it is used now with the appropriate decryp-
tion subkeys (Fig. 4.4-4).

106

4 Block Ciphers

The input transformation of the function F

SO A &y W
O« IEE Hemm EEE EEO
>
>De
Si) MA
-»?
1
Fle—O<« N
Y wl)
%
\{

Fig. 4.4-4: The inverse transformation @f.

4.4.4 Security and Implementation Issues

From a security point of view, IDEA appears to be secure againown attacks
except attacks related to the so called weak keys [DaemenBd$e keys are weak
in the sense that their use can be detected only with a verlf amaunt of effort.
To avoid this attack, Daemon [Daemen94] proposes a slighifination to the key
schedule algorithm. On the other hand, the key bit length28f dtrengthens the
IDEA block cipher against an exhaustive search attack.

IDEA can work within any cipher mode of operation describedection 4.2 (a
related java applet can be found on the book homepage). Frewifficiency point
of view, IDEA is fast in software and in hardware implemeiatat The Swiss com-
pany Ascom-Tech has implemented IDEA on a chip and has rdaahencryption
rate of 177 Mbit/s.

4.5 Advanced Encryption Standard (AES)

The National Institute of Standards and Technology (NIS33 Wworked together
with the industry and the cryptographic community to depebn Advanced
Encryption Standard (AES). The AES will replace the forméP¥ Standard
DES, which is vulnerable to many known attacks such as eiffiesl cryptana-
lysis [Biham93], linear cryptanalysis [Matsui94] and exktive search. The new

7 Federal Information Processing Standard.

4.5 Advanced Encryption Standard (AES) 107

developed standard must specify an encryption algoritho#sable of protecting
sensitive government information well into the next decadée algorithm(s) will
be used by the U.S. Government and other private sectors.

45.1 Selection of Algorithms for AES

On January 2, 1997, NIST announced the initiation of the AB&bpment effort

and made a formal call for algorithms on September 12, 198&.call described

the requirements for candidate algorithm submission ppekand the minimum
requirements for acceptance that must be satisfied by thecag@date, as well as
the evaluation criteria to be used to appraise the candalgteithms. The evalua-
tion criteria belonged into three categories:

e Security: includes resistance of the algorithm to crypigsis, reliability of its
mathematical basis, randomness of the algorithm output, et

e Cost: encompasses computational efficiency (speed) oougplatforms, and
memory requirements.

e Algorithm and implementation characteristics such as lfiéky (ability of an
algorithm to be implemented as a stream cipher or hash #igorfor example),
hardware and software suitability, etc.

Furthermore, the call declared, among other things, thatallgorithm(s) must
implement symmetric key cryptography as a block cipher aha (minimum) sup-
port block sizes of 128-bits and key sizes of 128, 192, andos6

On August 20, 1998, fifteen AES candidate algorithms werabtished at the First
AES Candidate Conference (AES1). These algorithms werjesttb further study
and research by the cryptographic community from aroundatbid. Based on
analysis and comments on the fifteen algorithms, NIST sedefive algorithms
from the fifteen at the Second AES Candidate Conference (AH®2 AES finalist
candidate algorithms were MARS, RC6, Rijndael, Serperd, Tavofish.

These finalist algorithms received a second, more in-deplysis on any aspect of
the candidate algorithms, including the following topicszptanalysis, intellectual
property, crosscutting analysis of all of the AES finalisigerall recommendations
and implementation issues. On April, 2000, at the Third AEhdidate Confe-
rence (AES3), submitters of the AES finalists were invitediszuss comments on
their algorithms. When the selection process finished, N&iflied all available
information in order to make a selection for the AES. On Oetab, 2000, NIST
announced that it has selected the Rijndael algorithm tpgse for the AES.

4.5.2 The Rijndael Algorithm: Some Notions

The winner of the AES selection process, the Rijndael algar;is a block cipher,
designed by Joan Daemen and Vincent Rijmen at the Kathdliekeersity Leuven
in Belgium. This cipher has a variable block and key lengtte Rijndael algorithm
uses keys with a length of 128, 192, or 256 bits to encryptksadth a length of

108

4 Block Ciphers

state

state array

128, 192 or 256 bits. All nine combinations of key length anack length are
possible. Because of its importance, we will describe tlgerithm in some detail.

Before we give a description of the AES standard, we intredte notion of
statgFips01]. A state consists of four rows of bytes, each comai N, bytes,
where N, is the block length divided by 32, that i§, = 4.8 In the state array
denoted by the symbal, each individual byte has two indices: its row number
r, 0 < r < 4 and its column numbet, 0 < ¢ < 4. This allows an individual byte
of the state to be referred to as either or s|r, ¢].

In the AES algorithm, the basic processing unit is the bytaviat follows, a byte
will be treated as a single entity and will be written in hesteidhal representation.
For example, the byte 01100011 is written(é8);4. For simplicity, we will drop
off the index 16 and write the byte as two characters.

At the start of the cipher operation and inverse cipher dmeradescribed later,
the input — an array of bytesy, in,... in;5 — is copied into thestate arrayas
illustrated in Fig. 4.5-1. The cipher or inverse cipher @ens are then conducted
on this state array, after which its final value is copied ® dtput — the array of
bytesouty, outy, ... outys.

input bytes State array output bytes
in,| in,| iny|in,, S00| So1| Sea| Sos out,out, out,out,,
in, | in, | in, in, Sio] 81,4] 815 84 out, out out, lout,,
in,| in, |in,,|in,, S20] 8,,] 2| Sy out, outjout,out,,
in,| in, | in,| in,; S50 831 832 835 out; out;out,jout,

Fig. 4.5-1: State array input and output [Fips01].

Hence, at the beginning of the cipher or inverse cipher,ripatiarray, denoted by
in, is copied to the state array according to the scheme:

slryc] =in[r +4c] for 0 <r <4 and 0 < ¢ < 4, 4.5-1

and at the end of the cipher and inverse cipher, the stat@isdato the output array,
denoted byut, as follows:

out[r + 4c] = slr,c] for 0 <r <4 and 0 <c < 4. 4.5-2

8 For 192-bits and 256-bits data blocks — as in original Rigicalgorithm -V, will be 6 and
8 respectively.

4.5 Advanced Encryption Standard (AES)

109

Example 4.5-1:
We consider the input array, 00112233445566778899aabbccddeef f,
that is:

7:71,0 = OO, my = 11, 000 ,in14 = ee, in15 = ff.

According to Eq. 4.5-1, the input array is copied to the stas follows:

s[0,0] =n[0] = | s[0,1] =in[d] = | s[0,2] =in[8] = | s[0,3] =
00 44 88} in[12] = cc
s[1,0] =in[l] = | s[1,1] =n[b] = | s[1,2] =in[9) = | s[1,3] =
11 55 99 in[13] = dd
s[2,0] =in[2] = | s[2,1] =in[6] = | s[2,2] = s[2,3] =
22 66 in[10] = aa in[l4] = ee
s[3,0] =n[3] = | s[3,1] =n[7]= | s[3,2] = s[3,3] =
33 77 in[11] = bb in[15] = ££

45.3 AES Encryption

AES uses different structure than DES. It is not a Feistdi@ipln brief, it consists
of subsequent similar rounds. The plaintext comes in as teslat the very top. The
first operation is to XOR the plaintext with 16 bytes (128 bdsround key. Each
of the 16 bytes is then used as an index into an S-box tablerthps 8-bit inputs
into 8-bit outputs. The S-boxes are all identical. The byesthen rearranged in
a specific order that looks a bit complicated but has a sintpletsire. Finally, the
bytes are mixed into groups of four using a linear mixing tiorc. The term linear
just means that each output bit of the mixing function is tli@RXof several of the
input bits. This completes a single round. As mentioned engdtevious section, a
full encryption consists of 10-14 rounds, depending on the sf the key. Like in
DES and IDEA, there is a key schedule that generates the ey

Let us now have a detailed look at the algorithm (see the mseade given in
Listing 4.5-1). The encryption consists of the followingss:

e Aninitial round key addition that is the XOR addition of thestiround key and
the input state written as in Eq. 4.5-1.

e N, — 1 rounds: The resulting state array is transformed by impigme
a round function 10, 12, or 14 times (depending on the keythndgrhe
round transformation is obtained by subsequently applthegransformations
SubByt es(), Shi ft Rows(),M xCol ums(), andAddRoundKey() .

e A final round which is different to the "normal” round by renioy the
M xCol ums () transformation.

The final state is then copied to the output as described iMMEBg2. The round
function is parameterized using the AES key schedule.

110 4 Block Ciphers

Listing 4.5-1: Ciphering with the use of AES.
Ci pher (byte in[16], byte out[16], word W 4-(N,.+1)])

begin
byte state[4, 4]
state = in

AddRoundKey(state, W0, 3])
for round = 1 step 1 to N.--1
SubByt es(st at e)
Shi f t Rows(st at e)
M xCol ums(st at e)
AddRoundKey(state, w round. 4, (round+1). 3])
end for
SubByt es(st at e)
Shi ft Rows(st at e)
AddRoundKey(state, W N, -4,(N,. + 1)-3])
out = state
end

For the AES algorithm, the length of the cipher Kegan be 128, 192, or 256 bits.
The key length is represented By, = 4, 6, or 8, which reflects the number of
32-bit words (number of columns) in the cipher key. The numddeounds to be
performed during the execution of the AES algorithm depenmdthe key size. The
number of rounds is represented by, where N, = 10 when N, = 4, N, = 12
when N, = 6, and N, = 14 when N, = 8. Table 4.5-1 summarizes the only
key-block-round combinations conform to the standard.

Tab. 4.5-1. Key-block-round combinations.

Key length Block size Number of

(Vg words) (N, words) rounds
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Why is the number of round¥’,. equal to 10 for a block length of 128 bits and a key
length of 128 bits {V,, = 4)? Note first that no attacks, other than the exhaustive key
search, have been found against the Rijndael algorithm mvdhe than 6 rounds
[Daemen99]. The answer of the former question is based onsaearity issues
regarding the Rijndael algorithm.

e Two rounds of Rijndael providéull diffusion as introduced by Daemen and
Rijmen, since every state bit depends on all state bits twods agd. As men-
tioned above more than 6 rounds of the Rijndael algorithmsaire against
all known attacks for a block length of 128 bits and a key laraft128 bits. To
the 6 rounds Daemen and Rijmen added 4 rounds as a securgjynmamore
precisely as adding a full diffusion at the beginning andhaténd of the cipher.

9 Recall that a diffusion refers to rearranging or spreadiaigthe bits in the message so that
any redundancy in the plaintext is spread out over the cipkier

4.5 Advanced Encryption Standard (AES) 111

e Many cryptographic attacks against block cipher such dsréiftial cryptana-
lysis or linear cryptanalysis exploit the propagation gfuhmessages through
rounds in order to attack—+ 1 or n + 2 rounds of the cipher. Thus, 4-round pro-
pagation structure can be used to attack 6 rounds of Rijnuet 10 rounds,
the number of rounds through which a propagation (of thetinpessages) has
to be found will double.

For other key lengths, the number of rounds augments by anevéry 32 bits of
the cipher key. That is for 192-bits and 256-bits key lengtiesnumber of rounds
is 12 and 14 respectively (see Table 4.5-1). On the other,lmady attacks can be
mounted against block ciphers by exploiting the knowledggaher key bits or the
ability to use different cipher keys. Hence an increase efkisy length leads to an
increase of the range of possibilities available to the yalyst. This facility can
be compensated by increasing the number of rounds of therciph

The Key Expansion Algorithm

Using the cipher key, the key expansion routine generates a key schedule with
a total of4 - (N, + 1) words. In this context, the word is a group of 32 bits. The
resulting key schedule is a linear array of words dengigfor w(i|, with i in the
range ofd <i <4 - (N, +1).

The key expansion routine is shown in the Listing 4.5-2.

Listing 4.5-2: The pseudo code for key expansion.

KeyExpansi on(byte key[4- N.], word wW 4-(N.+1)], Ng)
begi n
word tenp
i =0
while (i < Ng)
wWi] = word(key[4:i], key[4:i+1], key[4:i+2], key[4:i +3])

i = i+1

end while

i :Nk

while (i < 4.(N.+1))
temp = Wi-1]

if (i mod N, = 0)

tenp = SubWord(Rot Wrd(tenp)) XOR Rcon[i/ Ng]
else if (N, > 6 and i nmod N;=4)

tenp = SubWord(tenp)

end if

Wil = wWi-N] XOR tenp
i =i +1

end while

end

Here, theSubWbr d() function is a function that takes a four-byte input. It uses
the S-box (see Tab. 4.5-2) to substitute each of the foursbyle function
Rot Wor d(') performs a cyclic permutation over the input wdrd, a;, az, as]
and returns the output word,, as, as, ag]. The functionRcon[i] outputs the

112

4 Block Ciphers

four-byte word[z"~!, 00, 00, 00], with 2*~! being powers of: in the field GF2?)
with the irreducible polynomiat® + 2* + 23 + 2 + 1.

The round keys are taken from the words generated by the kegneion routine
as follows: the first round key consists of the first four worthe second of the
following four words, and so on. From the pseudo code givelnisting 4.5-2, it
can be seen that the firdf, words of the expanded key contain the cipher key
Every following word,w(i], is equal to the XOR of the previous word}; — 1], and
the word Ny, positions earlierw[i — Ni|. For words in positions that are a multiple
of Vi, atransformation is applied to[i — 1] prior to the XOR, followed by an XOR
with a round constanfRcon[i] . This transformation consists of a cyclic shift of
the bytes in a wordubWor d() , followed by the application of a table lookup to
all four bytes of the wordsubWor d() [Daemen99].

The key expansion routine for cipher key with 256 bits length = 8) is slightly
different from those for 128-bit key\}, = 4) or 192-bit key (V, = 6). If N, = 8
and: — 4 is a multiple of Ny, thenSubWor d() is applied tow[i — 1] prior to the
XOR [Fips01].

Example 4.5-2:

The functionRcon[10] with i = 10 outputs the wordz®, 00, 00, 00]. 2% in
GF(2%) is set to the value® modx® + 2* + 23 + x + 1, that gives the polynomial
2% + 2* + 2% + 2. The later can be written &6. Thus,Rcon[10] = [36,
00, 00, 00].

Example 4.5-3: [Fips01]

Let the cipher key be set t600102030405060708090a0b0c0d0eOf .
Regarding the pseudo code of the key expansion routine, we h@| =
00010203, w[1] = 04050607,w[2] = 08090a0b,w[3] = 0c0d0eOf,w[4] =
d6aa74fd. The first round key contains the cipher key.

The AES key expansion has been chosen for many reasons [D88mkE ensures
the diffusion of the cipher key into the round keys. It pragcenough non-linearity
by using the S-box substitution and prohibits therewithdbermination of round
key differences from cipher key differences only. One int@ot feature of the key
expansion is that a knowledge of any, consecutive words of the expanded key
shall allow to regenerate the whole round keys. This is usefapplications which
require key regeneration mechanisms. Other design eriéthe key expansion can
be found in [Daemen99].

4.5 Advanced Encryption Standard (AES)

113

Round Transformation

The round transformation in AES consists of four differeransformations:
SubByt es(), Shi ft Rows(),M xCol utms() , andAddRoundKey() . Each
of them takes an input state of 128 bits and outputs a stat@®bits. We now
describe these transformations.

SubByt es(st at e) Transformation

TheSubByt es() is a non-linear byte function and replaces each byte of thetin
state by another byte with the use of a substitution tabled¢&-Box. It operates
independently on each byte of the state and is formally campof two byte-

operations:

1. Take the multiplicative inverse in the finite field @F) with the irreduci-
ble polynomialz® + 2* + 23 + x + 1.1° The elemenDO0 is mapped onto
itself. The mappinge — x~! in GF(28) is chosen as an operation of the
SubByt es() transformation, because it enables to protect the AES ciphe
against differential and linear cryptanalysis and to go@ the invertibility
of the cipher.

2. Apply the following affine transformation over GH:

b;- = b; @ D(i+4) mod 8 D b(i+5) mod 8 D O(i4+6) mod 8 D D(i+7) mod 8 D Ci

for0 < i < 8, whereb; is the ith bit of the byté, andc; is the ith bit of a byte:
with the value53. @ denotes the exclusive-or operation. This invertible affine
transformation is applied after the mapping— z~! over GH28) in order

to avoid attacks such as the interpolation attack [Jakddeimat exploits
mapping with very simple algebraic expression

Based on these two operations, the S-box used iStHByt es(st at e) trans-
formation can be given as shown in Tab. 4.5-2.

10 See Section 2.4 in Chapter 2 to understand the arithnme®é(2°).
11 Like the mapping — =~ in GF(28).

4 Block Ciphers

114

9T [99 | ¥9 | 0Q JO | PC | 66 | TV | 89 | ¢V | 9° 19 | PO | 68 | Te | 98 }
JOo | 8 | 99 |90 | 69 | /8 | 9T |6 | V6 | ©8 | 6P | 69 | TT | 86 | 8} | I® 9
96 | PT | TO |98 | 60 | LG | S€ | T9 | ®0 | 9} | €0 |8 | 99 | GQ | ®E | OL p
eg8 | 48 | Pq | a¥ JT | ¥L. | PP | 89 | 92 | ¥ | 98 | OT | ©C | G¢ | 8L | ©Q 9
80 |98 | B, [G9 | €O (¥} | 9G | 09 | 68 | ®F | GP | P8 | P9 | LE | 80 | L® q
6L | ¥© | G6 | T6 | ¢9 [de | €P | ¢O0 | 9G | #C | 90 | 67 | O | BE | CE€ | O°® e
aqp (g0 | ®S | 9P | ¥T [89 | ®® | 9 | 88 | 06 | ©C | ¢C | 9P v | 18 | 09 6
€L | 6T | PGS | V9 | PE | ®L | Le | ¥O | LT | ¥V | L6 1§ | 99 | €T | 90 | PO 8
cp | €4 JJ | OT | TC | eP |99 | 90 | G} | 8E | P6 | ¢6 j8 | OV | € | 19 L
ge 16 | 9€ | 0S JL | ¢0 | 6} | GV |98 | €E | PV | EV | 4} | ee jo | Op 9
JO |1 89 | OV ey | 6E | ©0 [Q0 | €9 [QG | T [O} | OC | P® | OO0 | TP | €S S
8 J¢ | €9 | 6C | €0 | 9P | 9E | ¢S | O | G | ©@9 | QT | el ¢ | €8 | 60 14
G,L |29 | Lc |99 | ¢® |08 | ¢T | LO|®e6 | SO | 96 | 8T | €2 | €2 | LD | ¥0O €
GT | T€ | 8P | TL | T} | G® | G | #¥E€E | 00 | L} 1€ | 9€ | 9C¢ | €6 | P} | LQ 4
00 | ¢L | ve | 96 je | ¢e | vp | pe [0} | LV | 6S | e} | PL | 6O | ¢8 | €D T
9. (Q9e | /p |9} | qc | L9 | TO | OE | SO J9 |1 49 | ¢ | AL | LL | 9L | €9 0
} Cl p el q e 6 8 L 9 S 14 € 4 T 0
“(rew

-10] [ewoapexay ul) Ax a1Ag ay) Jo} sanfea uonnnsqgns :Xog-S 2-§'v "qel

4.5 Advanced Encryption Standard (AES)

For example, ifs; ; =53, then the substitution value is determined by the intersec-

tion of the row with index ‘5’ and the column with index ‘3’ ilmé S-box table. This

results ins'L1 having a value oéd.

Shi f t Rows() Transformation

In the Shi f t Rows() , the rows of the input state are cyclically shifted overeliff

rent number of bytes. The first row= 0, is not shifted. The other rows are shifted

according to Fig. 4.5-2.

shiftRows()

Input state s / \ Output state s’

SO, 0 SO, 1 SO, 2 SO, 3 SO, 0

S50 81 S, S, 3 S5.5

S30| Ssi S35 | S5, ;3

So.1 So,2 So,3
Si.2 Si3 | Sio
553 Sr0 | S
S3.0 S5, S3.2

Fig. 45-22 TheShi ft Rows() transformation [Fips01].

Formally, theShi f t Rows () transformation proceeds as follows:

!

Sp.c = Sr(ctshift(r,d)) mod 4 for 0 <r<i4 and0 <c< 47

r,c

4.5-3

where the shift valueshift(r,4) depends on the row number as follows:

shift(1,4) = 1; shift(2,4) = 2; shift(3,4) = 3.

Example 4.5-4:

After the use of thé&hi f t Rows () transformation, the statewill be changed
to the states’ both with values illustrated in the following table:

s 63cab7040953d051cd60e0e7ba70el18c

s 6353e08c0960e104cd70b751bacad0Oe?

For examples , = soo = 63, 593 = 03 = ba,

i

81,3 =51,(3+shift(1,4)) mod 4
=381,(3+1) mod 4
=510

=cCa.

116

4 Block Ciphers

The Shi f t Rows() transformation is a substitution operation of each bytenef t
rows (- = 1, 2, or 3) by another byte of the same row. It enables the eesistof
the AES cipher against the square attack [Daemen97] anckattessing truncated
differentials. The latter attack is a variant of the difigial attack [Knudsen95].

M xCol utms() Transformation

Whereas th&hi f t Rows() transformation affects the rows of the input state, the
M xCol utms () transformation operates on the state column-by-columohEa
column of the state is considered as a polynomial oveR@G&nd multiplied modulo

z* + 1 with a fixed polynomiak(z), given by

c(x) = 032% + 012% + 01z + 02. 4.5-4

Treating each column of the input state as a four-term polynomial, the
M xCol ums() transformation outputs the stateverifying the following equa-
tions:

8/0,0 = (02 So,c) @ (03 e 81,0) D S9.. D 83,
SILC = 80, D (02 51,0) © (03 e 5270) D s3.c 4.5-5
5/2,0 = 50D 51D (02055.) D (03 @55,)
325,0 = (03 @50.) D 51D 5o, D(02053,),

wheree denotes the multiplication in the finite field GF) with the irreducible
polynomialz® + z* + 23 + 2 + 1 and0 < ¢ < (N, = 4).

The same equations can be written in a matrix notation asvist|

So.c 02 03 01 01| [sq.
’ 01 02 03 01 .
Le| = el g << (N, =4).
S9.c 01 01 02 03| [s2.
Ss.c 03 01 01 02| |s3,
Example 4.5-5:

After the use of thé xCol utms() transformation, the statewill be changed
to the states’ both with values illustrated in Table 4.5-3.

Tab. 4.5-3: An example of using the
M xCol umms() transformation.

s 6353e08c0960e104cd70b751bacadOe?
s’ 5f 72641557f 5bc92f 7be3b291db9f 91a

4.5 Advanced Encryption Standard (AES) 117

Example 4.5-6:
We now look at how the valuge;,2 is obtained. From Eq.4.5-5, we have

5/172 = 502D (02@512) B (03 0555) D S39.
=cd® (02e70) @ (03 eb7) G 51.

Recall thate is the multiplication in GIF2%) with the irreducible polynomial
28 + ' + 2% + x + 1. We calculate the value3 e b7 in GF(28). We write 03
andb7 in binary representation, and we get the values 00000011@hti0111
respectively. These two values can be written as polyn@miall for 00000011
andz” + 2° + 2* + 2% + o + 1 for 10110111. Hence,

03eb7=((z+1) (2" +2° +2* + 22+ 2 +1))
mod 2® +z* + 23+ 2+ 1
=24+ +2%+ 2+ 22 +1 mod2B+2t+ 22+ +1

=2+ 2%+ 2.
Using the same procedure, we get
02070 =z + 2% + 2°.
With the use of the binary representation, we have

5/172 = 11001101 & 11100000 & 11000010 ¢ 01010001
= 10111110
= be.

TheM xCol umms() transformation has the property that if the input state 5 ap
lied with a single non-zero byte, the output state can haweost 4 non-zero bytes.

This occurs becaudd xCol uimms() permutes the bytes of a column to all diffe-
rent columns. Hence thled xCol umms() transformation provides a diffusion of
the input bytes. In additioiM xCol urms() transformation is invertible, because
the polynomiak(z) given in Eq. 4.5-4 is chosen in such a way that

ged(c(z), 2" +1) =1,

enabling therewith the existence of the invéts# ¢(z) moduloz® + 1.

AddRoundKey() Transformation

The AddRoundKey() transformation is a simple bitwise XOR operation of a
round key and the stateto output the new stat&. As previously mentioned the

12 The reader is referred to [Menezes96] to understand thtgfiuative inverse of polynomials
in Galois fields.

118

4 Block Ciphers

round key consists of 4 words and is generated from the kegrestpn algorithm.
The states’ is obtained according to the following equation:

/ / / /

[So,ca S1,c0 S2,e 53,0] = [30,07 S1,ey S2,¢9 53,0] S [w(round-4)+c]7

where0 < ¢ < 4,0 < round < N, and[w;,] are the key schedule words.

45.4 AES Decryption

The structure of the AES deciphering algorithm is the santb@siphering except
for the use of the inverse transformations and changing trder (pseudo code
in Listing 4.5-3). The key schedule remains the same as byedipg. It is clear
that without the knowledge of the cipher kéythe AddRoundKey() cannot be
applied and hence the decryption of messages would not IségopmdNote that here
the inverse lookup table of the S-box is needed.

Listing 4.5-3: Deciphering with AES.

I nvCi pher (byte in[16], byte out[16], word wW 4-(N,+1)])
begin
byte state[4, 4]
state = in
AddRoundKey(state, w4, (N.+1)-3])
for round = N.-1 step -1 downto 1
I nvShi ft Rows(st at e)
| nvSubByt es(st at e)
AddRoundKey(state, w round. N,, (round+1). N,-1])
I nvM xCol ums(st at e)
end for
I nvShi ft Rows(st at e)
I nvSubByt es(st at e)
AddRoundKey(state, W0, 3])
out = state
end

We now describe the inverse transformationsnvShi ft Rows(),

I nvSubByt es(), I nvM xCol ums(st at e), and AddRoundKey() . The
AddRoundKey() is its own inverse. We still use the symbaolfor the input state
to the corresponding transformation, afidor the output state.

I nvShi f t Rows() Transformation

The I nvShi ft Rows() transformation is the inverse of thshi ft Rows()
transformation. The first row of the input state=- 0, is not shifted. The other rows
are shifted by(4 — shift(r,4)) (see Fig. 4.5-3). Formally, tHenv Shi f t Rows ()
transformation proceeds as follows:

i

S(T,c+shift(7‘,4)) mod 4 — Srec for 0 S r < 4 and0 S c<4.

4.5 Advanced Encryption Standard (AES) 119

InvShiftRows()

Input state s / \ Output state s’
s

So.0 | So. So.2 | Sg.3 So.0 So.1 0.2 | So.3

Si0 Si1 Si.2 | Si3 Si3 Sio Si Si»
»EEEEII]

Sz, 0 S2, 1 Sz, 2 Sz, 3 Sz, 2 Sz. 3 Sz. 0 Sz, 1

S50 | Siu S50 | 853 Ssi| Sia | Sis | Sy

Fig. 45-3: Thel nvShi ft Rows() transformation [Fips01].

| nvSubByt es() Transformation

| nvSubByt es() is the inverse of the byte substitution transformation
SubByt es() . Each byte of the input state is substituted according torerse
S-box table presented in Tab. 4.5-4.

4 Block Ciphers

120

pL 30 1¢ SS9 €9 14’ 69 19 9¢ 9p LL eq 9/, 70 qc LT J
19 66 €S €8 o€ qaq ge 89 0q g ec oe pv qe 09 oe Cl
Jo 36 69 €6 16 e/ Go pc po ey Sq 6T 6e YA 18 09 p
1S J9 08 LZ 65 0T 4% 19 1€ yAY L0 88 €€ ge pp T o]
vl eg po 8L 9} 09 ap €6 0¢ 6L cp 99 avy o€ 9g oy q
at o(q 8T ee 90 29 JA*| 19 68 Go 6¢ PT 1L eT T} VA4 e
99 P S. o7 89 LE 61} 4] g8 g€ pe JAS] 44 17 Je 96 6
€L 99 q 0} 99 I [L6 es op .9 v N4 1T 16 eg 8
a9 eg €T 10 €0 pq je 19 c0 J0 1€ ed 18 oT ok op L
90 514 €q 8q S0 89 o L} eQ ep 9q 98 00 qe 8p 06 9
8 p6 P8 Le LS 214 ST 9g ep 6d pa pl 0S 8v 0L 29 g
c6 9q S9 pS ool 9g e 14Y 9T 86 89 98 79 9]} 81 cL 14
14 P [O}] P9 6V ce qs 9. cq Ve 6p 8¢ 99 Te 9¢ 80 €
of €9 e) [474 ao G6 ol CE] pe €¢c 9 9e ce 76 qL 14°] 4
qo 69 ap 18 144 eV 98 143 .8 34 Y4 a6 Z8 6€ €9 L T
ql Lp €l 18 96 ce ov 19 8€ ge 9¢€ o€ gp €9 60 [4°] 0
) 9 p 9 q e 6 8 L 9 S 14 € 4 T 0
“(rew

-10] [ewdapexay ul) Ax a1Aq 8yl 1o} SanjeA UuonNIISgNS :X0g-S 9SIaAU| -G “qel

4.5 Advanced Encryption Standard (AES) 121

| nvM xCol umms() Transformation

Thel nvM xCol ums() transformation is the inverse of tid xCol uims()
transformation. It operates on the state column-by-colusach column of the state
is considered as a polynomial over BFand multiplied modula:* + 1 with a fixed
polynomialc~!(x), given by

¢ H(x) = Oba® + 0dz” 4 09z + Oe. 4.5-6
Treating each column of the input state as a four-term polynomial, the

M xCol ums () transformation outputs the stateverifying the following equa-
tions:

!

S0, = (Oe ®sp.) B (Obesy,.) D (0desy.)d (09ess.)
5/176 = (09e5p.) @ (Oces;.)d (Obesy.) @ (0dess,)
5,276 = (0d e sp.) @B (09@s1,.) D (Oc@sy.) D (Obess,)
s;)’c = (Obesp.) @ (0des;.)® (09esy.) D (Oeess,)

with 0 < ¢ < 4.

The same equations can be written in a matrix notation agvist|

S0.c Oe Ob 0d 09| [soe
| 09 0e Ob 0d .
Le| = © Slel)< o< (N =4).
S9.c 0d 09 Oe Ob| [s2.
S3.c Ob 0d 09 Oel| |[s3.

45.5 Security and Implementation Issues

In AES, we can recognize some of the same functional blocks@ES. The XORs
add key material to the data, the S-boxes provide nonlityeard the byte shuffle
and mixing functions provide diffusion. AES is a very cleagsigin with clearly
separated tasks for each part of the cipher. It was designeael tesistant against all
known attacks, especially the differential attacks [BiB&inand its variants (hig-
her order differential [Knudsen95], truncated differahfKnudsen95]), the linear
attack [Matsui94] and the square attack [Daemen97]. Itss pfoven that the AES
has no security weakness to attacks related to the ciphefr&ated-key attacks
[Biham93a], weak key attack [Daemen94]). Furthermore, ABS a mathematical
basis (it is mainly based on operations over the Galois FB#¥R)), and thus its
security can be analyzed using mathematical analysis.

From the efficiency point of view, the AES cipher is very fast efficiently imple-
mented — on 8-bit processors (typical for smart cards) an@2bit-processors
(typical for PCs) [Daemen99]. It is also fast on dedicateddivare. However,
some limitations concern the implementation of the AES plegiing algorithm.
For example, the deciphering algorithm is less suited fgplémentation on smart
cards then the ciphering. The AES cipher can be used in mgpyographic appli-
cations. It can be used as a building block for MAC algorittand hash functions,
as a synchronous stream cipher, or as a pseudorandom nuemazatpr.

122

5 Public-Key Encryption

revolution in the
development of

cryptology

Diffie/Hellman’s idea

public and private key

5 Public-Key Encryption

After conventional encryption, the other major form of emption is public-key
encryption, which has revolutionized communications s&cu he development of
public-key cryptography is the greatest and perhaps thetam revolution in the
entire history of cryptography. From its earliest begigsimight down to modern
times, all cryptosystems have been based on the elemenwials/df substitution
and permutation. Public-key cryptography provides a ddleparture from all that
has been done before - public-key algorithms are based dmematical functions
rather than on substitutions and permutations. But moreortaptly, public-key
cryptography isasymmetricinvolving the use of two separate keys, in contrast to
the conventional symmetric encryption, which uses only kee The use of two
keys has profound consequences not only in the area of catifitigy, but also in
the techniques for key distribution and authentication.

This chapter introduces public-key encryption and coneges on its use to provide
confidentiality. Some important algorithms (RSA, EIGantaCC) are examined
in detail. Many public-key schemes are based on number yhead finite field
arithmetic, which have been introduced in Chapter 2.

5.1 Principles of Public-Key Cryptography

Interestingly, the concept for this technique was develoged published before
it was shown to be practical to adopt it. The concept of pukdig cryptography
evolved from an attempt to attack two of the most difficult igemms associated
with conventional encryption: the problems of key disttibn and digital signa-
tures. Diffie and Hellman achieved a breakthrough in 1976 dwying up with a
method that addressed both problems and that was radic#éyedit from all pre-
vious approaches. Their paper "New Directions in Cryptpbyé ([Diffie76]) is a
milestone in modern cryptology.

In a public-key cryptosystem enciphering and decipheriegg@verned by distinct
keys k. and k,, so that computing:; from k. is computationally infeasible (e.g.
requiring100'% instructions). The enciphering kéy can thus be publicly disclo-
sed without compromising the deciphering Key Each user of the network can,
therefore, place his enciphering key in a public directdiyat is why this key is
also calledoublic key A messagen enciphered with the user’s public key, can only
be decrypted with higrivate keyk,;, which is kept secret (we will not refer to this
key as "secret key” in order to clearly differentiate it frahre symmetric encryp-
tion key). This enables any user of the system to send a messamy other user
enciphered in such a way that only the intended receiverles tabdecipher itA
private conversation can therefore be held between any mdividuals regardless
of whether they have ever communicated before, which isheatdase when using

5.1 Principles of Public-Key Cryptography 123

a symmetric enciphering technigugach one sends messages to the other enciphe-
red in the receiver’s public enciphering key and decipheestessages he receives
using his own secret deciphering key.

Formally, apublic-key cryptosysters a pair of families{ £ } . cx and{ Dy, }r,cx definition of public-key
of algorithms representing invertible transformatidns : {M} — {M} andDy, : cryptosystem
{M} — {M} on afinite message spaf#/}, so that:

1. For everyk. k; € {K}, the encryptionEj, is the inverse operation
of the decryptionD,,. That means that for every message ¢ {M},
Dy {Er.(m)} = m.

2. For everyk,, k; € {K} andm € {M} the algorithmsE),,, and D, are easy
to compute.

3. Foralmostevery, € {K}, itis computationally infeasible to derivg from
k.

4. For everyk., ks € {K}, itis feasible to compute inverse paifs., k;) from
K.

Because of the third property, a user’s enciphering keyxan be made public
without compromising the security of his secret deciphgkayk,. The cryptogra-

phic system is therefore split into two parts, a family ofiphering transformations
and a family of deciphering transformations, in such a way,thiven a member of
one family, it is infeasible to find the corresponding memtifethe other.

The fourth property guarantees that there is a feasible Wwegroputing correspon-
ding pairs of inverse transformations when no constraipiased on what either
the enciphering or deciphering information is to be. In fica; the crypto equip-
ment must contain a true random number generator for gengtae key spacé’,
together with an algorithm for generating ttie, k,) pairs from its output.

Given a system of this kind, the problem of key distributienvastly simplified. generation and
Each userl generates locally a pair of inverse transformatibnsand#, ; on his distribution of keys
terminal. The deciphering ke, ; must be kept secret, but need never be transmitted

on any channel. The enciphering k&y; can be made public by placing it in a

public directory along with the user’s name and address.oAaycan then encrypt

the messages and send them to the user, but no one else cphedenessages

intended for him. Public-key cryptosystems can thus berteghas multiple access

ciphers.

124

5 Public-Key Encryption

encryption and
decryption

protection of the public
directory

use of PKCs

Step 1:
Each user generates locally a key pair: Public directory:
Alice: (&, . k,; ;) ' Alice: ke,A
? ? Publish the -k
Bob: (ke,B’ kd,B) encryption key Bob: e,B
Carol: (k, ., k,) /Carol: ke,C
Dean: (k, ,, k,) Dean: k, ,,
k, /
Step 2:

Alice % Bob ﬁ

plaintext encryption: ciphertext C decryption: plaintext
= _ i hannel — 5>
m c= Eke’B (m) insecure channel m= Dk,;{g (C) m
message source message destination

Fig.5.1-1: Public-key encryption.

This process is illustrated in Fig. 5.1-1. When Alice wardssénd an encrypted
message to Bob (they have never exchanged a message befaadtyathey do
not know each other), she takes his public key; from the public directory and
gets the ciphertext by enciphering the plaintext. with this key. The enciphered
message is sent on the insecure channel, where an attacker can gat itp one
else but Bob can decrypt since only he knows the corresponding deciphering key

ka B

It is crucial that the public file of enciphering keys be pabésl from unauthorized
modification. This task is made easier by the public naturtheffile. Read pro-
tection is unnecessary, but if an attackéican replace Bob’s public key. 5 with

his public keyk. x secretly (no one notices this), then he can read all enalypte
messages sent to Bob (actually, Alice now encrypts the rgedsa Bob withk, x
instead of withk, 5, andX has the deciphering ke, x).

In the example above, we have an application of a public-kgytosystem in which
the sender Alice uses the receiver’s public key. But dependn the application,
Alice can use either her private key or receiver’s public, kayboth, to perform
some type of cryptographic function. Thus, the public-keyptosystems (PKCs)
can be classified in three categories:

e Encryption/decryption: The sender encrypts a message thihrecipient’s
public key.

¢ Digital signatures: The sender signs a message with itaterkey, i.e. the sender
applies some crpyptographic algorithm on the message ar twéssure that the
message can not be altered by an attacker (see chapter 6).

5.2 RSA Encryption Scheme 125

e Key exchange: Two sides co-operate to exchange a sessidbdiayral different
approaches are possible, involving the private key(s) efamrboth parties.

Some algorithms are suitable for all three applicationg. @SA, ElIGamal), whe-
reas others can be used for only one or two of these applsafgg. Diffie-Hellman
algorithm only for key exchange, or DSS only for signatures)

5.2 RSA Encryption Scheme

After Diffie and Hellman introduced the concept of publigtkeyptography in their

pioneering work in 1976 [Diffie76], the cryptographers wehallenged to come up

with a cryptographic algorithm that met the requirementspiagblic-key systems.

One of the first public-key algorithms was developed in 19y Rbn Rivest, Adi

Shamir and Len Adleman at MIT in Boston and first published9ii& [Rivest78]. work of Rivest, Shamir
The Rivest-Shamir-Adleman (RSA) scheme is the first antnstibt important and and Adleman

widely accepted and implemented encryption/decryptigorthm that has been

shown to be feasible for public-key encryption.

The RSA scheme is a block cipher in which the plaintext anterifext are integers

between0 andn — 1 for somen. It is based on an amazingly simple number-

theoretical idea and yet it has been able to resist all cnghyéic attacks. The idea

is the clever use of the fact that, while it is easy to multiplyp large primes, it factorization problem
is extremely difficult to factorize their product. Thus, t®duct can be published

and used as encryption key. The primes themselves can netbeered from the

product. On the other hand, the primes are needed for démny[80, the security

of the RSA scheme is based on the problem of factorizatioargklnumbers.

5.2.1 Description of the Algorithm

Let p andq be two distinct large random primes (typically, having abb@0 digits
in their decimal representation). The product of this |gngmes is denoted as i.e.
n = pq. Because of primality op andg, the Euler function o, can be computed
as product of the Euler functions pfandgq:

o(n) = o(p)elq) = (p—1)(¢—1). 5.2-1

The parameter is called modulusof the system. When a user Alice wants to

generate her key paik. 4, k4. 4), she chooses a large random numbere < p(n) RSA key generation
which is relativ prime tap(n), i.e. ged(e, ¢(n)) = 1, and computes the number

as multiplicative inverse of moduloy(n), i.e.d satisfies the congruence

ed =1 mod ¢(n). 5.2-2

The public key of Alicek, 4 is the pair(e, n) and thuse is referred to agncryption
exponentHer private key iss; 4 = d andd is reffered to aslecryption exponent

126

5 Public-Key Encryption

RSA encryption

RSA decryption

proof that the
decryption works

If Bob wants to send an encrypted message to Alice, he usgmibéc keyk, 4 =
(e,n). To encrypt, he raises the plaintextto the power and reduces module:

¢ =m° mod n. 5.2-3

Alice decrypts the text with her private kéy 4 = d: she raises the ciphertexto
the powerd and reduces module:

e = ¢ mod n, 5.2-4

i.e. the encryption and decryption are performed as modefgonentiations
modulon. This is summarized in Fig. 5.2-1.

A B

Key Generation:

- Selects large primes p, g
- Calculates n = pq
- Calculates p(n) = (p—1)(¢ — 1)
- Selects integer e such that
ged(p(n),e) =1 and 1 < e < p(n)
- Calculates d = e~! mod ¢(n)
publishes k. 4 A’s public key

- Public key: ke a = (e,n) (e,n)

- Private key: kg =d

B sends a message to A

Encryption:

- Plaintext m, m <n

- Computes ciphertext c:
Decryption: ¢ =m® mod n
sends ¢ - Sends ciphertext ¢

- Receives ciphertext ¢

- Computes plaintext m:

m = c¢® modn

Fig.5.2-1: Key generation, encryption and decryption with RSA.

We now show that decryption works as intended.

Sinceed = 1 mod ¢(n), there is an integek such thaied = 1 + k - ¢(n). In the
proof we also make use of Euler’'s theorem (see Theorem 2.6-2)c Z;, then
a¥™ = 1 mod n. For the decryption we have:

¢ mod n

(m®)? mod n = m® mod n 5.2-5
m) mod n

(m?™)E . m mod n

(1)* - m mod n = m mod n

m (becausen < n).

We now illustrate how the RSA algorithm works using a simptareple (see
Fig. 5.2-2).

5.2 RSA Encryption Scheme 127

Example 5.2-1:

We take all parameters artificially small (and thus insecureorder to show
the operations comprehensibly. To generate a key paireAiist chooses two
primes, sayp = 13 andq = 29, which she keeps secret, and computes their
productn = pg = 377, which she puts in the public directory. Further, she
computesp(377) = (13 — 1)(29 — 1) = 336 and selects an integerso that

1 < e < p(377) = 336 andged(p(n),e) = ged(336,e) = 1. Lete = 59,
and the paire,n) = (59, 377) is her public key. Since the public and the pri-
vate keys are related according to the equatior= 1 mod ¢(n), she uses the
Extended Euclidian algorithm to compute her private &ésom the public key
e:d=e'mod ¢(n) = 597! mod 336 = 131. Notice that nobody but Alice
can compute her private keyfrom the public key, because nobody knows the
primesp andq which are needed to computén) = (p—1)(¢ — 1) and apply it

to computel from the equatiore = 1 mod ¢(n) with the Extended Euclidian
algorithm (see Section 2.3.5). Althoughis known, it can not be factorized to
determinep andq (for large integers: the factorization problem is very hard,
see Section 2.6.2).

Private (secret) keys: Public directory:
Alice: [k, =131 o Alice: k, ,=(59,377)
Bob: |k, ,=593 sncryption key. Bob: k,,=(17,1189
Carol: k,.=103 —— Carol: k, .=(7,493)

Dean: k, =215 Dean: k, ,=(35,703)

k, ,=(e,n) 7é9,37ﬂ
Alice & / @’iB ob

. decryption: ciphertext ¢=48 encryption: :
plaintext 3 plaintext
m=211 €= 48" mod377 insecure channel c=211"mod 377 < m=211

m=211 c=48
message destination message source

Fig. 5.2-2: Example with the RSA algorithm.

Now Bob wants to send the messabketo Alice, which is encoded as =
211. To encryptm he uses Alice’s public key. 4 = (e,n) = (59,377) and
computesc = m® mod n = 211% mod 377 = 48. When Alice receives the
ciphertextc = 48, she uses her private key 4 to recover the message as
m = ¢ mod n = 48" mod 377 = 211. To exercise, you can try this algorithm
with much smaller numbers. For example, use the key/air= (13, 33) and
ka4 = 17 to encrypt and decrypt the message= 2. Please use the Crypto-
Calculator on the book web page to try the algorithm with otfaad larger)
numbers.

128

5 Public-Key Encryption

RSA as block cipher

cryptosystem design

factorization problem

We assume that the plainteki is encoded as a decimal number Sincem should

be always smaller than, in the case whem > n, the numbern is divided into
blocks of suitable size. A suitable size of the blocks is thigue integei satisfying

the inequalities 0°~* < n < 10°. Then, the blocks are encrypted (and later decryp-
ted) separately, allowing RSA to work as a block cipher in EEBBC mode. In the
example above. = 377 implies that the block size equals If we use, for exam-
ple, p = 3336670033,¢ = 9876543211,n = 32954765761773295963, p(n) =
32954765748560082720, e = 1031, d = 31963885304131991, the plaintext blocks
will consist of 20 digits.

There are many aspects of the RSA cryptosystem to discugsding the details
of setting up the cryptosystem, the efficiency of enciplgeand deciphering and
the security issues. We now discuss some aspects of theosygbem design, that
is, how the different items required are generated. In gégnaihen we say that
a random number is chosen, or that we select something rdpdtiman we are
using a random number generatoiTo select two large random primgsndg, one
choses randomly an odd integeof appropriate size (say 100 digits) and tests it for
primality'*. If the answer is negative,+ 2 is repeatedly tested. Onpeandq have
been chosen, candidates flare tested by the Euclidian algorithm. Wheésatisfies
(d,p(n)) = 1, the chain of equations obtained from the Euclidian algamigives
e immediately.

The operation needed for both encryption and decryptianagular exponentia-
tion. Since the modulus is very large, multiprecision arithmetic must be used to
perform computations iA,, and the time required will depend on the number of bits
in the binary representation of The operation” mod n can be done much faster
than by repeatedly multiplying by itself. Examples are the square-and-multiply
algorithm, the windowing algorithm, the Lim/Lee algorittand others, which per-
form the exponentiation in polynomial time. Although allevptions of RSA can be
carried out in polynomial time, these operations are giilighly 1000 times faster
in DES than in RSA.

5.2.2 Security of RSA

The problem of computing the RSA decryption exponéritom the public key
(e,n) and the problem of factoring are computationally equivalent. So, one
obvious attack on the cryptosystem is for cryptanalyst tenapt to factorizen.

If this can be done, it is simple to computén) = (p — 1)(¢ — 1) and then com-
pute the decryption exponedtfrom e. Hence, it is necessary that= pg must
be large enough, so that the factoringrofvill be computationally infeasible. The
primesp andq should haveapproximately the same bit sizaut should not be close
to one another. Current factoring algorithms are able tofacumbers having up

13 We will not discuss any details concerning random numbgaetators here.

14 Primality tests are described in Section 2.6.1.

5.2 RSA Encryption Scheme 129

to 130 decimal digitS. Hence, it is recommended that one should chgoaad

q to have aboul00 decimal digits and their produet will have about200 digits.
Many RSA implementations usef 2-bit modulus, which corresponds to about
512/1og, 10 ~ 154 decimal digits, and hence they do not offer good long-term
security. For long-term security)24-bit or larger moduli should be used.

Here we stress that thererie formal proofthat

e factorization is intractable or is intractable in the spécase needed for RSA,
and

e factorization is needed for cryptanalysis of RSA.

The second item means that it is not proven, that there isyputamalytic method
avoiding factorization. In general, many other cryptatialgttacks have been pro-
posed against RSA cryptosystems, but none of them has touted be serious.
We now briefly discuss some typical ones and also mention afieer aspects one
should be aware of, in order to prevent certain rather ols/adtacks.

In order to improve the efficiency of encryption, it is debleto select a small low exponent attack
encryption exponent (e.g.e = 3). But small encryption exponent should not be
used if the same message is sent to many entities. To avdichsuattack, a pseudo-
randomly generated bitstring of appropriate length (edgoi should be appended
to the plaintext message. This process is sometimes rdferrassaltingthe mes-
sage. Also, if the message space is small or predictablettarkar can decrypt a
ciphertextc by simply encrypting all possible plaintext messages unsilobtained.
This attack can also be prevented by salting the messagel€ngption exponent
d should be roughly the same sizergsdhecause there is an efficient algorithm for
computingd from the public informatiorie, n) in the case wheré has up to appro-
ximately one-quarter as many bits as the modulus

RSA has multiplicative property, which is sometimes refdrto ashomomorphic multiplicative property
propertyof RSA. Letm; andm, be two plaintext messages, andandc, be their
RSA encryptions respectively. Then the following equatiofds:

(my1mgy)® = mim§ = cy1co mod n. 5.2-6

In other words, the ciphertext corresponding to the plainte = mm,modn
IS ¢ = ci1co mod n. This property leads to thadaptive chosen cipherteattack
on RSA. If one knows both ciphertexts andc,, one knows the encryption of
m = mims. This attack can be prevented by imposing some structuredtains
on plaintext messages in the way that the product of two f@&ia can not result
in plaintext. For example, we can make the constraint thatfitist byte of each
plaintext is the same as the last byte (we can achieve thifigiafty). If m; andm,
satisfy this condition, then it is very inprobable that ti@ioductm satisfies it also.

15 For more information on factoring, see [Menezes96].

16 For details see [Menezes96].

130 5 Public-Key Encryption

So, the receiver can reject any encrypted plaintext whi@sadmt have the specific
structure.

common modulus To avoid thecommon modulus attackach user in the system should choose his
attack own RSA modulus:. When the same modulusis used, each user could subse-
guently determine the decryption exponents of all othewagk users. Also, if a
single message were encrypted and sent to two or more netwerk, then there is
a technique by which an eavesdropper could recover the gesg@th high proba-
bility using only publicly available information.

Apart from the attacks on RSA mentioned above, which belenthé so called
timing attacks ~mathematical attacks, another class of attacks ardirtiag attacks which are

based on the analysis of the running time of the decryptigordhm. These attacks
are applicable not only to RSA, but also to other public-keyptosystems. They are
ciphertext-only attacks which are analogous to guessiagtmbination of a safe
by observing how long it takes for someone to turn the diahfrmimber to number.
Although timing attacks are a serious threath, there arplsicobuntermeasures that
can be used to avoid them (forcing constant exponentiaitios, tadding a random
delay, or blinding the ciphertext by a random number befe@dgoming exponen-
tiation).

brute force attacks ~ Brute force attackgtrying all possible private keys) can also be performed, the
defense against them is the same for RSA as for other crygtersg - namely, the
key space used must be large. But some compromise betwesedingty required
and the speed should be made, because too large keys meatovesystems (the
time for the calculations involved depends on the key size).

5.3 The Discrete Logarithm Problem 131

5.3 The Discrete Logarithm Problem

Many public-key cryptosystems based on discrete logasthave been proposed.
When used as a basis for cryptosystems, the computatiorsofetie logarithms
is assumed to be intractable. If we consider the equatfor: y for positive real
numbers, the difficulty of determining the logarithnfrom a andy to prescribed
accuracy is approximately the same as determipifigpm « andz. With regard
to discrete logarithmsthe situation is entirely different. Modular exponenbat
a® = y mod p can be carried out resonably fast, but the inverse operaa&ing
discrete logarithms, has much greater computational cexitpl

5.3.1 The Problem of Discrete Logarithm inZ;

The general notion of discrete logarithms can be formuladbllows. Letg be

an element of a finite grou@y and lety be another element @f. Then any integer

x with ¢* = y is called adiscrete logarithmof y to the base). Clearly, every discrete logarithm
elementy of G has a discrete logarithm to the bageif and only if G is cyclic

with the generatoy,. For instance, in the multiplicative group of positive igees

modulo 7 only the numbers 1, 2, and 4 have a discrete logatiththe base 2,

whereas all numbers have a discrete logarithm to the basm@ 8e results of

the exponentiation of the base 3 asé:= 3,3? = 2,33 = 6,3 = 4,3° = 5, and

3% = 1, the discrete logarithms of all members of the cyclic grotgm bg; 1 =

6,log; 2 = 2,log; 3 = 1,log; 4 = 4,logy 5 = 5, andlog; 6 = 3.

Therefore, theliscrete logarithm problerm Z,, can be formally defined as follows: discrete log problem
Given a triple(p, a, b), wherep is prime,a € Z, is primitive element, and € Z:'7,

find the unique integer,0 < z < p — 2, so thata” = b mod p. This integerr is

denoted as = log, b.

Of course, groups of small cardinality present no componati difficulties. There
are some efficient algorithms of computing discrete loparg in some special
cases, but in general the known algorithms for computingrdie logs in group
of orderm are roughly of the same complexity in termsmfas the algorithms for
factoringm.

132

5 Public-Key Encryption

purpose of the
algorithm

Diffie-Hellman
algorithm

5.3.2 Diffie-Hellman Key Exchange

Actually, the Diffie-Hellman algorithm was the first publeshpublic-key algorithm
which appeared in the seminal paper by Diffie and Hellman defined public-
key cryptography [Diffie76]. The purpose of the algorithnidenable two users to
exchange a key securely over an insecure channel. The egeth&ry can be used
for subsequent encryption of messages with any symmegimrighm (e.g. with
DES). This technique makes use of the apparent difficultyofmuting logarithms
over a finite field.

For this scheme (see Fig. 5.3-1) there are two publicly knowmbers: a prime
numberp and an integey that is a primitive element (generator) 4f with 2 <
g < p — 2. Suppose the users Alice and Bob want to exchange a key. #dieets
a random integet, a < p and computes the exponentiation

A = ¢g“ mod p. 5.3-1
Similarly, Bob independently selects a random intégér< p and computes

B = ¢” mod p. 5.3-2

Global public elements:
- p, prime number
- g, g is a primitive element of Z; and 2 < g <p—2
A B
Key Generation: Key Generation:
- Selects random a - Selects random b
ac{l,2,..,p—2} be{l,2,..,p—2}
- Computes A = g® mod p - Computes B = ¢g® mod p
- Sends A - Sends B
(a is private, A is public) (b is private, B is public)
- Computes B® mod p = - Computes A® mod p =
= (¢*)® mod p = ¢ mod p = (¢g*)? mod p = ¢ mod p
- Sets K = ¢ mod p - Sets K = ¢** mod p

Fig.5.3-1: The Diffie-Hellman key exchange algorithm.

17 We have definied;, = {a € Z, | ged(a,n) = 1}. Sincepis prime,Z; = {a € Z | 1 <
a < n—1} see Section 2.3.7.

5.4 ElGamal Encryption Scheme 133

Each side keeps the random chosen vaduer () private and makes the computed
exponentiation value publicly available to the other sideAlice receives the value
B and Bob receives the valuké Alice computes the key as

K, = B“ mod p. 5.3-3
Similarly, Bob computes the key as
Ky = A’ mod p. 5.3-4

It can be easily seen that these two calculations producéiodéresultk, = K, =
K, which is the shared common key:

K, = B*mod p = (¢°)* mod p = ¢* mod p
Ky = A’ mod p = (¢*)° mod p = ¢ mod p.

From this scheme it is obvious that if logarithm®d p can easily be computed,
the system can be broken. An attacker kndys= B* mod p andK, = A’ mod p.
SinceA and B are publicly exchanged, he tries to compute the exponeistisrétie
logs)a andb from these equations. If he could compute them, he couldyeaseal
the exchanged key @ = ¢%° mod p and eavesdrop the communication that fol-
lows.

If the primep is slightly less thar?!, then all quantities can be represented bi

numbers. Then exponentiation takes at n¥shultiplicationsmod p while taking

logs require®'/? ~ 2!/2 operations. The cryptanalytic effort therefore grows exparyptanalytic effort
nentially relative to the legitime effort. If = 200, then at most 400 operations are

required to computel from a or K from A andb, yet taking logamod p requires

2190 or approximatelyl0%° operations.

54 ElGamal Encryption Scheme

In 1985 Taher ElGamal published a new public-key cryptasysiElgamal85],
whose security is based on the difficulty of calculating dige logarithms in a finite
field. The EIGamal scheme can be used for both encryption myi@ldsignatures.
We now describe the encryption scheme.

To generate a key pair, first choose a primso that the discrete logarithm problenkey generation
in Zy is intractable and lej € Z; be a random primitive element. Choose a random
exponent: so thatr € Z;. Then calculate

y = g mod p. 5.4-1

The public key is the triplép, g, y). Both g andp can be global public elements of
the system, i.e. can be shared among a group of users. Tlaepky is the expo-
nentz. Because of the discrete logarithm problem it is computatiy infeasible
to reveal the private key from the public key(y, g, p), i.e to resolver from the
Eq. 5.4-1.

134 5 Public-Key Encryption

encryption To encrypt a message, m € 0,1, ...p — 1, first choose a random numberso that
k € {0,1,...p — 2} andk is relatively prime tg — 1. Then compute

a=¢" modp 5.4-2
b = y"m mod p.

The pairc = (a,b) is the ciphertext. Actually, the plaintext is "masked” by
multiplying it with ¥, yielding b. The valueg® is also transmitted as a part of the
ciphertext. Note that the ciphertext is twice the size ofglaentext.

decryption To decrypt the ciphertext= (a, b) compute
m = b/a® mod p. 5.4-3
The receiver, who knows the secret exponentan compute” from ¢*. Then, he
can "remove the mask” by dividingby «” to obtainm. We will now show that the
proof of the decryption ~ decryption works correctly:
b/a” mod p = (y*m)/(¢")* mod p
= ((g*)"m)/g"* mod p
(g™ m)/g"* mod p

=m mod p
=1m.
The first transformation in this equation can be done only wie knowledge of;,

and sincer is the private key of the receiver, only he is able to do thisrapon.
The ElGamal encryption scheme is summarized in Fig. 5.4-1.

A B

Key Generation:

- Selects large prime p
- Selects a random primitive
element g € Z7
- Chooses random exponent z, z € Z;
- Calculates y = g* mod p

publishes A’s public key
®,9,v)

- Public key: (p,g.y)
- Private key: x

B sends a message to A

Encryption:

- Plaintext m, m € 0,1,....,p—1

- Chooses randomizer k rel. prime
top—1,k€0,1,....,p—2
- Computes ciphertext ¢ = (a,b):

_ ok
Decryption: Z B gkﬂ?l;ig »
e sends ¢ = (a, b) =
- Receives ciphertext ¢ - Sends ciphertext ¢ = (a, b)

- Computes plaintext m:
m = b/a® mod p

Fig.5.4-1: Key generation, encryption and decryption with the EIGbscheme.

5.4 ElGamal Encryption Scheme 135

Example 5.4-1:

In this example we will illustrate how the EIGamal schemekgoSuppose that
the groupZs;.,(p = 2579) and a random primitive elemept= 2 are chosen
and are shared among a group of users. The user Alice chosps\ae key
x = T65, x € Zs,9. Then she computes her public key:

y = ¢° mod p = 27% mod 2579 = 949

and publishes it. Suppose, Bob wants to send the confidengakagen =
1299 to Alice. Sayk = 853 is the random integer he chooses. Then he encrypts
the messager = 1299 with the public keyy from Alice. He computes

a = ¢* mod p = 2%3 mod 2579 = 435
b = y*m mod p = 949%% . 1299 mod 2579 = 2396

and sends the ciphertext= (a,b) = (435,2396) to Alice. Since she has the
corresponding private key @f she can decrypt the ciphertextShe computes

m = b/a” mod p = 2396 - (435%)~! mod 2579 = 1299

and gets the plaintext = 1299.

If the plaintextm is larger than the system parameterthen, similary as in
RSA, m can be divided into blocks of appropriate size and each blatikbe
encrypted and decrypted independently, working as blqakesiin ECB or CBC
mode.

This system differs from the other known systems due to thdamization with

k in the enciphering operation. That means that the ElIGanyat@system is non-
deterministic, since the ciphertext depends on both thatgbt m and the random non-deterministic
valuek chosen by the sender. The ciphertext for a given messaganot repeated, Property
i.e. if we encipher a given message twice, we will not get tmes ciphertext, as

in the case of RSA encryption. The non-deterministic priypet EIGamal scheme
prevents attacks like probable text attackwhere if the intruder suspects that the
plaintext is, for examplen, then he tries to enciphet and finds out if it was really

m. This attack, and similar ones, will not succeed since tiggral sender chooses

a randony: for enciphering, and different values biwill yield different values of

the ciphertext. The EIGamal system is also not-multiplicative, becausetduhe
structure of the system, there is no obvious relation batvilee enciphering of the
messages, mq, andmms (as is the case in RSA scheme), or any other simple
function ofm; andms,.

Suppose that the system parameiés of about the same size as that required fefficiency of the system
modulusn in the case of RSA. Then the size of the ciphertext in the El@am

scheme is double the size of the corresponding RSA ciphddsadvantage). For

the enciphering operation, two exponentiations are redyivhich is equivalent to

136 5 Public-Key Encryption

about2 log p multiplications inZ;. For the deciphering operation only one expo-
nentiation (plus one division) is needed.

55 Elliptic Curve Cryptography (ECC)

Elliptic curves have been studied by mathematicians forentban a century. An
extremely rich theory has been developed around them, atdrirthey have been
the basis of numerous new developments in mathematicsrAas faryptography is
concerned, elliptic curves have been used for factoringpaumdality proving. The
idea of using elliptic curves for public-key cryptosystermgiue to Victor Miller
[Miller85] and Neal Koblitz [Koblitz87] in the mid-eighte As with all cryptosys-
tems, and especially with public-key cryptosystems, ietaigears of public eva-
luation before a reasonable level of confidence in a new syst@stablished. The
elliptic curve public-key cryptosystems (ECPKCs) seemawehreached that level
now. In the last couple of years, the first commercial appbcs have appeared
(email security, web security, smart cards, etc.). Befazdomk at how the ECPKCs
work, we will give a short introduction to elliptic curves.

5.5.1 Elliptic Curves Over Real Numbers

definition of elliptic Elliptic curves are not ellipses. They are called this beeahey are described by
curves cubic equations, similar to those used for calculating tfteeimference of an ellipse.
In general, an elliptic curve is the set of solutions of anaggun of the form

Y 4 arxy + asy = 2 + aox® + asx + as 5.5-1

where the coefficients; are elements of some fiel®&(Z or Z,) which satisfy some

simple conditions in order to avoid singularities. Such gnation is said to be

cubic, or of degree 3, because the highest exponent it cantaB. The Eq. 5.5-1 is
calledWeierstrass equatiorilso included in the definition of any elliptic curve is
a single element denot&d and calledpoint of infinityor thezero point

5.5 Elliptic Curve Cryptography (ECC) 137

Fig. 5.5-1: Elliptic curves over real numbers.

In order to illustrate the properties of elliptic curves, widl now first examine the

elliptic curves over real numbers, i€. < R, also calleccontinuous elliptic curves

We will further refer to the following simplified form of the ®ierstrass equation as

elliptic curve equation elliptic curve equation

E:y*=a2+ax+0 5.5-2

wherez, y, a, andb are real numbers. Each choice of the parametensdb yields
a different elliptic curveFE, also denoted a&'(a,b). In Fig. 5.5-1 two curves are
shown. This graph can be obtained by filling the valuesifand solving the qua-
dratic equationiny. In particular cases the graph of the curve consists of tgjoiit
parts. To understand more about the elliptic curve forms tfee parametes and
b on a continuous elliptic curve in the java applet on the boaké page.

It now turns out that the set of solutions of an elliptic cuhas some interesting

properties. In particular, group operationcan be embedded in this set. Given an

elliptic curve E and two points” and(which lie on it, the operation regarded is

some form of "addition” of these points resulting in a thirimt R which also lies

on the curve. The operatidiaddition of points” is denoted af? = P +) and addition of points
is geometrically defined in Fig. 5.5-2, but the coordinatethe sum point can be

easily derived as a function of the coordinateg)odind R. In the definition of this

operation, the following fact is usetf: three points on an elliptic curve lie on a

straight line, their sum i€ (point of infinity) Try to choose and add points on a

continuous elliptic curve in the java applet on the book hqgage.

138

5 Public-Key Encryption

group property of
(E,+)

- P(zp,yp) and Q(zq,yq) are two distinct points
and P is not —Q.

- To add P and @, draw a straight line between
P and @ and find a unique point of intersection
with the curve I.
Because of P+ Q + I = O, this point I is —R.
The point —R is reflected on the z-axis to the point R.
R(zr,yr) is the sum of P and Q, i.e. R=P+ Q.

- If the line is a tangent to the curve at either
P or Q, we take R = P or R = (@ respectively.

- The coordinates of R can be computed as:

=82 — 1y — 14
Yr = —yp +s(zp —a7)
where s = (yp —yq)/(xp —xq) (slope of the line)

P(-2.5,-1.84)
Q(0.4,1.29)
R = P4+Q =(3.26,-4.38)

Fig. 5.5-2: Addition of distinct points on an elliptic curve.

It can be easily shown that the structgfe +), where "+” represents the operation
addition of points defined in Fig. 5.5-2 fulfills the requirents to be an abelian

group:
1. Forevery two elements (pointB) () € F, the resultP+ () is also an element

(point) of E. That means that the addition is an internal (binary) ojp@nan
the set of points on the cun/e.

2. The operation addition of points is associative. Thatfds, all points
P,Q,Re Ewehave(P+Q)+ R=P+(Q+R).

3. For any pointP on the elliptic curvel), P+ O = O +P = P andO = —O.
That means that the point of infinit9 serves as an additive identity.

4. For each poinP € E, if there is an inverse poin®~! € E, so that the result
of the addition of these two elements is the group idertfity

The inverse point is also denoted-a®. For a given poin’(z,, y,) € E the
inverse is the point- P with coordinatesz,, —y,). A vertical line meets the
curve at two pointsP, = (z,,y,) andP, = (z,, —y,). It also meets the curve
in the infinity pointO. Therefore,P, + P, + O = O and P, = —P.

5. The operation addition of points is commutative. Thaisall pointsP, () €
E we haveP +Q = Q + P.

5.5 Elliptic Curve Cryptography (ECC) 139

Additional requirement for the elliptic curwg = 2 + ax + b to form a group is avoiding singularities
that the expression® + az + b should not have repeated factors, or equivalently,
the determinant of the curve

D = 4a® + 271° 5.5-3

should not be zef8. D # 0 ensures that the curve does not have singularities.

- P(zp,yp) is a point on an elliptic curve E and y, is not 0.

To add a point P to itself, draw a tangent line to the curve
in the point P and find a unique point of intersection with
the curve E. This point is —R.

The point —R is reflected on the z-axis to the point R.
R(zr,yr) is double of P, i.e. R=P+ P =2P.

The coordinates of R can be computed as:

T, = 5% — 2z,

Yr = —yp + s(xp — 7)
where s = (3xp2 +a)/(2yp) (slope of the line)

‘ ‘ ‘ ‘ ‘ — \ X
-4 -3 -2 -1 :
X - If yp = 0 (P is on the z-axes), the tangent line to the curve
/ at P is vertical and does not intersect the curve at any

other point. For such a point P, by definition, 2P = O.

P(-1,3)
R = 2P =(2.25,1.37)

Fig. 5.5-3: Doubling of pointP on an elliptic curve.

In the group of elliptic curves, the operatitahoubling of a point“can also be defi- doubling of a point
ned. Given a poinP, computing2 P means computing + P, i.e. addition of the

point P to itself. This operation is also geometrically defined amdeéscribed in

Fig. 5.5-3. Multiplication of a poinf® € FE by a positive integek is defined as a scalar multiplication
sum of thek copies ofP. Thus,2P = P + P (doubling),3P = 2P + P (doubling

and addition)4P = 2 - 2P (doubling), etc. Generally, the scalar multiplication can

be iteratively computed as a chain of point doublings andtpiditions:

kP =P+ (k—1)P. 5.5-4

18 The derivation of this equation is out of the scope of tliek You can find the details in
[Menezes93].

140 5 Public-Key Encryption

5.5.2 Elliptic Curves Over Finite Fields

The group property is very important and actually this prgpenables us to do
cryptography with elliptic curves. For this purpose, dltcurves with a finite num-
ber of points are considered, i.e. elliptic curves overditfiiélds. Such curves are

discrete elliptic curves also calleddiscrete elliptic curvesActually, they are not "curves”, similar to the
continuous curves shown in Fig. 5.5-1, but rather a set aftpavhich satisfy a
given equation. Since these curves consist of a few dispatds, it is not clear
how to "connect the dots” to make their graph look like a curve

An elliptic curve over a field”, can be constructed by choosing the variablesd
definition of E,(a,b) b within the field £,. The elliptic curve includes all pointg:, y) which satisfy the
elliptic curve equation modulp:

y*> mod p = 2® + ax + b mod p.

Note that the only difference between this equation and tipesEs-2 is that here

the computations are performeebd p, i.e. in a fieldF},. We can denote this curve

asE,(a,b). There are finitely many points on such an elliptic curvegtbgr with

the infinity pointO. In general, the points which belong to the curve can be found
computing the points in the following manner:

e For eachr with 0 < x < p, calculater? 4 ax + b mod p.

e For each result from the previous step, determine if it haguai® rootmod
p.* If not, there is no point inE, (a, b) with this value ofz. If so, there will be
two values ofy that satisfy the square root operation (exception: onesvaily
wheny = 0). These valuesr, y) are the points o, (a, b).

In the Fig. 5.5-4 the points of the curvg;(1,1) : y?> = 23 + x + 1 over F,3 and
their computation are shown. This curve has only 27 poirdexercise and learn,
generate elliptic curves over different fields (vajyand with different parameters
(vary a andb). Note how the number of elements on the curve change. Ugavhae
applet on the book home page.

19 It is out of the scope of this course to describe the algmst which proove the existence
of the square rootnod p and the computation of square roots. For this purpose, wese th
functionmod_sqrt(a, p, 1) from the Crypto-Calculator.

5.5 Elliptic Curve Cryptography (ECC)

141

- Elliptic curve Eo3(1,1) 1y = a3+ 2+ 1

r=0=>y=1y=22 r=12=y=4,y=19

20 ° 00 r=1=y="7y=16 r=13=y="7,y=16
T °© r =2 = y does not exist xz = 14 = y does not exist

r=3=y=10,y =13 z = 15 = y does not exist

D

r=4=y=0 x = 16 = y does not exist
© r=5=y=4,y=19 r=17T=y=3,y=20
15 r=6=y=4,y=19 r=18=y=3,y=20

r=T=y=11,y=12 r=19=y=5y=18
x =8 = y does not exist x =20 = y does not exist
& r=9=y="719=16 r = 21 = y does not exist
10 of T z = 10 = y does not exist = = 22 = y does not exist
r=11=y =3,y =20

The set of all 27 points on the curve is: (0, 1), (0, 22),
(1,7), (1,16), (3,10), (3,13), (4,0), (5,4), (5,19), (6,4),
(6,19), (7,11), (7,12), (9,7), (9,16), (11, 3), (11, 20),
(12,4), (12,19), (13,7), (13,16), (17,3), (17,20), (18,3),
(18,20), (19,5), (19,18).

Let P = (3,10) and Q = (9,7)

% 5 10 15 20 X Then R = P + Q = (17, 20)
S =2P = (7,12)

Fig.5.5-4: Discrete elliptic curvg)? = 23 + = + 1 over Fys.

If p is prime and the expressiar + az? + b mod p contains no repeating factors
(or, equivalentely, if the determinadt® + 27b% mod p is not 0), then the elliptic

curve can be used to form a group. The group operation is|asias in the case group property of

of continuous elliptic curves, the addition of points. Treometry used in elliptic (£, +)
curve groups over real numbers cannot be used for elliptieecgroups overr,,.
However, the algebraic rules can be adopted for curves Byein this case, the
computing of the sum point coordinates is performedd p. Unlike elliptic curves

over real numbers, computations in the fiélginvolve no round off errors — an
essential property required for a cryptosystem. Now we saripa the addition

rules for points on a discrete elliptic curé(a, b).

Suppose” = (z,,y,) andQ = (z,, y,) are points on the curve,(a, b). "addition
of points” on the curve is defined as: addition rules

o |If z, =2,andy, = —y, (the points lie on vertical line), theR + @ = O.
e Otherwise,P + @ = R(z,,y,) where

z, = s> — 1, — x, mod p 5.5-5

yr = s(z, — ;) — yp, mod p
and

s — { (Yg — Yp) (g — Ip)_l mod p, if P#Q }
B (322 + a)(2y,) ™ mod p, if P =Q (doublingofP) [

o P+O=0+P="Pforall P e E,(a,b).

These equations hold except for the trivial case whege () are equal to the point
of infinity. This definition of addition also includes the gpgon of doubling of

points as a special case whéh= (). The only difference between the additiordoubling of points

Eg. 5.5-5 and those for addition and doubling of points on rtinaous elliptic

142

5 Public-Key Encryption

elliptic curves over Fom

curve presented in the Fig. 5.5-2 and Fig. 5.5-3 is that Hex@perations are pre-
formedmod p, i.e. in the fieldF,.

Example 5.5-1:
In this example, we compute the sum of the points P(3,10) ai®l7QQon the
curve Esy3(1,1):

s=(7—10)(9—3)""'=(=3)(6)""' =20-4 =80 =11 mod 23
T, =8 —z,—x,=112 -3 -9 =109 = 17 mod 23
Yr = s(xp —) —yp, = 11(3 — (—6)) — 10 = 89 = 20 mod 23.

Thus,R = P+@Q = (17,20). The double of the poin®(3, 10) can be computed
as follows:

s=(3-32+1)(2-10)"'=28-20"" =5-15= 75 = 6 mod 23

Ty =8 —1z,—1,=6"—3—3=30="7mod 23

Ys =8(xp — 2s) —Yp=6(3—7) — 10 = —24 — 10 = —34 mod 23
= 12 mod 23.

The resulting point i = 2P = (7,12).

Another suitable field for cryptographic applications weathptic curves is the field
Fym. Elements of the fieldr,» are m-bit strings. The rules for arithmetic in this
field can be defined by eithpolynomial representatioar by optimal normal basis
representationAn elliptic curve overFy- is constructed by choosing the elements
a andb within F,n, and satisfying the following elliptic curve equation whits
slightly adjusted for binary representation:

v + a2y =2 + ar + b. 5.5-6

There are finitely many points on this curve, also includihg point of infinity
O. This curve also forms a group regarding the operation oftiaddof points,
which is defined slightly differently than in Eqg. 5.5-5. Sen&,» operates on bit
strings, computers can perform arithmetic in this field vefficiently. In a true
cryptographic application, the parametemust be large enough. Suitable choice
today ism = 160. For simplicity, we will further discuss only ECPKCs defined
over F,.

5.5.3 Elliptic Curve Cryptosystems (ECCs)

The basis of every public-key cryptosystem is a hard mathtieaigroblem that is
computationally infeasible to solve. To construct a crgg&iem using elliptic cur-
ves, we need to find a "hard problem” corresponding to factptine product of two
large primes or taking the discrete logarithm. This hardf@m is theelliptic curve

5.5 Elliptic Curve Cryptography (ECC) 143

discrete logarithm problem (ECDLPyvhich is based upon the intractability of sca-
lar multiplication of points. Before some cryptosystemsdzhon elliptic curves
(ECCs) are described, the ECDLP is defined.

Consider the equatio = kP, where(), P € E,(a,b) andk is an integerk < p. discrete log problem in
It is relatively easy to comput® whenk and P are given through combination of (£, +)

point doubling and point addition, but it is relatively haaldeterminek when P

and @ are given. So, if we use the additive notation to describellgstie curve

group (as we have done in the previous sections), we can daérieCDLP in the

following way:

e Given pointsP and@ from E,(a, b), find a numbek so thatQ) = kP.

An elliptic curve group can also be described using the plidative notation, using
the same operation as Eqg. 5.5-5 for multiplying copies ofpthiat P, yielding the
pointQ = P- P - P....- P = P* In this case, we can define the ECDLP in the
following way:

e Given pointsP and@ from E,(a, b), find a numbek so thatP* = Q.

Example 5.5-2:

In this example we try to find the discrete logaritinof () = (4, 5) to the base
P = (16,5) on the curvels; : y? = 23 + 92 + 17. One (naive) way to find is
to compute multiples oP until @ is found: P = (16,5),2P = (20,20),3P =
2P + P = (14,14),4P = 2- 2P = (19,20),5P = 4P + P = (13,10),6P =
2.3P = (7,3),7P = 6P + P = (8,7),8P = 2-4P = (12,17),9P =
8P + P = (4,5). Since9P = (4,5) = @, the discrete logarithm af) to the
baseP isk = 9.

In real applicationsk would be large enough (over 100 bits) so that it would be
infeasible to determin& in this manner. There are several algorithms for compu-
ting discrete logarithms which can be applied to ellipticveugroups (see section
2.6.3), but these are exponential time algorithms. Thugyaakivantage of elliptic
curve cryptosystems is that no subexponential algorithkm@svn that breaks the
system’. Moreover, ECDLP is much harder than the DLFZn We now describe
analogous of some public- key cryptosystems based on thd. BCD

Key Exchange with Elliptic Curves

The Diffie-Hellman key exchange algorithm can be applied oreliptic curve
group. In this case, the security of the algorithm is basetherelliptic curve dis-
crete log problem.

20 The description of the algorithms and their computatioomplexity are out of the scope of
this book. Overview of the algorithms and details can be tbin{Menezes93].

144

5 Public-Key Encryption

parameters of the
system

Diffie-Hellman ECC
algorithm

Suppose that Alice and Bobl(and B) want to agree upon a key which will later be
used in conjunction with a classical cryptosystem. Theyiublicly choose a finite
field F, and an elliptic curvef,(a, b) defined over it. In order to enable enough
security, the prime should bep ~ 2'%°. Then they choose a poinit(z,,y,) on

the curve which serves as a "basér.plays the role of a generator in the group
E,(a,b), but even if the poin is not a generator of the group, we would like the
subgroup generated layto be large, preferably of the same order of siz& d@iself.
Consequently, the important criterion in selecting thenpdi is that the smallest
value ofn for whichnG = O (G generates the group) is a very large prime number.
E,(a,b) andG are parameters of the cryptosystem known to all particgpant

Global public elements:
- Elliptic curve E,(a,b), p is prime
- Point G € Ej(a,b) with the role of a generator
A B
Key Generation: Key Generation:
- Selects random a, - Selects random b,
a of order of magnitude p b of order of magnitude p
- Computes K, = aG - Computes K, = bG
- Sends K, - Sends K,
(a is private, K, is public) (b is private, K} is public)
Ka
Ky
- Computes K = aK}, = abG - Computes K = bK, = baG
- Sets K = abG - Sets K = abG

Fig. 5.5-5: Diffie-Hellman key exchange with ECC.

To generate a key, Alice chooses a random integerorder of magnitude, which

she keeps secret. She computes the pgint oG € E, which she makes public.
Bob does the same: he chooses a randpmhich he keeps secret, computes the
point K, = bG, and makes it public. The secret key they use is then the point
K = abG. Both users can compute this key: Alice knows (which is public
knowledge) and her own seckgtso she computes = abG; Bob receivesG and
multiplies it with his own secrét. Without solving the ECDLP (finding knowing

aG and G or finding b knowing bG and G) there is no way to compute the key
K = abG knowing onlyaG andbG. The scheme is summarized in Fig. 5.5-5.

Note that the secret kei, which is a point onE,(a,b), is a pair of numbers
(xk,yx). From this pair, a single number must be generated. One ogplysuse
thex coordinate or some simple function of the coordinates.

5.5 Elliptic Curve Cryptography (ECC)

Elliptic Curve Encryption/Decryption

To encrypt a given plaintext messagewith some EC cryptosystem, it must repre-
sent a point” on the chosen curveg,(a, b), i.e. the message must be encoded in
(x,y) coordinates of the poinf. This pointP will be encrypted. There are several
approaches for this encoding, which we will not address.hdiany approaches
for encryption/decryption using elliptic curves have baealyzed in the literature.
We now show only two of them: The ElGamal EC cryptosystem aedMenezes-
Vanstone EC cryptosystem.

Global public elements:

- Elliptic curve E,(a,b) over F,, p is prime
- Point G € E,(a,b) with the role of a generator

A B
Key Generation:

- Chooses random integer a
- Computes point K, = aG

- Public key: K, publishes Ko A’s public key K,

- Private key: a

B sends a message to A

Encryption:
- Plaintext m, encoded in point M|
- Chooses random pos. integer k
- Computes ciphertext C' as pair:

Decryption: Ci=kG, Co =M + kK,

- Receives ciphertext C' . sends @ _ Sends ciphertext C' = (Cy,Cs)

- Computes plaintext point M:

M = 02 — aCl
- Decodes plaintext m from point M

Fig. 5.5-6: ElGamal elliptic curve encryption scheme.

In the EIGamal EC cryptosystem we start with the parameters of the cryptoEiGamal EC
system, which are known to each user: A finite fiélg an elliptic curveE,(a,b) cryptosystem
defined over it, and a poiiit on the curve. Each user selects a private key as an inte-

gera; and computes the public keyG. If Bob wants to send a message to Alice,

he needs her public kek(,, which is a point computed from Alice a&, = oG

(note thata is Alice’s secret). Suppose, he wants to encrypt the plaimessage

m, which is encoded in the point/ € E,(a,b). Bob chooses a random positive

integerk and produces the ciphertext consisting of the pair of point§; = kG

andC, = M + kK, and sends the pair(Cy, Cs) to Alice. Note that Bob has used

Alice’s public key K, to compute the ciphertext. He has masked the messAge

by addingk P, to it. Nobody but Bob knows the value &f so even thouglk, is

public, nobody can remove the mask,.

146

5 Public-Key Encryption

Menezes-Vanstone EC
cryptosystem

To decrypt the message, Alice uses her private ke&y multiply the first point of
the ciphertext”; with it, and substracts the result from the second point:

Cy—aCy=M+kK,—a -kG =M+ kaG — akG = M. 5.5-7

The resultM is a point on the curvé’,(a, b) which can now be easily decoded to
the corresponding plaintext. To recover the message, an attacker would have to
computek from a givenG and K, = kG which is assumed to be hard. There are
some practical difficulties in implementing an ElIGamal ¢ogystem on an elliptic
curve. The message has an expansion factor of (about) foig.hBppens since a
ciphertext consists of two points on the elliptic curve,reagth two coordinates.
Another problem is that the plaintext must be encoded (deterministically genera-
ted) in a point which lies on the cunse.

A more efficient cryptosystem has been found\dgnezesandVanstone In this
variation, the elliptic curve is used for "masking”, andiptaxt and ciphertext are
allowed to be arbitrary ordered points of nonzero field eletsiei.e.they are not
required to be points or. This leads to a message expansion of factor two. We
now briefly describe this cryptosystem, which is summarindeig. 5.5-7.

Global public elements:
- Elliptic curve Ep(a,b) over F),, p is prime
- Point G € E,(a,b) with the role of a generator

A B

Key Generation:

- Chooses random integer a
- Computes point K, = aG

publishes K, A’s public key K,

- Public key: K,
- Private key: a

B sends a message to A
Encryption:
- Plaintext m = (mq, ms2)
- Chooses random pos. integer k
- Computes: co = kG
(z1,22) = kK,
- Computes parts of the ciphertext:
c1 = xymy; mod p
Cy = oMo mod p
Decryption: sends ¢ - Sends ciphertext ¢ = (¢, ¢1, ¢2)

- Receives ciphertext ¢ = (cg, ¢1, ¢2)

- Computes (x1,x2) = acy

- Computes plaintext parts my and ms:
my = clxl_l mod p
mo = czxgl mod p

- Plaintext m = (mq, ms)

Fig.5.5-7: Menezes-Vanstone Elliptic curve cryptosystem.

5.5 Elliptic Curve Cryptography (ECC) 147

The global public elements of the system are an ellipticetiy(a, b) and a pointy
on it. The curve must contain a cyclic subgratpn which the discrete log problem
is intractable. Each user chooses a large random integerd keeps it secret, and
publishes:;G. So, Alice generates her key pair by choosing an integehich will
be her private key, and computes thenultiple of the base poink’, = aG, which
will be her public key. Now Bob wants to send Alice the message: (my, ms).
In order to encrypt this plaintext, he first chooses a randositpe integerk and
computes, = kG and(xy,z2) = kK,. Then he computes = z;m; mod p and
co = Tamso mod p, Which are parts of the ciphertext. The ciphertext condist a:;
andcy, i.e.c = (co, ¢1, ¢o). TO decrypt the ciphertext, Alice uses her private keg
compute(zy, x2) = acy (becauseicy = akG =k - aG = kK, = (¢1,c2)) and then
computes the plaintext parts, = ¢;2;' mod p andm, = ¢z, * mod p. She gets
the plaintext asn = (mq, ms).

Example 5.5-3:

In this example we illustrate encryption and decryptionocadmng to the
Menezes-Vanstone cryptosystem. Let the cutyg1, 6) : y? = 23 +x +6 over
71, and the pointz(2,7) be the public elements of the system. Alice chooses
a = 7 for her private key and computes her public ké&y; = aG =7 (2,7) =
(7,2). Suppose, Bob wants to send her the plaintext= (m;,ms) = (9,1).
Note thatm is not a point on¥. He first chooses a random valkie- 6 and com-
putesco = kG = 6-(2,7) = (7,9) and (z1,x2) = kK, = 6-(7,2) = (8, 3).
Then he computes, andc; as:ic; = zym; modp = 8 -9mod 11 = 6 and

co = xamo mod p = 3 - 1 mod 11 = 3. The ciphertext Bob sends to Alice is
¢ = (co,c1,c2) = ((7,9),6,3). When Alice receives the ciphertextshe first
computeszy, x2) = aco = 7-(7,9) = (8, 3), and then she computes the plain-
text partsn; andm, as:m; = c;z; " mod p = 6-8~! mod 11 = 6-7 mod 11 =

9 andmy = cor; ' mod p =3-37' mod 11 = 3 -4 mod 11 = 1. So, the plain-
textis(9,1).

All cryptosystems based on the discrete logarithm probBhP) can be converted
to elliptic curve cryptosystems. Some slight technical ifications are necessary
in order to adapt to the elliptic curve setting, but the uhdeg principles are the
same as for other DLP-based systems. A very important olisens that the best
known algorithms for the ECDLP have a complexity proporéildio the square root
of the group size, whereas DLP #), and integer factorization can be solved in
subexponential time. This implies that, for a certain leMesecurity, the sizes of advantages of ECCs
the parameter in ECC can be substantially smaller. For eberap elliptic curve
group with a 175-bit size has a security that is equivalelR$A with a 1024-bit
modulus, or to systems based on DLPZnwith p a 1024-bit prime. The smaller
block size has important implications on the resourcesaieaheeded to implement
an EC cryptosystem. For example, far less chip area is ndedad elliptic curve
processor than for an RSA processor.

148

5 Public-Key Encryption

Merkle-Hellman
crypto system

McEliece cryptosystem

Rabin’s cryptosystem

To better understand the properties of elliptic curves aediperations addition of
points and multiplication of a point with a scalar, as welltlas group properties,
please do some exercises with the java-applets on the book page.

5.6 Other Public-Key Cryptosystems (PKCs)

We will now give a brief overview of several other public-kayptosystems, which
have some importance in cryptology.

The Merkle-Hellman knapsack cryptosystemas first described by Merkle and
Hellman in 1978. Although this cryptosystem was broken ia ¢arly 1980's, it
is still worth studying because of the underlying desigrmtegue. This system is
based on the "hard” problem of subset sum, which is an NP-teteproblem. That
means, that there is no known polynomial time algorithm sohtes it.

TheMcEliece cryptosysteis based on algebraic coding theory and is still regarded
as being secure. The NP-complete problem that is employg&ekcisding a general
linear binary error-correcting code. One class of codessthcalled Goppa codes,
are used as base of this cryptosystem.

TheRabin’s cryptosystegets its security from the difficulty of finding square roots
modulo a composite number. This problem is equivalent ttofaty. The Rabin
public-key encryption scheme was the first example pfavably secure encryp-
tion schemdthere is a proof that breaking the scheme is equivalent liongpa
computational problem which is widely believed to be diffiguwvhich is a desira-
ble property of any encryption scheme.

149

6 Digital Signatures

6.1 Introduction

The notion of a digital signature may prove to be one of thetrhoswlamental and

useful inventions of modern cryptography. A signature seh@rovides a way for

each user to sign messages so that the signatures can laterifierd by anyone

else. More specifically, each user can create a matched fppiivate and public

keys so that only he can create a signature for a messagg fusiprivate key), but

everyone can verify the signature for the message (usingigmer’s public key).

The verifier can convince himself that the message contamdizdbeen altered sincedata integrity
the message was sigrtédAlso, the signer can not later repudiate having signed the

message, since no one but the signer possesses the priy#te ke non-repudiation

By analogy to the paper world, where one might sign a letter sgmals it in an
envelope, one can sign an electronic message using ongsgkey, and then seals
the result by encrypting it with the recipient’s public k&¥e recipient can perform
the inverse operations of opening the letter and verifyhng gignature using his
private key and the sender’s public key, respectively. €rggsplications of public-
key technology, e.g. to electronic mail, are quite wideagreday already.

Like a hand-written signature, the purpose of a digital atgre is to guarantee authentication
that the individual sending the message really is the one wéhor she claims to

be?®. Digital signatures are especially important for elecitmommerce and are a

key component for most authentication schemes. To be s#ecligital signatures

must be unforgeable. An example of what a digital signatoo&d like is given in

Example 6.1-1.

Example 6.1-1: Digital Signature

------- BEG N S| GNATURE- - - - - -

LBlawUuBWSi A5QYCuM gNYj AQFAKgL| ZkBf beNEsbt hba4BlI r cnj ad
ncKgNv+a5Kr 4537y 8RCd+RHN75y Yh5xxAloj ELWNhhb7cl t r p2V7LI b
xAel ws4S87UX80c LBt BcN6AACE 11qynC2h+Rb2j 5SU+r mXW u+=QFGs
—————— END SI GNATURE- - - - - -

21 Data integrity The assurance that the data received was exactly the ddta se
22 Non-repudiationPrevents a user from denying previous commitments or&tio

23 Authenticationis any process through which one proves and verifies cenmd@mnation.
Sometimes one may want to verify the origin of a documentjdkatity of the sender, the
time and date a document was sent and/or signed, the idefitgomputer or user, and so
on.

150

6 Digital Signatures

6.2 RSA Signatures

When public-key cryptography is used to encrypt a messagesénder encrypts
the message with the public key of the intended recipienteiublic-key cryp-
tography is used to calculate a digital signature, the segrlerypts the message or
the message digésiof the document with his or her own private key. Anyone with
access to the public key of the signer may verify the sigmatur

Alice » Bob
Transmitted Message
L Signature Message Signature
Alice’s private v Alice’s public
key P sign T verify < key
Hash Function
' Message Digest * '
4 Actual Expected
Hash Function Message Digest ~ Message Digest

compare
Message . .
If these are the same, the signature is

verified.

Fig. 6.2-1: RSA digital signature scheme using a hash function.

More specifically, suppose Alice wants to send a signed rgessa Bob (see

Fig. 6.2-1):

e The first step is generally to apply a hash function to the amgsscreating a
message digest. The hash function takes a message of aargriehgth and
shrinks it down to a fixed length.

e To create a digital signature, Alice signs the message digstead of the mes-
sage itself. This saves a considerable amount of compnttic.

e Alice sendsBob the encrypted message digest and the message, which she may
or may not encrypt using Bob’s public key.

e Inorder for Bob to authenticate the signature he must ajiy@ysme hash func-
tion as Alice to the message she sent him, decrypt the emdypéssage digest
usingAlice’s public key and compare the two.

e Ifthe two are the same he has successfully authenticatesiighature. If the two
do not match there are a few possible explanations. Eithieesoe is trying to
impersonate Alice, the message itself has been altered sile signed it or
an error occurred during transmission.

24 A hash functiorni is a transformation that takes an inputand returns a fixed-size string,
which is called the hash value or message dige€ine can think of a message digest as a
"digital fingerprint" of the larger document. Hash functsomill be introduced in chapter 7.

6.2 RSA Signatures 151

6.2.1 Some Comments

As described above, everyone can read the message andthergignature. This

does not satisfy situations whedg(Alice) wishes to retain theecrecyof the docu- secrecy
ment. In this case she may wish to sign the document, thelygnicuusing Bob’s

public key.B (Bob) will then need to decrypt the message using his private key a
verify the signature on the recovered message udiagublic key.

Alternately, if it is necessary fdahird partiesto validate the integrity of the messagehird parties
without being able to decrypt its content, a message digagtha computed on the
encrypted message, rather than on its plaintext form.

There is a potential problem with this type of digital sigmat A not only signed

the message she intended to but also signed all other mesbag@dappen to hash

to the same message digest. When two messages hash to theeasage digest,

this is called aollision; the collision-free properties of hash functions are nga@gs collision
security requirements for most digital signature scherdgash function is secure

if it is very time consuming, if at all possible, to figure otmetoriginal message

given its digest. However, there is an attack calledkinthday attack® that relies birthday attack
on the fact that it is easier to find two messages that hasletsaime value than to

find a message that hashes to a particular value.

In addition, someone could pretend to Aend sign documents with a key pair he
claims isA’s. To avoid scenarios such as this, there are digital doatsnealled
certificatesthat associate a person with a specific public key. certificates

Digital timestampsnay be used in connection with digital signatures to bindaueo timestamps
ment to a particular time of origin. It is not sufficient to juste the date in the
message, since dates on computers can be easily manipuliasdaktter that time-

stamping is done by someone everyone trusts, such as gicgr@uthority.

6.2.2 Description of the algorithm

The RSA cryptosystem was developed by Ronald Rivest, Adirfdhand Leonard
Adleman in 1977 ([RSA78]); RSA stands for the first letter &tk of its inventors’
last names. For more information on RSA, see Section 5.2 Q\[BB].

The key generation, signature generation, and signatuifecaéon procedures for
RSA are given below.

RSA key generation

Each entityA does the following:

e Take two large primeg; andq, and compute their produet = pg; n is called
the modulus.

25 Its name arises from the fact that for a group of 23 or mooplegthe probability that two or
more people share the same birthday is higher than 50%.

152

6 Digital Signatures

e Choose a numbet, less tham and relatively prime tdp — 1)(¢ — 1), which
means: and(p — 1)(¢ — 1) have no common factors except

e Find another numbet such thated — 1) is divisible by(p — 1)(¢ — 1).

e The values andd are called the public and private exponents, respectively.
public key is the paifn, e¢); the private key ign, d).

The factorgp andq may be erased or kept with the private key.
RSA signature generation
To sign a message, A does the following:

d

s =m"modn

whered andn are A’s private key. She sends ands to B.

RSA signature verification

To verify the signature, B exponentiates and checks that the message reco-
vered:

m = s®modn

wheree andn are A’s public key.

6.3 ElGamal Signature Scheme

The ElGamal system is a public-key cryptosystem based odisiteete logarithm
problent®. It consists of both encryption and signature variféints

6.3.1 Key generation

Each entityA does the following:
1. Generate alarge random primand a generatar of the multiplicative group
L.
2. Selectarandomintegerl <a <p — 2.
3. Computey = a* mod p.
4. A’s public key is(p, a, y); A’s private key isa.

26 For more information on the discrete logarithm problese, Section 5.3.

27 For more information on the EIGamal cryptosystem ancdeitsisty aspects, see Section 5.4

6.4 DSA - Digital Signature Algorithm 153

6.3.2 Signature generation

To sign a message, A does the following:

Select a random secret integel < k <p — 2, with gcd(k,p — 1) = 1.
Computer = o modp.

Compute:~! mod(p — 1).

Computes = k~1(h(m) — ar) mod (p — 1); h being a collision-free hash
function.

P wDdPE

5. The signature for the messagsis the pair(r, s).

6.3.3 Signature verification

To verify A’s signaturg(r, s) onm, B should:

Obtain an authentic copy of's public key(p, a, y).

Verify that1 < r < p — 1; if not, then reject the signature.
Computer; = y"r* modp.

Computeh(m) andv, = o™ modp.

a bk e

Accept the signature if and onlydf = v,.

6.4 DSA - Digital Signature Algorithm

The Digital Signature Algorithm (DSA) was proposed in Augli891 by the U.S.
National Institute of Standards and Technology (NIST) aechme a U.S. Federal
Information Processing Standard (FIPS 186) in 1993. Th& BI86 standard is also
referred to as th®igital Signature StandardDSS). The DSA was the first digi- DSS

tal signature scheme accepted as legally binding by a goarh The algorithm

is a variant of theElGamalsignature scheme (see Section 6.3). The key geneEsGamal
tion, signature generation, and signature verificatiorc@dares for DSA are given

below.

6.4.1 DSA key generation

Each entityA does the following:
1. Select a prime such tha!®® < ¢ < 219,

2. Select a 1024-bit prime numbemwith the property thag|p — 1. (The DSS
mandates thai be a prime such thaP!! 6% < p < 2512464 where(< ¢ <
8. If t = 8 thenp is a 1024-bit prime.

3. Selectan elemente Z; and computg = 1*~/? modp; repeat untily # 1
(9 is a generator of the unique cyclic group of orden Z:).

4. Select a random integerin the interval[l, ¢ — 1].

5. Computey; = ¢g* modp.

154

6 Digital Signatures

6. A’spublic keyis(p,q,g,v); A’s private key is.

6.4.2 DSA signature generation

To sign a message, A does the following:

P wDbd R

Select a random secret integen the interval[l, ¢ — 1.

Compute: = (¢g* modp) modg.

Computet—! modg.

Computes = k' (h(m) + zr) modq whereh is the Secure Hash Algorithm
(SHA-1)%.

Iss = 0 then go to step 1 (if = 0, thens~! mod ¢ does not exists~* is
required in step 3 of signature verification).

The signature for the messagsds the pair or integergr, s).

6.4.3 DSA signature verification

To verify A’s signaturg(r, s) onm, B should:

o 0k wNPRE

Obtain an authentic copy of's public key(p, ¢, g, y).
Verify thatr ands are integers in the interval, ¢ — 1].
Computew = s~ modq andh(m).

Computeu; = h(m)w modgq andus = rw modg.
Computey = (¢*“'y"*> modp) modg.

Accept the signature if and onlydf= r.

6.4.4 Security aspects

DSA signatures are 320 bits in size, sincands are each integers less tharThe
security of the DSA relies on two different but related deterlogarithm problems.

One is the discrete logarithm problemis) where the number field sieve algorithm
applies; this logarithm has a subexponential running time.

The second discrete logarithm problem works to the ageenp, ¢, g, andy find
x, such thaty = ¢* (modp). For largep (e.g. 1024-bits), the best algorithm known
for this problem is the Pollard rho-method, and takes about

wq/2

steps.

28

See Section 7.4.3.

6.5 ECDSA - Elliptic Curve Digital Signature Algorithm 155

6.5 ECDSA - Elliptic Curve Digital Signature
Algorithm

The elliptic curve analogue of the DSA is the ECDSA. Inste&avorking in a
subgroup of ordey in Zy, this algorithm works in an elliptic curve groug(Z,).
In February 2000 the US Secretary of Commerce approved tiesion of the
ECDSA inthe US Government’s Digital Signature Standara: fHvised standard is
FIPS 186-2 that specifies ECDSA by giving a reference to th&8IRR0.62 standard.
The correspondence between some math notations used in BBE@DSA are
shown in Table 6.5-1. Using Table 6.5-1 and Table 6.5-2, ti@agies between
DSA and ECDSA should be obvious ([JM99]).

Tab. 6.5-1: Correspondence between DSA and ECDSA notation.

DSA notation ECDSA notation
q n
g P
X X
Yy Q

Tab. 6.5-2: Correspondence between Z; and E(Z,) notation [JM99].

Group

Zy

E(Zy)

Group elements

Integers {1,2,...,p—1}

Points (x,y) on E plus O

Group operation

Multiplication modulo p

Addition of points

Notation Elements: g, h Elements: P, Q
Multiplication: g - h Addition: p + Q
Inverse: g~ ! Negative: — P
Division: g/h Subtraction: P — Q
Exponentiation: g* Multiple: aP

Discrete logarithm Given g € Z, and h = g° Given P € E(Z,) and

problem mod p, find a Q =aP,finda

The key generation, signature generation, and signatuifecaéon procedures for
ECDSA are given below.

6.5.1 ECDSA key generation

Each entityA does the following:

1. Select an elliptic curvé’ defined overZ,. The number of points itF(Z,)

should be divisible by a large prime

Select a poinf® € E(Z,,) of ordern.

)

4. Compute) = dP.

Select a statistically unique and unpredictable intédeithe interval[l, ¢ —

156

6 Digital Signatures

consistencies with DSA

5.

A’s public key is(E, P,n, Q); A’s private key isd.

6.5.2 ECDSA signature generation

To sign a message, A does the following:

1.

Select a statistically unique and unpredictable intégerthe interval[l, ¢ —
1].

Computekp = (x1,y1) andr = x; modn (herex; is regarded as an inte-
ger, e.g. by conversion from its binary representation): K 0, then go
to step 1 (this is a security condition:#f = 0, then the signing equation
s = k' (h(m) + dr) modn, does not involve the private kej).

Computet—! modn.

4. Computes = k' (h(m) + dr) modn, whereh is the Secure Hash Algorithm

(SHA-1°.

If s = 0, then go to step 1. (If = 0, thens~! modn does not existz ! is
required in step 3 of signature verification).

The signature for the messagsis the pair of integersér, s).

6.5.3 ECDSA signature verification

To verify A’s signaturgr, s) onm, B should:

1. Obtain an authentic copy ofs public key(E, P,n, Q).
2. Verify thatr ands are integers in the intervél, ¢ — 1].
3. Computew = s~ modn andh(m).
4. Computes; = h(m)w modn anduy = rw modn.
5. Computes; P + us@ = (g, yo) andv = xg modn.
6. Accept the signature if and onlyif= r.

6.5.4 Note

ANSI X9.62 prescribes that > 2!%°, The parameten should have about 160 bits
to obtain a security level similar to that of the DSA (with 160 ¢ and 1024-bip).
If this is the case, then DSA and ECDSA signatures have the sara (320 bits).

The important consistencies between ECDSA and DSA are lasvil

1.

DSA and ECDSA are based on the EIGamal signature schemasantthe
same signing equation:= k~!(h(m) + dr) modn.

29

See Section 7.4.3.

6.6 Signatures with Additional Functionality 157

2. The values that are relatively difficult to generate agedfisstem parameters
(p, ¢, andg for DSA,; E, P, andn for ECDSA) which are public. The genera-
tion of a private key is relatively simple and generatingdlsociated public
key is straightforward.

3. DSA and ECDSA both use the SHA-1 as cryptographic hashifumc
For more information on DSA and ECDSA see [JM99].

6.5.5 Security aspects

The security of the ECDSA is based on the followigltptic curve discrete loga-
rithm problem(ECDLP): given an elliptic curveéZ defined ovelZ,, a pointP <
E(Z,) of ordern, and a point) € E(Z,), determine the integér0 <! <n —1,
such that) = [P, provided that such an integer exists.

The ECDLP has been analyzed by mathematicians around tte, \&od no signifi-
cant weaknesses have been reported. For more informatisecomity aspects and
key lengths, see Section 5.5.

6.6 Signatures with Additional Functionality

There are signature schemes that provide functionalitpiheyuthentication and
non-repudiation. To achieve additional features whichlithsic method does not
provide, we combine a basic digital signature scheme witbeaific protocol. For
information on further signature schemes not mentioned, lsge [MOV96].

6.6.1 Fail-stop signatures

A fail-stop signature scheme is a type of signature intreduay Birgit Pfitzmann
and Michael Waidner to protect against the possibility #traenemy may be able to
forge a user’s signature. It is a variation of the one-tingmature scheme, in which
only a single message can be signed and protected by a giyeat ketime. The
scheme is based on the discrete logarithm problem. In p&atidf an enemy can
forge a signature, then the actual signer can prove thatfprigas taken place by
demonstrating the solution of a supposedly hard problerasThe forger’s ability
to solve that problem is transferred to the actual signer.

The term "fail-stop" refers to the fact that a signer can cted@d stop failures, i.e.
forgeries. Note that if the enemy obtains an actual copy efsigner’s private key,
forgery cannot be detected. What the scheme detects aeriggdased on crypt-
analysis. For more information on fail-stop signatures, [§4i96] and [MOV96].

158

6 Digital Signatures

6.6.2 Blind signatures

Blind signature schemes, first introduced by David ChaunkR@83]), allow a per-
son to get a message signed by another entity without rexeahy information
about the message to the other entity.

Using RSA signatures blind signatures work as follows: SggpentityA has a
messagen that she wishes to have signed by enfityand she does not wait to

learn anything about:.. Let (n, e) be B’s public key and d) be his private ke¥f. A

generates a random valusuch thaycd(r,n) = 1 and sends

m' = 1r°m modn

to B. The valuen' is "blinded" by the random value and hencé3 can derive no
useful information from it.B returns the signed value,

s = (m)? = (r‘m)? mod n

to A. Sinces’ = rmd modn, A can obtain the true signatuseof m by computing

s = s'r~! mod n.
Now A’'s message has a signature she could not have obtained onvhei bis
signature scheme is secure provided that factoring andesdadction remain dif-
ficult. However, regardless of the status of these problémsignature scheme is
unconditionally "blind" since- is random. The randomdoes not allow the signer
to learn anything about the message even if the signer cae 8w underlying hard
problems.

Blind signatures have numerous uses, e.g. digital cashs iTinot surprising that
there are now numerous variations of the blind signaturerseh

6.6.3 Undeniable signatures

Undeniable signature schemes, first introduced by Chaunvaméntwerpen, are
non-self-authenticating signature schemes, where sigggcan only be verified
with the signer’s consent. However, if a signature is onlgfiable with the aid of a
signer, a dishonest signer may refuse to authenticate argeetocument. Undenia-
ble signatures solve this problem by adding a new comporadieticthedisavowal
protocolin addition to the normal components of signature and vetiba.

The scheme is implemented using public-key cryptograplsethan the discrete
logarithm problem.

30 For more information on RSA key generation, see Sectipr26.

6.6 Signatures with Additional Functionality

159

Key generation

Each entityA does the following:

1. Take arandom prime= 2q + 1 whereq is also a prime.
Generate a generatorof the multiplicative groufZ;.
Select a random integere {1,2,...,q — 1}.

Computey = o® modp.

a bk~ 0N

A’s public key is(p, «, y); A’s private key isa.

Signature generation
To sign a message, A does the following:
s = m®mod p.

A sendsmn ands to B.

Signature verification

Verification is carried out by a challenge-response prdtd@verify A’s signature
s onm, B should:

Obtain an authentic copy of's public key(p, , y).

Select random secret integessxs € {1,2,...,q — 1}.

Computer = s*'y*2 modp and send to A.

A computesy = (2)* modp (Whereaa™! = 1 (modg)) and sends to B.

a bk~ 0N

B computesw’ = m* ™ mod p and accepts the signature if and only if
w=w'.

One can prove that the signature verification works as requir

—1

ary . ar)ail —

w=(2)" = (s"y"?)* = (m"« = m™a® = w mod p.

The disavowal process is similar.

Signature disavowal

The disavowal process determines whetes attempting to disavow a valid signa-
ture s using the verification algorithm (presented above), or Wwaethe signature
is a forgery.

1. B obtains an authentic copy af's public key(p, o, y).
B selects random secret integeisz, € {1,2,...,¢ — 1}.
B computes: = s™y*2> modp and sends to A.

A computesy = ()% modp (Whereaa™' = 1 (modg)) and sends to B.

a bk 0N

If w = m®a* modp, B accepts the signatukeand the protocol halts.

160

6 Digital Signatures

. B selects random secret integers v, € {1,2,...,q — 1}, and computes

2 = s"1y% modp, and sends’ to A.

7. Acomputesy’ = (z')* modp and sends’ to B.

If w' = m® a® modp, B accepts the signatukeand the protocol halts.

9. Bcomputes = (wa—"2)* modp andc’ = (w'a~*2)* modp. If ¢ = ¢, then

B concludes that is a forgery; otherwiseB3 concludes that the signature is
valid andA is attempting to disavow the signature

161

7 Hash Functions and Authentication
Codes

One of the most important area of network security is that eésage authentica-
tion and the related topic of digital signatures. It is altriogoossible to handle all

cryptographic functions and protocols that have been megpor implemented for
this application in the last twenty years. As such, the psepaf this chapter is to
provide a broad overview of the subject and introduce thet impgortant design

criteria. The basic approaches are surveyed, includingnitreasingly important

area of secure hash functions which are used in many cryggbgr protocols.

7.1 Authentication Functions

Message authenticatids a procedure to verify that received messages come fromassage authentication
the alleged source and have not been altered. It may alsfy w&guencing and

timeliness. Generally, message authentication is a nédiomeasures which deal

with following items [Stallings99a]:

1. Masquerade Insertion of messages into the network from a fraudulent
source. This includes the creation of messages by an oppibratiare purpo-
sed to come from an authorized entity. Also included areduéent acknow-
ledgments of message receipt or nonreceipt.

2. Content modification: Changes to the contents of a message, including inser-
tion, deletion, transposition, or any other modification.

3. Seguence modification Any modification to a sequence of messages bet-
ween parties, including insertion, deletion, and reorugri

4. Timing modification: Delay or replay of messages. In a connection-oriented
application, an entire session or sequence of messages loew reply of
some previous valid session, or individual messages ingtyeence could be
delayed or replayed. In a connectionless application, diviolual message
(e.g. datagram) could be delayed or replayed.

A digital signature is an authentication technique that atcludes measures to
counter repudiation by either source or destination. Galyera digital signature
technique will also counter some or all the attacks listeitems 1-4, with the
following item as additional:

e Repudiation: Denial of receipt of message by destination or denial ofdnais-
sion of message by source.

Any message authentication mechanism has two levels: Alothier level there

must be some sort of function that produces an authentieat@ue to be used authenticator
to authenticate a message. This function is then used agipenm a higher-level
authentication protocol that enables a receiver to vehiéyauthenticity of the mes-

sage. In this section we are concerned with different typé&snetions that may be

used to produce an authenticator:

162

7 Hash Functions and Authentication Codes

authentication with
conventional
encryption

authentication with
public-key encryption

e Hash functions,
¢ Message authentification codes (MAC).

The message encryption can also be seen as an authentfoaiition because the
ciphertext of the entire message serves as its authentigais is explained in the
following.

7.1.1 Message Encryption as Authentication Function

When A and B communicate using conventional (Symmetric) encryptioa,oan
say that the receiveB is assured that the message which came was generatéd by
(Fig. 7.1-1). The message must have come frbbrecaused is the only other party
that possesses the shared secretkeyd therefore the only party with the informa-
tion necessary to construct ciphertexts that can be desypith £ . Futhermore,

if m is recovered3 knows that none of the bits of. have been altered, because
an opponent that does not kndwwould not know how to alter bits in the cipher-
text to produce desired changes in the plaintext. So, we mpayhat conventional
encryption provides authentication as well as confideityial

Source A Destination B
<> <>
PFo—l—ab]

L] 1
K E,[m] K

Fig. 7.1-1: Conventional encryption: confidentiality and autherttma

The straightforward use of public-key encryption (Fig.-2.4) provides confiden-
tiality but not authentication. The sourceuses the public key<, 5 of the desti-
nation B to encrypt the message. Because only3 has the corresponding private
key K, 5 only B can decrypt the message. This scheme provides no authemntica
because any opponent could also use B’s public key to enamypssage, claiming
to be A.

7.1 Authentication Functions

163

Source Destination
a) Confidentiality
I
1
Kes Ey_[m] Ky
b) Authentication
and signature
o—0—¢
L] r
Kaa E, [m] K

d,A
c) Confidentiality,

authentication,
and signature —>. m m
T
dA

E [m]]' Ee, M

Ke,

Fig. 7.1-2: Asymmetrical encryption: confidentiality and authentiica.

Using the other key part, public-key encryption schemes loanever provide
authenticationA uses its private keyk; 4 to encrypt the message, aftuses A's
public key K., 4 to decryptit (Fig. 7.1-2 b). This provides a measure for antica-
tion: The message must have come frdrbecaused is the only party that posses-
sesK, 4 and therefore the only party with the information necessargonstruct
ciphertexts that can be decrypted usiig 4. This is the principle of constructing
digital signatures, although for digital signatures soaditgonal primitives are nee-
ded. Note that this scheme does not provide confidentidlityone in possession
of A's public key can decrypt the ciphertext.

To provide both confidentiality and authenticatiohcan encryptn first by using

her private keyK, 4, which provides message authentication, and then using B’s
public key K. 5, which provides confidentiality (Fig. 7.1-1 c). Note thatthis
case, the public-key algorithm which is very complex andvstoust be executed
four times in each communication.

7.1.2 Message Authentication Code (MAC) as Authentication
Function

An alternative authentication technique involves the usa secret key to gene-

rate a small fixed-size block of data, knownaagptographic checksuimr message cryptographic
authentication code (MACY his technique assumes that two communicating pagtiecksum
nersA and B share a common secret k&y. WhenA has a message fa@t, it calcu-

lates thel AC as a function of the messageand the keyiX' : M AC' = C'(K,m),

also denoted aS'x (m). This MAC is appended to the message and both are trans-

mitted toB. The process of concatenation is shown in the diagrammsgagytimbol

164 7 Hash Functions and Authentication Codes

||. WhenB receives the messageand its MAC, it uses the same secret K€yand
performs the same calculatiéh, (m) on the received messageto generate a new
message authentication MAC. Then, he compares the received MAC with the calculatesl (&ig. 7.1-3 a).
with MAC | the received MAC matches the calculated one, then théwecs is assured that
the message has not been altered, becausedahd B know the secret key. If
an attacket) (Oscar) alters the message, but does not alter its MAC, tleeMAC
calculated from the receive? differs from the received MAC which was calcula-
ted by A. Because the attackéris assumed not to know the secret key, he can not
alter the MAC for it to correspond to the alterations in thessage. The receivé?
is also assured that the message is from the alleged sdndecause no one else
could compute a proper MAC to the message (no one else kneveetiet keyy).

Source Destination

a) Message
authentication

E,[miiC, ()]

p—E—]
BE]

c) Authentication and confidentiality (M AC on the ciphertext)

E . [m]

E I Ao (D]
m ‘ L : m
§ = 2 Il Compare K,

C..(EIm])

Fig. 7.1-3: Basic uses of MAC.

message authentication Note that this process provides authentication but not denfiality, because the
and confidentiality ~message as a whole is transmitted unencrypted. Confidgntiah be provided by
with MAC performing message encryption either after or before theC\adgorithm. In both
cases, two separate ke}s (for MAC) and K, (for encryption) are needed, each
of which is shared by the senddrand the receiveB. In the first case, the MAC
is calculated with the message as input and is then condatet@athe message.
The entire block is then encrypted (Fig. 7.1-3 b). In the sdamase, the message is
encrypted first and then the MAC is calculated using the tegutiphertext and is
concatenated to the ciphertext to form the transmitteddylbig. 7.1-3 c). Typically
it is preferable to tie the authentication directly to thaiptext (case b). Note that
the MAC does not provide a digital signature because bottieseand receiver share
the same key.

7.1 Authentication Functions 165

7.1.3 Hash Function as Authentication Function

A variation of the message authentication code is the onehash function. A hash code = hash value
hash function accepts a variable-size messages input and produces a fixed-siz& message digest
hash codev = H(m) as output. The hash code is a function of all the bits of the

message and provides an error-detection capability: Agdanh any bit or bits in

the message results in a change to the hash code. The hasis aiftEn called

hash valueor message digest (MDNote that usually the hash function is publicly

known.

In order to provide message authentication a hash code caselen several ways message authentication
(Fig. 7.1-4). In figure a) the message and the concatenatt dwle is encryp- With hash codes
ted using conventional encryption, which enables confidktyt Because onlyA

and B have the secret key, the message must have comeAramd has not been

altered. The hash code provides redundancy required te\achuthentication. If

some application does not require confidentiality, thenalathentication only the

hash code is encrypted using conventional encryption (figifos can also be done

using public-key encryption (fig. ¢). This provides authestion, but also digital

signature because only the sender could have produced thgpeed hash code.

If confidentiality as well as digital signature is desireugn the message plus the

public-key encrypted hash code can be encrypted using symerkey (fig. d). Ano-

ther technique for providing authentication (fig. e) asssithat the two communi-

cating partiesd and B share a common secret valige The hash value ofn||S

is computed and appendedn#ta BecauseB knows S, it can recompute the hash

value and verify it. Because the secret value itself is not,ssn opponent cannot

modify an intercepted message. On this approach confidigntan be added by

encrypting the valuen|| H (m||S) before sending it to the other side (fig. e).

166 7 Hash Functions and Authentication Codes

a)A — B: Em]||H(m)]
- Confidentially (only A and B share K)
- Authentication (H(m) is cryptographically protected)

Source Destination

A
A"

Compare

K

m||H(m)]

H(m)

b) A —» B: m||E,[H(m)]
- Authentication (H(m) is cryptographically protected)

Compare

c)A — B:m||E,,[H(m)]
- Authentication and digital signature (H(m) is cryptographically protected,
only A could create E,,, [H(m)])

Compare

d)A —» B: Em|[E,, [H(m)]]
- Authentication and digital signature
- Confidentiality (only A and B share K)

K Compare

EcImlEg, [HmI]
Ey, [H(m)]

e,A

!
i
U

Compare

e)A —» B: m||H(m||S)
- Authentication (only A and B share S)

f)A —> B: EJ{m||H(m]|S)]
- Authentication (only A and B share S)
- Confidentiality (only A and B share K)

Compare

EIm ([HmIIS)]
H (m||S)

Fig. 7.1-4: Basic uses of hash functions.

7.2 Requirements for Hash Functions

The purpose of a hash function is to produce a "fingerprinta éfe, message, or
other block of data. Formally defined, a hash function is &fion A that maps a

7.2 Requirements for Hash Functions 167

messagen of any bit length into a fixed-lengthash value: (also callednessage definition of hash
diges), which serves as an authenticator: function

h = H(m).

The hash value is appended to the message at the source arardotansmitted
together. The receiver authenticates the message by retioigpthe hash value and
comparing it with the received hash value. Because the hasttion itself is not

considered to be secret, some additional protection of #sh value is required
(Fig. 7.1-4).

It will be necessary for the hash functidih to satisfy certain properties in order

to prevent various frauds. Since hash values are used nofanhessage authen-

tication, but are also a composing part of every digital aigre scheme, we have

to be careful that the use of a hash functiindoes not weaken the security of

the signature scheme (because the message digest is gigihélde message). A collision-free hash
collision-free hash functiois one of the basic requirements for achieving securitfinction
Intuitively, collision-freemeans that two messages which have the same hash value

can not be found. Because the notion "collision free” playseatral role in the

security analysis of hash functions, we will define this aotmore precisely.

V.: public verification function
authentic channel

S,: private signature function

v

m—» h —»h(m)—»| S, ———» (M, sig) »(m, sig)
unsecure channel
) |

h —»h(m)—>» V,

v

(true, false)

Fig. 7.2-1: Generation and verification of a digital signature with &g of a hash function for
compression.

Observe the general digital signature scheme in Fig. Avhére Alice sends a mes-
sagemn and its signatureig to Bob. The most obvious type of attack for an opponent
Oscar is to start with a valid signed messéage sig) wheresig = Sk (H(m)). (The
pair (m, sig) could be any message previously signed by Alice). Then hepotes

h = H(m) and attempts to find message # m such that.(m') = h(m). If Oscar
can do this(m’, sig) would be a valid signed message, i.doegery. In order to
prevent this type of attack, we require that the hash fundiichave the following
collision-free property:

168

7 Hash Functions and Authentication Codes

weak collision
resistance

strong collision
resistance

one-way property

properties required

Definition 7.2-1: Letm be a message. A hash functiins weakly collision-free for
m if it is computationally infeasible to find a messagé+# m such thatH (m') =
H(m). This property is called weak collision resistance.

Another possible attack is the following: Oscar first findg twmo messages: # m’
such thatH (m) = H(m'). Oscar then gives: to Alice and persuades her to sign
the message dige¢f(m), obtainingsig. Then(m/, sig) is a valid forgery. This
motivates to require a different collision-free property:

Definition 7.2-2: A hash functionH is strongly collision-free if and only if it is
computationally infeasible to find any two messageandm’ such thatm’ # m
and H(m') = H(m). This property is called strong collision resistance.

Observe that the hash functidih is strong collision resistant if and only if it is
computationally infeasible to find a messageuch that// is not weakly collision-
free form.

It is often possible with certain signature schemes to f@igeatures on random
message digests Therefore, we observe another kind of attack. Supposetan at
cker Oscar computes a signature on such a randasind then he finds a message
m such that, = H(m). If he can do this, thetm, sig) is a valid forgery. To prevent
this attack, the functio® must beone-way functioni.e. the function” can not be
inverted:m = H~1(h).

Definition 7.2-3: A hash functionH is one-way if, given a message digeésit is
computationally infeasible to find a messagesuch that (m) = h.

One-way functions are extremely important cryptographimives. Probably the
best known and simplest use of one-way functions is for pasfsv Namely, in a
multi-user computer system, instead of storing a table gihlpasswords, one can
store, for each passwoydthe valueh; = H(p;). At the login procedure passwords
can be easily checked by computifldp;) and comparing it with the stored value,
but even the system administrator can not deduce any usesvord by examing
the stored table.

Existence of one-way functions is a necessary conditiotherexistance of most
known cryptographic primitives, including secure enciyptand digital signatures.
But the current state of knowledge in complexity theory doatsallow to prove the
existance of one-way functions. So, we assume their existan

We now summarize the properties a hash functiomust have in order to be useful
for message authentication:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. h = H(m) is relatively easy to compute for any given (both in hardware
and software).

7.3 Size of the Hash Value (Message Digest) 169

4. m = H~'(h) should be infeasible to compute for any given cadene-way
property).

5. Weak collision resistance.

6. Strong collision resistance.

The first three properties are relevant for the practicaliegjion of a hash function,
and the second three for its security. The sixth propertgrsetio how resistant the
hash function is to a class of attacks known as the birthdaglatwhich we will
shortly examine in the next section.

7.3 Size of the Hash Value (Message Digest)

In this section we determine a necessary security conditiohash functions that
depends only on the size of the message digest produced Hbya#iefunction.
This necessary condition results from a simple method ofrfgndollisions which

is informally known as théirthday attack This terminology comes from the so-
calledbirthday paradoxwhich says that in a group of 23 random persons, at least
two will have the same birthday with a probability largerntH2. Before we state
the security conditions, we describe the birthday paradox.

7.3.1 The Birthday Paradox

The problem can be stated as followdhat is the minimum value of £ such definition of the
that the probability that at least two persons in a group of k people have the Pproblem
same birthday is greater than 0.57So, we ask for the probability thany pair of

persons in the group @f people have the same birthday. We will now try to give an

answer to this question. AB(n, k) we define the probability that we have at least

one duplicate irk items, where each item is able to take on one efjually likely

(probable) values betwedrandn. Thus, we are looking for the smallest valuetof

such thatP(365, k) > 0, 5.

It is easier first to derive the probability that there are mplatates, which we
denote as$) (365, k). If £ > 365, then it is impossible for all values to be different.
So, we assumé < 365. Now we consider the number of different ways for
having % values with no duplicates. We may choose any of3tie values for the
first item, any of the remainingt4 numbers for the second item, and so on. Hence,
the number of different ways is

365!

N:365364363 (365—k+1):m

The total number of possibilities 85" (each item can get any 865 values, with
or without duplicates). So, the probability of no duplicate simply the fraction of
the sets of values that have no duplicates out of all posséikeof values:

N 365!/(365—k)! 365!

-~ 365F 365" (365 — k)! 365~

Q(365, k)

170 7 Hash Functions and Authentication Codes

and

365!
. L L , 7.3-1
(365, k) Q(365, k) (365 — k)! 365% ’

P(365,k)

1

0.9

0.8~

0.7

0.6

0.5

0.4

0.3

0.2

0.1r

0 I I I I I I I
0 10 20 30 40 50 60 70 80 k

Fig. 7.3-1: The birthday paradox.

This function is plotted in Fig. 7.3-1. The probabilitiesese surprisingly large to
anyone who has not considered the problem before. We achignabability greater
than 0.5 already by chosing = 23, i.e. P(365,23) = 0.5073. Fork > 60, the
probability for having a duplicate is almost 1.

The birthday problem can be generalized to the followingegahproblem of
general case of duplications: Given a random integer variable with unifodmtribution between
duplications 1 andn and a selection of instancesX < n) of the random variable, what is the
probability P(n, k) that there is at least one duplicate? The birthday problgusts
a special case with = 365. By the same reasoning as before, we can generalise
the Eq. 7.3-1:
n!

In order to simplify Eq. 7.3-2, we use the well known ineqgtyali

(1—z)<e™ forall x>0.

7.3 Size of the Hash Value (Message Digest) 171

Then we can rewrite the Eq. 7.3-2 as:

P@Jﬂ:l—at%iﬁ;: 1_n%n—U-2%%n—k+n
:1—[n;1-n;2 -n_f;Jrl]
e (I Y B ()
>1-— [(e—l/N) . (e—z/n)_ _____ _(e—(k’—l)/n)]

>1— e—[%+%+ +E1 1_ e—%-(1+2+....+(k—1))

Finally, we have the simplified relation for the probabiliyn, k):

_ k(-1

P(n,k)>1—e 2n . 7.3-3
Using Eq. 7.3-3 we can find for which value bive haveP(n, k) > 0, 5: 50 % probability for
. duplication

1/2=1—¢ "5

_ k(k—1) 1
1/2 = e 2n e m

€ 2n
k(k=1) k(k—1)

2=¢ = = In(2) = 5
n

For largek we can replacé - (k — 1) by k* and we getn(2) = k?/2n, i.e.

k=+2-In(2) -n=1,18y/n = /n. 7.3-4

We can prove that Eq. 7.3-3 gives very good approximation:rFe: 365 we get
k = 1,18+v/365 = 22.54, which is very close to the correct ansviasc

7.3.2 Lower Bound on the Sizes of Message Digest

The result of the Eq. 7.3-4 says that hashing just q¥errandom values yields a
collision with probability of50%. The birthday attack imposes a lower bound on
the size of message digests. Suppose we have a hash fuActioti 2" possible
outputs (i.e. amn-bit output). If H is applied tok random inputs, then the value of
k so that the probability of at least one duplicate (Héx) = H(y) for some inputs
x,y) is 1/2 can be computed as:

k=+V2m = 2m2,
A 40-bit message would be very insecure, since a collisiariccbe found with recommendable size
the probability of50% with v/240 = 220 (about a million) random hashes. It isfor message digest

usually suggested that the minimum acceptable size of aagesBgest is 128 bits.
In this case the birthday attack will require o2&t hashes. The choice of a 160-bit
message digest for use in the digital signature standar@)@&s motivated by
these considerations.

172 7 Hash Functions and Authentication Codes

7.4 Construction and Classification of Hash

Functions

Hash functions are usually implemented as a sequence dastoimpression steps
(iterations) through which a messageis processed block-wise viacampression

compression function functionto a hash valué(m), as illustrated in Fig. 7.4-1. An input messageof
arbitrary finite length is divided into fixed-lengthbit blocksm;. This preprocess
typically involves appending extra bits (padding) as nsagsto attain an overall
bit length which is a multiple of the block length) and often includes for security
reasons a block indicating the bit length of the unpaddedtiripach blockn; then
serves as an input to an internal fixed-size compressiortiumavhich computes
a new intermedia result of bit length (£ is fixed), as a function of the previous
k-bit intermediate result and the next input blogk If #; denotes the partial result

general model after the;!” iteration, the general process for the input= m;ms,......m; can be

represented as:

arbitrary length input m

Y

iterated
compression
function

fixed length output

optional output
transformation

output

Fig. 7.4-1: General model for an iterated hash function.

classification Regarding the design of the compression function, the pogsising and the output
transformation, we distinguish between four categorigteoated hash functions:

1. Hash functions based on symmetric block ciphers,
2. Hash functions based on modular arithmetic,

3. Dedicated hash functions, and

4. Provable secure hash functions.

7.4 Construction and Classification of Hash Functions 173

Hash functions based on symmetric block ciphers make itijplest& use cryp-
tographic techniques which are already implemented anguke the know how
for designing new block ciphers that already exist. Theiefficy of a hash function
based on modular arithmetic (e.g. asymmetric cipher) wosiglly not be accepta-
ble. The third group contains dedicated designs for hasttifums. These techniques
were developed for a more efficient software implementaf@dicated hash func-
tions have become more and more important in recent yeawally-the category of
hash functions must be mentioned whose security is provadaler certain assump-
tions. However, the constructions known so far do not hayepsactical meaning
due to their inefficiency. In the following we concentratelash functions which
are based on symmetric ciphers and dedicated hash functions

7.4.1 Hash Functions Based on Block Ciphers

Motivation for constructing hash functions from block ogoh is that if an efficient motivation
implementation of a block cipher is already available (@itim hardware or in soft-

ware), then using it as hash function may provide additidmattionality almost

without any additional cost. The idea is that if the blockaaithm is secure, then security
the one-way hash function will also be secure. The blockeriphiteratively used

as an internal compression function.

If (n,7) denotes a block cipher defining an invertible function frerbit plain-
text ton-bit ciphertext using an-bit key, then the hash functions constructed from
this block cipher are divided into those producing singleeth (2-bit) and double-
length @n-bit) hash values. The motivation for double-length hastcfions is that
many n-bit block ciphers exist of size approximately = 64, and single-length
hash-codes of this size are not collision resistant. In timplest case, the size of
the key used in such hash functions is approximately the sarttee block length of
the cipher (i.en bits). In other cases, hash functions use larger (e.g. édebbth)
keys. One useful measure for hash functions based on blptiers is thehash
rate, or the number of:-bit message blocks processed per encryption. The highesh rate
the hash rate, the faster the algorithm.

Suppose that using the encryption functibi (m) we want to produce the hash

valueh of the message: which can be subdivided intosubblocksn; which are construction
processed individually ani, is some random initial valugV. The general scheme

is as follows (see Fig. 7.4-2):

C
A
* l @ denotes bitwise XOR
B —» Key @ A, B, and C can be either m,h.,
Encrypt m, @ h,,, or a constant

Fig. 7.4-2: General hash function based on symmetric block cipher.

174

7 Hash Functions and Authentication Codes

Davis-Meyer hash
function

ho = IV, where IV is arandom initial value
h; = E4(B) & C (for all blocks 7)
h = hy

where A, B and C' can be eithetn;, h;_1, (m; ® h;_1), or a constant. The three
different variables can take on one of four possible valseshat there are 64 total
schemes of this type. 15 are trivially weak because thetrdsels not depend on
one of the inputs. 37 are insecure for more subtle reasotisvBie remaining 12
secure schemes are listed:

1. = Ep,_,(m;) & m,
=FEp,_ (mi ®hi—1) ®m; ® hiy
= Ep,_ (mi) ® hi-1 ©@my
= Ep,_,(m;) & m;
= Ep,(hiz1) ® hiy
= Enp,(m; @ hio1) ®m; @ hi—y
= Epn, (hi—1) ®m; @ hi—y
= En,(m; ® hi—1) ® hi_4
= Em,an, (m:) & m;
= Enon,(hiz1) ® hiy
= Eneon,(m;) ® hi—y
12. h; = En,en,(hi-1) ®m;.

>
ST ST ST ST ST

S

S

© 0N o gk Db

S

H
©

S

S

H
=

The first scheme was described in 1985 by S.M. Matyas, C.Hekayd J. Oseas
from IBM and is also known as Matyas-Mayer-Oseas hash fancifhe second
scheme is known as N-Hash (described in 1990 by Miyaguchia,@hd Iwata) and
was proposed as an ISO standard. The fifth scheme was propp<ear! Meyer,
but in the literature it is commonly called Davies-Meyer Ih&snction. The first,
second, third, fourth, ninth, and eleventh schemes havslaitade of 1 i.e. the key
length equals the block length. The others have a rate/of wherek is the key
length.

Davis-Meyer Hash Function

Given a message: which can be divided inté blocksm;, its Davis-Mayer hash
valueh can be computed with iterations as shown in Fig. 7.4-3 [Wimte84]. The
hash value has the same length as the block value.

7.4 Construction and Classification of Hash Functions 175

. h;.
i ll ! Davis-Meyer hash function:
Key i h, = IV (random initialisation)
% T Enerypt | S h = E,(h)®h,Vi=1.b
h =h,
lmi Modified Davis-Meyer hash
hip function:
Key h; o
4y h, = IV (random initialisation)
Encrypt h =E, ()Y =10
h =h

Fig. 7.4-3: Davis-Meyer hash functions.

Lai and Massey modified the Davies-Meyer technique to wotk thie IDEA (Inter- Modified Davis-Meyer
national Data Encryption Standard) cipher [Lai92]. IDE/As|&#-bit block size and hash function
128-bit key size. This function hashes the message in blotc&d bits and produ-

ces 64-bit hash values (see Fig. 7.4-3). No other attack isrsttheme is known

than brute force. There are also other modifications of thgdvieash function, for

example parallel Davies-Meyer (hash rate 1 which produess kalues twice the

block length), Tandem Davies-Meyer, and Abreast DaviegeMéboth have hash

rate 1/2 and 128-bit hash values).

Matyas-Meyer-Oseas Hash Function

h_ m Matyas-Meyer-Oseas hash
o ¢ l function:
Key
m > >@ Jl,. ho = IV (random initial'%sation)
! Encrypt Zz :hEhi_l(mi) ®m; ,Vi=1.b
=hy

Fig. 7.4-4. Matyas-Meyer-Oseas hash function.

This hash function was presented in 1985 by Matyas, MeyeOms@s [Matyas85]. Matyas-Meyer-Oseas
It is a strong one-way function and has the hash rate 1. Théekegh equals the hash function

block length. The principle is shown in Fig. 7.4-4. Input bétalgorithm is a bit-

string (message):, which is divided inton-bit blocks and padded, if necessary, to

complete the last block. The padded message consigtstuf blocks:mms....m.

A constantz-bit initial value IV must be pre-specified.

176

7 Hash Functions and Authentication Codes

Meyer-Shilling hash
function

Meyer-Shilling Hash Function

This hash function was first developed by C.H. Meyer and Mlli8biat I1BM
[Meyer88] and is sometimes also known as MDC-2. It has a hatghaf1/2 and
produces a hash value twice the length of the block size.slhdsvn in Fig. 7.4-5.
It has two hash values; and g; which are initialized with different random initial
valueshq, and go. The algorithm is patented and is secure with respect teentirr
computing power. The specifications use DES as block funcadithough every
encryption algorithm can be used.

8i-1 ¢ R [

—> g;
Encrypt

Encrypt

Y

3

\ 4
v
>~

Key

h i-1

Fig. 7.4-5: Meyer-Shilling hash function

Many other hash functions based on block ciphers have begoged: Quisquater-
Girault, MDC-4, AR, Miyaguchi-Preneel etc. The interestedder can find more
information in the original litareture or in [Menezes96apdSchneier96a].

7.4.2 Hash Functions Based on Modular Arithmetic

The basic idea of hash functions based on modular arithnsaticconstruct an ite-
rated hash function usingod n arithmetic as basis for the compression function.
Motivating factors are re-use of existing software or haacefor modular arith-
metic and scalability to match required security levels.igngicant disadvantage
however is that the computation of these functions is vesysl

7.4 Construction and Classification of Hash Functions 177

Exponentiation modulon = pq

If n = pq is the product of two large primes ands chosen so thakd(e, ¢(n)) = exponentiation modulo
1, then the modular exponentiation functiéhdefined byE(m) = m® mod nis 7 =prgq
a trapdoor one-way function. If we don’t have the trapdoald{ional informa-

tion needed to invert the function), we can not determineuthienownm when

E(m) is given. The only practical method to find is to use the exponemtwith

ed = 1 mod p(n) and calculate? mod n. Thus, invertingZ without the trapdoor
appears to be as difficult as factoring This is the basis of the MASH (Modular
Arithmetic Secure Hash) hash function which has been pexpé® inclusion in a

draft ISO/IEC standard. The bit length of the modutusaffects the security, and

also determines the block size of the messages to be prdcasdehe size of the

hash value (e.g. 512-bit modulus yields a 512-bit hash yalue

Exponentiation in a finite field

For any prime powey the multiplicative group of the finite field 7'(¢) of order

q is cyclic. If ¢ is a large prime power and is a primitive element of7F(q)

(i.e. generator of the cyclic multiplicative group), thametfunction defined as

E(m) = a™ mod ¢ is a one-way function. In practice it appears that the onlgdie exponentiationin a
that are used for implementations &'é’(p) wherep is large prime oG F'(2") for finite field
largen. Findingm from E(m) would mean to find the discrete logarithm Bfm)

to the base: in GF(q). The computation off(m) = a” mod p requires at most

2log, x operations while the best general algorithms known foraeting loga-

rithms modulop require a precomputation of the ordereah ((In p)'/?(InIn p)'/?)
operations. Arithmetic irGF'(2") for largen can be performed faster than arith-

metic over large primes, so there is some reason to prefeorthevay function

E(m) = a™in GF(2"). In this case: determines the block size of the messages to

be processed and the size of the hash value.

Squaring modulon

If n = pg wherep andq are two large primes, then the functiéiim) = m? mod n squaring modulon
is a trapdoor one-way function, where the trapdoor inforomas the knowledge of

the prime factors. Inverting'(m) (finding m from E(m)) means finding a square

root of E(m) modulon. The operation of computing square roots moduloan

be performed efficiently when is a prime, but is difficult whem is a composite

integer whose prime factors are unknown (computationajiynalent to factoring).

The integem determines the block size of the messages to be processatieand

size of the hash value.

178

7 Hash Functions and Authentication Codes

dedicated hash
functions

MD4

MD5

7.4.3 Dedicated Hash Functions

Dedicated or customized hash functions are those whichpaaaily designed for
the explicit purpose of hashing, with optimized performaint mind, and without
being constrained to reusing existing system componeits &si block ciphers or
modular arithmetic. Those which have received the greatesttion in practice are
based on the MD4 hash function. MD4 is the fourth functiorhim$erie of message
digest algorithms and was designed specifically for sofviraplementation on 32-
bit machines. Security concerns about MD4 motivated thesldgwment of MD5
shortly later, as a more conservative variante of MD4. Oimgrortant subsequent
variants are SHA-1, RIPEMD-128 and RIPEMD-160.

Message Digest 4 (MD4)

MD4 is a one-way hash function designed by Ron Rivest [Rivest@@ algorithm
has a message of arbitrary length as input and produces hitLB8sh value. The
original MD-4 design goals were that breaking it should regjroughly brute-force
effort. MD4 is suitable for high-speed software impleméiotabecause it is based
on a simple set of bit manipulations on 32-bit operands. rAttte algorithm was
introduced, it was cryptanalytic attacked by Merkle, Bihamnd others. Collisions
have been found i?*° compression function computations. After this attack gRtv
strengthened the algorithm and the result is MD5.

Message Digest 5 (MD5)

MD5 was designed as an improved version of MD4 [Rivest92]. Altiftomore

complex than MD4, it is similar in design and also produce&8&Mit hash. Since
MDS5 is one of the most used hash algorithms, we will now désdtiin some more
detail to illustrate how it works.

a) MD5 main loop
Initial values (hex):

A > — > > I A = 01234567
g > Round 1 3Round 2[5 Round 35|Round 4 :f_gg_, g n
D > L > L > B> p B = 89abcde f
C = fedcba98
D = 76543210
b) One MD5 operation
Mt The four nonlinear functions are:

fi(z,y,2) = (@ Ay) vV ((-z) A 2)

Sninea Yy V VY fQ(I, Y, Z) = (.Z’ A y) \ (y A (_\Z))
function > >EH>EE>E<<S>H] f3(z,y,2) =z Pyd=z
)

fa(z,y,2) =y @ (zV (=2))

aloo|w

Fig. 7.4-6: MD5 hash function.

7.4 Construction and Classification of Hash Functions 179

After some initial preprocessing, MD5 processes the inpxt iin 512-bit blocks
(if necessary the message is padded until its length is apteutif 512), divided
into 16 32-bit subblocks. The output of the algorithm is acfdbur 32-bit blocks,
which concatenate to form a single 128-bit hash value. THeiBzariablesA, B, C,
andD, also called chaining variables, are initialized with fixedues (see Fig. 7.4-
6). Then, the main loop of the algorithm begins and the rowardsrepeated for
every 512-bit message block. The four variables are copiteddifferent variables:

a getsA, b getsB, c getsC andd getsD. The main loop has four rounds which are
very similar. Each round uses different operation 16 tirk@sh operation performs rounds in MD5
nonlinear function on three af, b, ¢, andd. Then it adds the result to the fourth
variable, a subblock of the text/; and a constant;. Then it rotates that result a
variable number of bits to the right and adds the result toadaeb, ¢, or d. Finally,
the result replaces one afb, ¢, ord.

There are four nonlinear function$(z, y, z), one used in each operation (a diffe-

rent one for each round). These functions are designed & tha corresponding

bits of =,y and =z are independent and unbiased, then each bit of the resuilt wil

be independent and unbiased. 13} represents thgth subblock of the message

(j = 0,..,15), and<<< s represents a left circular shift afbits®!, then the ope- operations in each
rations in each round of MD5 (shown in Fig. 7.4-6 under b) carrdpresented round

as:

Fi(a,b,c,d, M;,s,t;) denotes a = b+ ((a+ fi(b,c,d) + M; +t;) <<<s)
Fy(a,b,c,d, M;,s,t;) denotes a = b+ ((a+ fa(b,c,d) + M; +t;) <<< s)
Fs(a,b,c,d, M;, s, t;) denotes a = b+ ((a + f3(b,c,d) + M; +t;) <<<s)
Fy(a,b,c,d, M;,s,t;) denotes a = b+ ((a + fa(b,c,d) + M; + ;) <<< s).

The number of shift bits in each round, the constarttsand the order of the sub-
block M; have been determined by the designer, and the four rounds€pg) are
shown in Table 7.4-1.

31 The constants; are chosen in the following way: In stept; is the integer part 032 -
abs(sin(i)), wherei is in radians.

7 Hash Functions and Authentication Codes

180

(16£P9892 ‘1T ‘677 ‘v ‘p 2 q

(G99GoDT2 ‘€T ‘TN ‘v P D Q)&

(DRIFDEPS ‘0T ‘TN ‘D ‘P 2 4q)%,

(1280796¥ ‘T ‘<Y ‘v ‘p 9 q

(QqzpLpPZ ‘T eV ‘@D ‘p ‘o

(842LP T 91 <1y q'» P 9)¥

(6P20£9L9 “F1 LN ‘q ‘D ‘p D)%

(98€F6.L9D LT VI ‘D PO

(gezfogpe o1 ‘MY 9 g0 p

(G266qP92 ‘11 ‘TN 92 'q ‘v ‘p)%

(8f€nfaof 6 e 2°q ‘v 'P)7

(6128664 ‘1 €Ty 9 ‘9'v‘p

(282LECLS 9 TN ‘po‘q‘D

(6£0PTP6P ‘T SV ‘P 0 ‘q ‘D)E

(G062€26D ‘G ‘Elpy ‘po‘q‘D

(22110699 ‘L TN ‘p2‘q‘p

(IPT1802% ‘1T ‘€1w ‘v ‘P2 °q

(SOPT88F0 ‘€T ‘9 ‘D P 2 q)E

(PaTTIDGST ‘0T ‘B0 ‘D ‘P 2 q)¢

(29Lpoc68 ‘2T ‘TN ‘v ‘poq

(PIEFTOED ‘GT ‘O ‘@D ‘p D

(GROES2TP ‘91 ‘N ‘@ ‘v ‘p 9)%&

(L8POSPTS ‘FT ‘SN ‘9D ‘p D)%

(19984 £ 4§ L1 O “g‘vp D

(02920g2f ‘01 ‘St 09D ‘p

(0f2g10D2 ‘TT ‘Opy 2 'q ‘D ‘p)%

(9PL0LEE? ‘6 VIV 2 q ‘D ‘p)7

(SLIT798 ‘CT ‘6N “2°q ‘D ‘p

(TPPSYRE] ‘1T ‘TN ‘v ‘p 9 q

(0229£92q ‘ez Oty ‘v “p 0 4q) €

(829/€pL2 0T ‘7T ‘D P 2°q)%

(109697PS ‘Tz “4iv ‘v ‘p 9 4q

pLyffoffe1 0y ‘@ivp

(09979994 91 ‘47 ‘q ‘v ‘p)&

(18921D8p ‘F1 STy ‘q ‘v ‘p)T

(ET9F0€8P ‘LT ‘O ‘@D ‘p D

(2699904801 ‘€W 2 ‘q‘D‘p

(6D29pq¥ ‘11 TV 2“9 ‘v ‘p)%

(ESPTFFT0 ‘6 ‘O 99 ‘D ‘)T

(DZYIL8LY ‘TT SV 2 ‘q‘D ‘p

(€96G9GC9 ‘9 Ty ‘po‘q‘p

(FPDo2qyD 7 Ty ‘p 2 ‘q ‘D)€

(PSOTS29pP ‘C SV ‘P 2 ‘q‘D)T

(fofooL6f LYW ‘po‘qp

(6807624 ‘1T S ‘v ‘P2 g

(208¢gop S ‘€T VI ‘v P q)¢

(71229962 0T O\ ‘D ‘P 2 ‘q)%,

(9090pqT2 ‘g ‘€7 ‘v ‘P2 °q

(Lpeeheqp ‘GT VI Qv p o

(2T19P6P9 ‘9T ‘TN QD ‘p 9)¢

(1GPGIGIT “F1 ‘TN ‘q ‘D P D)%

(QPOLOTHT ‘LT ‘TN ‘q ‘D ‘p 0

v
v
v
v
v
v
v
(J72L8PS9 9 S ‘P2 D)V
v
v
v
v
v
v
v

(L64 foTer 014w 9 9'vp

)
)
)
)
)
)
)
(9992968% ‘T “EL7 ‘P2 ‘q ‘D)
)
)
)
)
)
)
)

(IS9STLLS‘TT 8y 9 ‘q‘vp)E

)
)
)
)%
)
)
)
(99p2121¢ ‘G ‘S ‘P 2 “q ‘)%
)
)
)
)
)
)
)

(07£90702 ‘6 27V 2“9 ‘v ‘)%

v
v
v
v
v
v
v
(8P860869 ‘L SV ‘P 9 ‘q ‘) '
v
v
v
v
v
v
v

(96292982 ‘ZT 1y 2 ‘v ‘p

(FFae6ahs 9 O ‘P2 q 0) Ty

(ev6enf 1 VW ‘po‘qn)ey

(29622194 ‘G Tv ‘P2 °q ‘)T

(8LYPDYLP ‘L O] ‘P 9 q ‘D)L

¥ punoy

€ punoy

Z punoy

T punoy

‘GAN ul suonelado punoy :TI-v°/ "gel

7.4 Construction and Classification of Hash Functions 181

As we see, each step has a unique additive constant. Eachddepn the result

of the previous step, and this promotes a faster avalanébet.eThe left circular avalanche effect
shift amountss in each round have been approximately optimized to yieldsa fa

ter avalanche effect. The four shifts used in each round iffexeht from the ones

used in other rounds. While no collisions for MD5 have yetrbémund, collisi-

ons have been found for the MD5 compression function, bstdbes not lead to

attacks against MD5 in practical applications. Regardbé$isis weakness, MD5 is

widespread used in practice.

Secure Hash Algorithm (SHA)

The secure hash algorithm (SHA), based on MD4, was propos#ebli)S National SHA
Institute for Standards and Technology (NIST) for certatd fdderal government
applications [NIST92]. SHA is also used in the Digital Sigma Standard (DSS).
The standard is the Secure Hash Standard (SHS) and SHA igytivéltan used in

this standard.

When a message of any length2% bits is input, the SHA produces 160 bit hash
value (longer than MD5!). SHA is designed to be computatigniafeasible to
recover a message corresponding to a given message digestinol two different
messages which produce the same message digest.

- Initial values (hex): A = 67452301

W, K B = efcdabs89 C = 98badcfe
' $_’é D = 10325476 E = ¢3d2e1 f0
a —»B%—»Bﬂ(|

- Constants used in the algorithm:

Kt = 5a827999, for t = 0 to 19

for t =16 to 79

a
e \ bi K¢ = 6ed9ebal, for t = 20 to 39
Kt = 8f1bbede, for t = 40 to 59
C | g-function c K = cab2c1d6, for t = 60 to 79
d ! d - Transformation of the mess. blocks M; into words W;:
i-1 Wi = My, for t =1 to 15
e Wi = Wiz @ Wi_g ® Wi_14 & Wi_16 <<< 1),

Fig. 7.4-7. One SHA operation.

We now will briefly describe how SHA algorithm works to pro@uthe 160-bit

hash value. First the message is padded to make it a mulfipE2dits. Five 32-bit

variablesA, B, C, D, andE (needed to produce a 160-bit hash value) are initialized

as shown in Fig. 7.4-7. Then the main loop of the algorithmitedt processes

message blocks of 512 bits at a time and processes all blétke message. First

the five variables are copied into different variablegets A, b gets B, and so on.

The main loop has four rounds of 20 operations each (MD5 hasrtminds of 16 main loop of SHA
operations). Each operation performs a nonlinear funaiothree ofs, b, ¢, d, and

182

7 Hash Functions and Authentication Codes

comparison of SHA
and MD5

RIPEMD-128

e, and then does shifting and adding similar to MD5. The nadmfunctions of
SHA are:

(x,y,2) =(xAy)V((-z) AN z), fort =010 19
(r,y,2) =@y Pz fort=20t039

(x,y,2) =(xAy)V(xAz)V(yAz), fort=40to59
(x,y,2) =xPydz fort=60t079.

T

The four constant; used in the algorithm are shown in Fig. 7.4-7. The message
block is transformed from 16 32-bit wordd/4, to M;;) to 80 32-bit wordsiV,

to Woy (see Fig. 7.4-7). It is the operation number (from 1 to 80) ardk< s
represents a left circular shift efbits, then the main loop is:

FORt =0to 79
TEMP = (a <<<5)+ f_t(bye,d)+e+W_t+ K_t

e=d

d=c

c=b<<<30

b=a

a=TEMP
END

After this,a, b, ¢, d, ande are added ta\, B, C, D, and E' respectively and the algo-
rithm continues with the next block of data. The final outuhie concatenation of
A, B,C,D,andFE.

SHA has additional expand transformatia¥f,(to 1), an extra round, and better
avalanche effect. A significant effect of the expansion ein8d message blocks
to 80 word block in the compression function is that any twstidct 16-word
blocks yield 80-word values which differ in a larger numbébi positions, signi-
ficantly expanding the number of bit differences among ngssaords input to the
compression function. The redundancy added by this prepsiieg evidently adds
strength. The designers of SHA did not publish the desigarzaifor the algorithm.
There are no known cryptographic attacks against SHA. Becaiproduces a 160-
bit hash, it is more resistant to brute-force and birthdggcs than the 128-bit hash
functions.

Other Dedicated Hash Functions

RIPE-MD: The research and Development in Advanced Communicatioh-Tec
nologies in Europe (RACE) programm was launched by the EraonpgCommu-
nity to support pre-normative work in communication stamddaand technologies.
As part of this effort, RACE established the RACE Integritynfitive Evaluation
(RIPE) group, consisting of six leading European cryptpgyaresearch groups,
to put together techniques to meet the anticipated secwtjyirements for Inte-
grated Broadband Communication (IBC). Within this proje¢lse RIPEMD (RIPE
Message Digest) hash function was developed, also denstetP&EMD-128. The

7.4 Construction and Classification of Hash Functions 183

algorithm is a variation of MD4, designed to resist knownatanalytic attacks, and
produces a 128-bit hash value [RACE92].

Taking into account the knowledge gained in the analysis @4MMD5, and
RIPEMD-120, the hash algorithiRIPEMD-160was developed. The RIPEMD-RIPEMD-160
160 compression function differs from MD4 in the number ofrdgof chaining

the variable, the number of rounds, the round functions tedves, the order in

which the input words are accessed, and the amounts by wéscHis are rotated.

The overall RIPEMD-160 compression function maps 21-wanglts to 5-word

outputs. Each input block is processed in parallel by distwersions of the com-

pression function. The 160-bit outputs of the separateslare combined to give a

single 160-bit output.

Tab. 7.4-2: Summary of the most used hash functions.

Hash Bitlength | Rounds x Steps per round Relative
function Speed
MD4 128 3x16 1.00
MD5 128 4x16 0.68
RIPEMD-128 128 4 x 16 twice (in parallel) 0.39
SHA-1 160 4x 20 0.28
RIPEMD-160 160 5 x 16 twice (in parallel) 0.24

HAVAL is a variable-length hash function presented in 1993 by gheinal. HAVAL
[Zheng93]. It is based on MD5 and processes messages insbtiick024 bits
(MD5’s blocks are 512 bit), and has eight 32-bit chainingialsles (MD5 has

four). HAVAL replaces MD5’s simple nonlinear functions Wwihighly nonlinear
7-variable functions. Each round uses a single functionirbevery step a different
permutation is applied to the inputs. It has a new message ardl every step uses

a different additive constant. It has a variable number ahds, from three to five,

each having 16 steps, and it can produce a hash length of 628,192, 224, or

256 bits. The variable number of rounds and the variablgtleautput result in 15
versions of this algorithm.

Snerfuis a one-way hash function designed by Ralph Merkle [Mei®]eBhe heart Snerfu
of the algorithm is a functioi#/, which hashes 512-bit message blocks into 128-bit
values. The next block is appended to the hash of the prebiogk and is hashed
again. After the last block the first 128 bits are appendediimary representation

of the length of the message and is hashed one final time. Tiotida H is based

on areversible block cipher function that operates on SiBHicks and randomizes

data in several passes. It is recommended to use Snerfu Websd eight passes.
However, in this case the algorithm is significantly slowenrt either MD5 or SHA.

184

7 Hash Functions and Authentication Codes

provable security

CHP hash function

7.4.4 Provable Secure Hash Functions

Most hash functions used in the practice are heuristicaltyige. But a desired fea-
ture of cryptographic primitives is the provable securfycryptographic method

is said to beprovably securef it can be shown that breaking the method is essen-
tially as difficult as solving a well-known problem, such ateger factorisation or
the computation of discrete logarithms. Hash functionsalaa be designed using
some of this hard solvable number theoretic problems askefrthe compression
function. A challenge in this approach is that all possilitacks lead to the ability

to solve the referenced problem, which is considered iitfésagiven current know-
ledge and an opponent with bounded resources.

Chaum-van Heijst-Pfitzmann (CHP) Hash Function

One example for a provably secure hash function is the ChammHeijst-
Pfitzmann CHP) hash function [Chaum92], based on the discrete logarithon p
blem. It is defined as follows: Suppoges a large prime and = (p — 1)/2 is
also prime. Letv and 3 be two primitive elements di,. The valuelog,, (/) is not
public, and we assume that it is computationally infeasibleompute this value.
The hash function

h: {0,...,¢q—1} x{0,...,q—1} — Z, \ {0}
is defined as follows:
h(z1,x9) = & %2 mod p.

This hash function will be secure, if a particular discratgdrithm can not be
computed. It can be prové&dthat if one collisionh(zy,xs) = h(xs,z,) for
(r1,79) # (w3,74) Of the CHP hash function can be found, then the discrete
logarithmlog, 3 can be computed efficiently. This hash function is not fasiugi
to be of practical use, but it is conceptually simple and les a nice example of
a hash function that can be proved to be secure under a rédsauanputational
assumption.

7.5 Message Authentication Codes (MAC)

A message authentication code (MAC), also knowargiptographic checksujis a
functionC of a variable-length messageand a secret kel shared only by sender
and receiver, that produces a fixed-length valid C that serves as authenticator:

MAC =C(K,m) or MAC = Cg(m).

Actually, MAC is a key-dependent one-way hash function vehggecific purpose
iIs message authentication. MACs have the same propertidgeame-way hash

32 The proof is out of the scope of this book. The proof is exgld in [Stinson95b].

7.5 Message Authentication Codes (MAC) 185

functions discussed previously, but they also include a Kais implies the main
difference between message authentication with MACs ast hanctions: Ever-
yone can prove whether a messagés authentic if the authentication is performed
with a hash function, but only someone with an identical kay eerify the MAC.

A MAC should have the following properties: properties

e Ease of computation: For a known functiéfy given a keyK and an input
m, C'x(m) is easy to compute.

e Compression: The functioff maps the inputn of arbitrary length to an output
Ck(m) of fixed bit lengthn.

e Computation resistance: Given text-MAC pairs;, M AC;) it is computatio-
nally infeasible to compute any text-MAC pdim, M AC') for any new input
m # m;. The feature of computation resistance implies the prgudrkey non-
recovery(it must be computationally infeasible to recov€rfrom one or more
pairs(m;, M AC;) for that K.

In general, the MAC function is a many-to-one function. Tloenain of the func-
tion consists of messages of some arbitrary length, whéneasinge consists of all
possible MACs and all possible keys. If arbit MAC is used, then there aB& pos-
sible MACs whereas there ané possible messages witki >> 2". Furthermore,
with a k-bit key, there ar@* possible keys.

MACs are very useful to provide authenticity without segrethey can be used
to authenticate files between users, or if the files of some hesee been altered
(perhaps by a virus). A user can compute the MAC of his filesshoc it in a table,

and use it later for comparison. This can not be achieved mgushash function

for message authentication, because, for example, the gan compute the new
hash value of the altered file and replace the table entrggsirkey is not used). An
easy way to turn a one-way hash function into a MAC is to ericityp hash value

with a symmetric algorithm. Vice versa, any MAC can be turimgd a one-way

hash function by making the key public.

Requirements for MACs

In assessing the security of a MAC function, we need to camsitk types of attacks security of MACs
that may be mounted against it. An objective of an adversarg MAC algorithm s

the following:Without prior knowledge of the key K, compute a new text-MAC

pair (m, Ck(m)) for some textm # m;, when one or more pairs(m;, Cx(m;))

are given.So, the opponent should not be able to construct a new metssagech

a given MAC, it is however not necessary to reconstruct thye/Ke Similar to the

situation for signature schemes, the following attack ades exist for MACs:

e Known-text attack: One or more text-MAC pairs.;, Cx(m;)) are available.

e Chosen-text attack: One or more text-MAC pdirs;, C'x (m;)) are available for
m; chosen by the adversary.

e Adaptive chosen-text attack: The, may be chosen by the adversary as above,
and successive choices based on the results of prior qaeeediowed.

186

7 Hash Functions and Authentication Codes

CBC-MAC

The functionC'x (m) should be uniformly distributed in the sense that for raniyom
chosen messages andm/, the probability thatx (m) = Ck(m') is 27", where

n is the number of bits in the MAC. This requirement deals whitk heed to thwart

a brute-force attack based on chosen plaintext. That isg i$sume that the oppo-
nent does not know the key but does have access to the MAC function and can
present messages for MAC generation, then the opponert tryularious messa-
ges until finding one that matches a given MAC. If the MAC fuoistis uniformely
distributed, then a brute-force method would require on\aarame2" ! attempts
before finding a message that fits a given MAC.

Key recovery of the MAC itself is, of course, the most damaging attack. Atey
force attempt to discover the authentication key requi@dess effort than that
required to discover the decryption key of the same length.

7.6 Some MAC algorithms

Compared to the large number of hash functions, relatively MACs have been
proposed. Many of these are for historical reasons basetbok tiphers. Many ite-
rated MACs can be described as iterated hash functions {geé.&1 and Eq. 7.4-
1). In this case, the MAC key is generally part of the outpamn&formatiory. It may
also be an input to the compression function in the firstitenaand be involved in
the compression functiofiin every stage.

7.6.1 MAC based on block ciphers

The most commonly used MAC algorithm based on block ciphétenaise of the
CBC-mode. Input of the algorithm (Fig. 7.6-1) is the messagand the secret
MAC-key K. The message. is first padded if necessary, and then divided in
blocksmy,, m,. If E denotes encryption using the algorithiirwith the key K,
then the blockH, is computed as follows:

H1 = EK(ml)
H;, =FEg(H;_1®m;) for 2<:<0b,
H = H,.
m; m, my my,
0 H) l H, l H, l optional. _____

«Ag| e |] |

Fig. 7.6-1: CBC-based MAC algorithm.

7.6 Some MAC algorithms 187

Optionally, to increase the strength of a MAC, we can use arsk&ey K’ # K

and computdi, = Ey, (H,) and finally H = E(H}). This reduces the threat of

an exhaustive key search, without impacting the efficieRty E-MAC is a variant

of CBC-MAC. Both versionsRIPE-MAC1(64-bit MAC) andRIPE-MAC3(64-bit RIPE-MAC1
MAC), differ in their internal encryption functio being either single DES or RIPE-MAC3
two-key triple-DES, requiring a 56- or 112-bit kdy.

7.6.2 Constructing MACs from Hash Functions

A common suggestion is to construct a MAC from a hash algarittly simply
including the secret key as part of the hash input. But thesttoation of a MAC MACs from hash
from a hash function requires careful analysis, because sewurity risks arise. For functions
example, it is insecure to use thecret prefix methofibr constructing MACs from

hash functions. In this method, the MAC of the messagie M AC' = H(K||m),

i.e. the keyK is appended at the beginning of the message, and then thedlash

is computed. It is also insecure to construct a MAC using #e/ as the initial

value/V of some iterated hash functions, or using the key as a subdiAC =

H(m||K) (secret suffix methgdMore secure is to append the key at both the start

and the end of the hash computatiohsAC = H (K ||p||m||K). Herep is a string

used to padk to the length of one block. For example, fif is MD5 and K is

128 bits,p is a 384-bit string. This method is known as #velope method with
padding One can also use the following secure construction alsakrashash-

based MACM AC = H(K||p:||H(K||p2||m)), wherep, andp, are distinct strings

of sufficient length to pad out to the full block length of the compression function.

7.6.3 Dedicated (Customized) MACs

Dedicated MACs are algorithms designed for the specific gagpof message
authentication. We will mention here only three of them.

MAA (Message Authenticator Algorithm) is a customized MAC allidpon invol- MAA
ving 32-bit operations for all computations (designed 2+t machines). It uses

a messagen of arbitrary length and a 64-bit MAC-key as input and produgg-

bit MAC on m. The main loop consists of two parallel interdependentstise of
computations. This algorithm is an ISO standard.

In MD5-MAC the compression function of the MD5 hash function is reayeato MD5-MAC
depend onk, implying the secret key be involved in all iterations, thusviding
additional protection.

ThelBC-hash MAC algorithm is interesting because it is provably securd the IBC-hash
chance of a successful attack can be quantified. The hedredadlgorithm is the
iterationh; = ((m; mod p) + v) mod 2". The secret key is the pairandv, where

p is ann-bit prime andv is a random number less that The valuesn; are derived

by a carefully specified padding procedure. The probaddlitf breaking both the

188 7 Hash Functions and Authentication Codes

one-wayness and the collision-resistance can be quandfiddhe security level
can be chosen by changing the parameters.

189

8 Entity Authentication

8.1 Introduction

Computer systems are now used in almost all aspects of lsssarel commerce
and there are various applications where it is necessagydomputer to verify the
identity of a person before allowing the person access A lyls*?). Conventio-

nal methods of identification based on possession of ID car@éxclusive know-
ledge — like a PIN! or a password — are not altogether reliable. ID cards can be
lost, forged, or misplaced; passwords can be forgotten mpcomised. Biometric
authentication on the contrary is based on the use of plogitd! or behavioural
characteristics. One of the earliest and best-known biootethnologies is finger-
print recognition. New biometric applications includedaband, finger, iris, retina,
signature, and voice recognition.

8.2 Entity Authentication

Entity authentication is a process whereby one partyyérdier, is assured of the
identity of a second party, theaimant involved in a protocol and that the claimant
has actually participated in the protocol. Typically, tlegifier is presented with the
claimed identity of the claimant (e.g. that the claimant Igd) and the goal is to
verify that the identity of the claimant is indeed Alice.

There are three main categories of criteria that may be wsadthenticate a user:
e something the usdmowse.g. a password or another secret fact;

e something the usdrase.g. a smart card or token;

e something the usas e.g. a fingerprint or retinal pattern.

8.2.1 Authentication based on what the user knows

This method requires the user to provide information oreesps to questions and
therefore involves asking the user a question, then chgt¢kmreply against a reply
stored in the system and if there is a match, the user is atithtad. For example,
a user logs onto a system and then provides a claimed idesitii as a user name.
The system then requests the password which, when enterestityy serves to
verify the user’s identity.

Password mechanisms suffer the same problems as any othengcator using
knowledge as proof of identity. If an impostor finds, gueseesteals a user’s pass-
word, he has the key to an account, and can use it until thevpadss changed.

33 Automated teller machines.

34 Personal ldentification Number.

190 8 Entity Authentication

8.2.2 Authentication based on what the user has

This method of user authentication, common to most mechen@itside of those
used for computer systems, requires the possession of eatoBjich a token, e.g.
keys, magnetic cards, must be shown to the authenticatichanésm for the user
to be granted access. When used as the only means of austiemtithewhat-the-
user-hasmethod can be compromised by someone losing a valid token.

To strengtherwhat-the-user-hasnethods of authenticationyhat-the-user-knows
methods are typically added, such as requiring a code tcheseken. ATMs are a
common example.

8.2.3 Authentication based on what the user is

The third method of user authentication requires the atittegion device to mea-
sure some physical characteristic of the user being idedtiffhe characteristics
could be either a user’s physiological traits, e.g. fingetpr hand geometry, etc.
or his behavioural characteristics, e.g. voice and sigaafthis method of identi-
fication is calledbiometrics The primary advantage is that a biometrics cannot be
misplaced or forgotten; it represerstsmething that the user.is

8.3 Password-based authentication

Password-based authentication still is the dominant mesirefor identity authen-
tication of computer users, even though passwords are sildlegto attack: Users
tend to choose passwords that are easy to remember, whibke rase of textual
passwords normally implies that they are easy to obtain &sching through a care-
fully designed dictionary of candidate passwords. In orsecdudy of over 14,000
Unix passwords, almost 25 % of the passwords were found bglseg for words

from a carefully designed dictionary consisting of o8k 0° words [Monrose99al].

8.3.1 Password selection

In traditional authentication schemes a password is agstircharacters, usually
of length six or more. For selecting good passwords, fourrtepies are generally
known:

e User education: Users are instructed on how to select gossiyoads. In gene-
ral, this strategy does not work well because users do riotfohese guidelines.

e Password generators: The system chooses a random pas®waakch user.
From a theoretical point of view, this is the perfect solatilm practice, however,
users will tend to forget passwords, or, worse, they wiltevthem down or store
them somewhere.

e Reactive password checking: Special programmes are ruodpsily by the
system administrators to find weak passwords and the camesug users are
informed and asked to change their password.

8.3 Password-based authentication 191

e Proactive password checking: When a user selects a passtherdgystem
checks immediately whether it is acceptable. If the pasdv®obvious (e.g.
equal to the login name), or belongs to a given set of dictiesait is not accep-
ted and the user is asked to choose a new one.

Proactive password checking is considered to be the bestagn

8.3.2 Attacks

The security of a password system depends on how difficidtfir an attacker to
determine a valid password. The basic attacks that autdagiotn protocols need to
guard against areplay attackgan attacker records messages and resends them at
a later time) password searglpassword guessing and dictionary attacks

Password search

The password length provides an absolute bound to the nuaflpessible pass-
words in a system. Knowing the composition of allowable pasds, one can com-
pute the number of possible passwords allowed by a partisyiem by, where
q is the size of the character space arige length of the password.

Small increases in length can dramatically increase thebeurof possible pass-
words, which is usually too large to enable an exhaustiveeb€a

It would seem that passwords should be as long as possiblee\tén, users must
be able to remember their passwords.

Password guessing and dictionary attacks

The space of passwords that are likely to be selected inipeaist much smaller
than the number of possible passwords, since users tend ns¢ ta wide variety of
symbols in their passwords. Making the attacker’s job e\asieg is the tendency
to select words or names as passwords. Not only does thisqeracake little use
of character space, it also drastically limits the numbejuEsses an attacker has to
make. Words found in a dictionary, for instance, are poosywasds and knowledge
about a user can provide valuable clues to an attacker.

To prevent dictionary attacks, it is now common practicesiggtem administrators
to invoke reactive password checkers on an existing cadlecif user chosen pass-
words to identify weak password choices, or to use proactnekers to filter out
certain classes of poorly chosen passwords when the usgsihfs password for
the first time (see Section 8.3.1). Password checkers sfodlgsncrease the uncer-
tainty of user’'s passwords thus making them move beyondehehrof dictionary
and exhaustive search attacks, but the resulting passwogdst necessarily easy
for users to remember.

35 For detailed information about the number of possiblsywasds and the time required to test
each, see [Menezes96a], page 392.

192

8 Entity Authentication

8.3.3 Salting

Password guessing attacks are still likely to succeed wbheducted on a large
collection of passwords, even if proactive and reactiveekbis are being used. To
make dictionary attacks less effective, :ait random number (called thealf) is
appended to a user’s password and the concatenated sttiveniencrypted using
a one-way hash function. Both the encrypted string and theasastored in a pass-
word table. When a user tries to authenticate and entersalssinord, the salt is
retrieved from the password table, prepended to the padsaod the concatenated
string encrypted. The result is compared to that storedenptissword table and
authentication succeeds if they match. The difficulty ofadtive search on any
particular user’s password is unchanged by salting sineesdlt is given in clear-
text in the password file. However, salting increases theptexity of a dictionary
attack against a large set of passwords simultaneouslgdwring any precompu-
ted dictionary of hashed passwords to contivariations of each trial password.
Salting also ensures that users with the same textual pegswal have different
encrypted entries in the password table.

8.3.4 One-time passwords

In 1981 Lamport proposed a one-time password authenticatibeme based on a
one-way function.
A wants to identify itself taB by use of a one-time password:

1. One-time setup:
a. UserA begins with a secreb. Let H be a one-way function.
b. A constant is fixed (e.g.t = 100 or 1000), defining the number of

identifications to be allowed (thereafter, the system isarésd with a
neww to avoid replay attacks).

c. Atransferswy, = H'(w), in a manner guaranteeing its authenticity, to
the systemB. B initializes its counter ford toiy = 1.

2. Protocol messages: Tlfé identification,1 < i < ¢, proceeds as follows:
A— B:A i, w(=H"(w)).
Here A — B: X denotesA sending the messagéto B.

3. Protocol actions: To identify itself for sessignA does the following:
a. Acomputesy; = H'*(w), and transmits (1) t&.
b. B checks that = i,, and that the received passwoud satisfies:

H(w;) = w;_1. If both checks succeed; accepts the password, sets
14 < i4+1, and savew; for the next session verification.

Lamport’s scheme can withstand an intruder obtaining Uisefiormation for brea-
king the system by tampering with or eavesdropping on thenconication links.
Lamport’s scheme is practical and can be implemented wittronomputers.

8.4 Challenge-response 193

However, in order to enforce security, users should chahge passwords peri-
odically.

8.4 Challenge-response

The main difficulty in designing secure password mechangnsgs from the fact
that the space of passwords from which most users tend tosehisosmall and
much easier to attack by guessing than, for example, randagptographic keys.
Guessing attacks are most effective when a large numberesfsgs can be made
automatically and each guess verified to see whether the gusesscorrect. A stan-
dard way to address this issue is to use salting as descril&ettion 8.3.3.

More effective solutions to the problem associated withetimvariant passwords
are those that involve the use of challenge-response misohsnChallenge-
response is a common authentication technique wherebytey isrprompted (the
challenge) to provide some private information (the respdnThe time-variant
challengé’® is typically a number chosen randomly and secretly by oniéyeattthe
beginning of the protocol.

8.4.1 Challenge-response based on symmetric encryption

In case of challenge-response protocols based on symriefriencryption both
users (claimant and verifier) are required to share a synokety. In systems with a
small number of users, each pair of users may share a keyra pritarger systems
there may be need for an on-line trusted third party (TTPYipling session keys to
two entities. Therefore, each entity also needs to sharg witk the TTP.

In the following, challenge-response based on symmegycekcryption according
to ISO/IEC 9798-2 is specified. Provided that both useesd B share a secret key,
the claimant verifies its identity by demonstrating knovgeaf the shared key by
decrypting a challenge (and possibly additional data)gigie key.

Unilateral authentication based on a timestamp

A—B: EK(tA,B*),

wheret 4, denotes a timestamp generatedAdy Fx a symmetric encryption algo-
rithm with a key K shared byA and B, and optional message fields are denoted by
an asterisk (*). Upon reception and decryptiéhyerifies that the timestamf, is
acceptable, and optionally verifies the received identi#geits own. The identifier

B here prevents an adversary from re-using the message iratelydon 4, in the
case that a single bidirectional kéyis used.

36 For detailed information about time-variant paramegerd random numbers, see [Mene-
zes96a], pp. 397.

194

8 Entity Authentication

Unilateral authentication based on random numbers

Timestamps may be replaced by a random number, at the cost aflditional
message:

A— B: rg,
A— B: EK(’I“B, B*),

whererg denotes a random number generatedsby3 decrypts the received mes-
sage and verifies that the random number matches that seessage one. Optio-
nally, B checks that the identifier in message two is its own; thisgmeya reflec-
tion attack in the case of a bidirectional k&y. To prevent chosen-text attacks on
the encryption schemEy, A may (as below) embed an additional random number
in message two. Another possibility is to restrict the forfrthee challenges; the
critical requirement is that they are non-repetitive.

Mutual authentication based on random numbers

A— B: rg,
A — B: Eg(ra,rg, B"),
A — B . EK(’I“B,’I“A),

wherer, denotes a random number generated4doyJpon reception of message
two, B carries out the checks as above and, in addition, recoverddtrypted-,
for inclusion in message three. Upon decryption of messagetA verifies that
both random numbers match those used earlier. The secoddmamumber-, in
message 2 serves both as a challenge and to prevent chatatteeks.

8.4.2 Challenge-response based on public-key encryption

Public-key encryption may also be used for challenge-nesp@rotocols. In this
case, a claimant demonstrates knowledge of its privaterkeyad ways:

1. the claimant decrypts a challenge encrypted under itBgoksy, or

2. the claimant digitally signs a challenge.

The public-key pair used for identification should not bedut® other purposes,
since that could compromise security.

8.4 Challenge-response 195

Challenge-response based on public-key decryption

A«— B: h(r),B,Pa(r, B),
A—B:r,

where P, denotes the public-key encryption algorithfnh and/ a one-way hash
function. B chooses a random number computes thavitness’z = h(r), and
computes the challenge= P,(r, B). B sends message oneAo A then decrypts
e to recoverr’and B’, computes:’ = h(r’), and terminates i’ # x or if B’ is
unequal to its own identifieB. Otherwise,A sends: = ' to B. Entity authentica-
tion of A is successful, if3 verifies that the receivedagrees with that sent earlier.
The use of the witness eliminates chosen-text attacks.

Challenge-response based on digital signatures

In the following, challenge-response based on signatucesrding to ISO/IEC
9798-3 is specified. If the verifier has the authentic pubég kf the claimant a
priori, certificates may be omitted. Otherwise, it is assdrtiet the verifier has
appropriate information to verify the validity of the pubkey contained in a recei-
ved certificate.

Unilateral authentication based on a timestamp
A—B: Ce’I“tA,tA, B, SA(tA, B),

wherer 4 denotes a random number amnda timestamp generated by S, denotes

A’s signature mechanism amrért 4 the public-key certificate containing’s signa-

ture public key. Upon receptior} verifies that the timestamp is acceptable, the
received identifie3 is its own, and checks that the signature over these two fields
is correct by usingd’s public key extracted fromert 4 after verifying the latter.

Unilateral authentication based on random numbers

Timestamps may be replaced by a random number, at the cost aflditional
message:

A~ B: rg,
A — B: certa,ra,B,Sa(ra,r5, B),

B verifies that the cleartext identifier is its own, and verifieat A’s signature is
valid over the cleartext random numbey, the same numbet; as sent in message
one, and its identifier. The use of the signgdprevents chosen-text attacks.

37 xis evidence for the knowledge efwithout disclosing it.

196 8 Entity Authentication

Mutual authentication based on random numbers

A— B: rg,
A — B: certa,ra, B, SA(TA,TBaB))a
A«— B: certg, A, SB(TB,TA7A)7

Processing of messages one and two is as above and messésthrocessed
analogously to message two.

8.5 Zero-knowledge

Challenge response protocol itself uses something sinddazero-knowledge
concepts but uses other encryption techniques, like pWdic techniques, or
symmetric-key techniques. As we will see in this chapterp#aowledge proto-
cols on the other hand do not rely on digital signatures ollipldey-encryption,
and avoid the use of block ciphers, sequence numbers, apdtimps. They make
use of random numbers not only as challenges, but also as itorants to prevent
cheating.

A natural way of establishing a person’s identity is to ask ko supply a proof of
knowledge of a fact that this person is supposed to know. lo-keowledge (ZK)
protocols, the claimant (called @over in the context of zero-knowledge proto-
cols) A demonstrates knowledge of a secret to the verifigwithout revealing any
information whatsoever that is of use kin conveying this knowledge to others.

General structure of zero-knowledge protocols
For a large class of zero-knowledge protocols the procedwas follows:

A — B : witness,
A «— B : challenge,

A — B : response.

The prover claiming to bel selects a random element from a pre-defined set as
its secret commitment, and therewith computes an assddjatblic) witness. This
defines a set of questions all of whi¢hclaims to be able to answer and only the
legitimate partyA, with knowledge ofA’s secret, is truly capable of answering
all the questions. The answer to any one question provideafaomation about

A’s long-term secretB’s subsequent challenge selects one of these questions.
provides its response, whidb verifies for correctness.

The protocols of Feige-Fiat-Shamir, Guillou-Quisquaaex] Schnorr provide solu-
tions to the identification problem. Each one has advantageslisadvantages with
respect to various performance criteria and for specifidiegpns (see [Mene-
zes96a], p. 416).

8.5 Zero-knowledge

197

8.5.1 Feige-Fiat-Shamir identification protocol

The Feige-Fiat-Shamir identification protocol enablesraityeto identify itself by
providing knowledge of a secret using a zero-knowledgefpiidee protocol reveals
no information whatsoever aboudts secret identification value(s).
1. Selection of system parameters. After selecting twoetgmimesp and ¢
each congruent t8 mod 4, the trusted third part{” publishes the common
modulusn = pq for all usersn has to be computationally infeasible to factor.

2. Selection of per-entity secrets. Each enttgoes the following
a. select: random integers, ..., s, intherangel <s; <n — 1, andk
random bitg, . . ., b.

b. computey; = (—1)% - (s?)"Lmodn for 1 <i < k.
c. A identifies itself by conventional means 1§ which then registers
A’s public key (vy,...,v;n), while only A knows its private key

(s1,...,s,) andn. Therewith the one-time set-up phase is completed.

3. Protocol messages. The three messages involved in ettedizabunds are
a. A— B:(x=24r>modn)
b. A— B:(e,...,ex),e; €{0,1}
c. A= B:(y=r-]l, ., symodn).

4. Protocol actionsA identifies itself toB by t executions of the following steps
and B accepts the identity only if allexecutions are successful.
a. A chooses a random integerl < r < n — 1, and a random bit. A
then computes = (—1)” - r> mod n and sends the witnessto B.
b. B sends the randoibit vector(ey, . .., e;), i.e. the challenge, td.
c. A computes the responge=r - H§:1 sjﬂ' mod n and sends it td3.
d. B computes: = 3?2 - Hj?:l v’ modn , and checks that = £z and
z # 0.

8.5.2 Guillou-Quisquater identification protocol

The Guillou-Quisquater (GQ) identification scheme — an rsiten of the Fiat-
Shamir protocol — involves three messages between theadisnwhose identity
is to be proven, and the verifiét.
1. Selection of system parameters.
a. Atrusted third party’ selects random RSA-like primgsandg yielding
a modulus: = pg.
b. T defines a public exponent > 3 with gcd(v,¢) = 1 where¢ =
(p—1)(¢ — 1), and computes its private exponent v~ mod ¢.

c. System paramete(s, n) are made available for all users.

2. Selection of per-user parameters.

198 8 Entity Authentication

a. Each entityA is given a unique identity 4 from which J, = f([4),
satisfyingl < J4 < n, is derived using a known redundancy function

f.
b. T givesthe secret, = (J4) *modn to A.

3. Protocol messages. The three messages involved in et ¢dftent = 1)
rounds are
a. A— B:Iy,x=r"modn
b. A«— Bie,1<e<w

c. A— Biy=r-s5modn.

4. Protocol actions4 identifies itself toB by ¢ executions of the following steps
and B accepts the identity only if allexecutions are successful.
a. A selects a secret random integer.e. the commitment, < r <n-—1,
and computes the witness= r" mod n.
b. A sends the pair of integef$4, z) to B.

c. B selects the challenge(a random integer), < e < v and sends it to
A.
d. A computes the responge=r - s, modn and sends it t@.

e. B receivesy, constructs/, from I, using f, computesz = J,° -
y¥ modn and acceptsl’s proof of identity if bothz = x andz # 0.

8.5.3 Schnorr identification protocol

An alternative to the Fiat-Shamir and GQ protocols is thenBchidentification
protocol, whose security is based on the intractabilityhefdiscrete logarithm pro-
blem. The basic idea is that proves knowledge of a secre{without revealing it)
in a time-variant manner (depending on a challeagedentifying A through the
association of. with the public keyv via A’s authenticated certificate.
1. Selection of system parameters.
a. A suitable primep is selected such that — 1 is divisible by another
primeg.
b. Anelementiis chosen] < § < p — 1, having multiplicative orde.
c. Each party obtains an authentic copy of the system paeasgtq, 3)
and the public key of the trusted third paffy allowing verification of
T’s signatureS(m) on messages:.

d. A parametet, 2! < g, is chosen.

2. Selection of per-user parameters.
a. Each claimantl is given a unique identity 4.

b. A chooses a private key 0 < a < g—1, and computes = =% mod p.

8.6 Biometrics 199

c. A identifies itself by conventional means 19 transfersv to 7" with
integrity, and obtains a certificaterty = (Ia,v,S7(14,v)) from T
binding 7, with v.

3. Protocol messages. The three messages involved are
a. A— B:certy,x=["modp
b. A« B:e,1<e<2l<yg
c. A— B:y=uae+rmodq.

4. Protocol actionsA identifies itself toB as follows

a. A chooses a random numberi.e. the commitment] < r < ¢ — 1,
computes the withess= 3" mod p, and sends protocol message one to
B.

b. B authenticates!’s public keyv by verifiying 7’s signature orcert 4,
and sends a never previously used random challenge< ¢ < 27, to
A.

c. Averifiesl < e < 2!, and sends the responge- ae + r mod g to B.

d. B computes = Y0 mod p, and acceptsl’s identity if z = x.

8.6 Biometrics

8.6.1 Introduction

Biometrics is the science of automatically identifyingividuals based on their dis-
tinctive physiological or behavioural characteristicsl amlike PINs or passwords,
biometrics cannot be lost, stolen, or overheard. A physgickd characteristic is a
relatively stable physical feature such as a fingerprirgt pattern, or retina pattern.
A behavioural characteristic, e.g. signature, keystrakigepn, voice, on the other
hand, has some physiological basis, but also reflects anpeesmotional state (see
Fig. 8.6-1).

e -

Fig. 8.6-1: Biometrics ecompasses both physiological and behaViobeaacteristics.

Access management based on biometric techniques can bedajapl

200

8 Entity Authentication

e access to banks and strategic structures,
e user recognition for banking transactions via ATMs,

e user recognition for information applications residinglatabases (consultation
via remote access, the Internet or a WAN), or

e control of any access to information-technology applmagi

Any human physiological or behavioural characteristiclddae a biometrics pre-
conditioned if it has the following properties ([Jain99a])

e universality - every person should have the characteristic

e uniqueness - no two persons should be the same in terms didnaateristic,
e permanence - the characteristic should be invariant witle tend

e collectability - the characteristic can be measured qtetitely.

8.6.2 Authentication and ldentification

Biometric systems can be used for identifying an individuain all those enrolled
in the system, by authenticating a claimed identity.

e Identification:
Identification is a one-to-many comparing process: a biomeample of an
unknown person is presented to the system. The system cesiia sample
(template) with a database of reference templates of knodimiduals. On the
basis of the comparison, the system then picks the one thahesathe charac-
teristics of the unknown individual.

e Authentication:

Authentication is a one-to-one comparing process: a pgusesents a biome-
tric sample and a claim (e.g. name, number) that a particléatity belongs to

the system. The sample is then compared against a singtemeéetemplate of
a single enrollee whose identity is being claimed. The atlgor either accepts
(match) or rejects (non-match) the claim. The referencelata does not have
to reside in a large database. It can be carried within a staadtor other secu-
rity device.

Biometric systems that rely on identification are mainlydiselaw enforcement,
forensics, and intelligence. These applications incla@daiifying faces from mug
shots, fingerprints, and surveillance images. Authentinas used during point-of-
sale transactions, to control access to computers or toesbaoidings.

8.6.3 Architecture and functionality

A biometric system is an automated system capable of
e capturing a biometric sample from a user,
e extracting biometric data from that sample,

e comparing the biometric data with that contained in one oremeference tem-
plates,

8.6 Biometrics

201

e deciding how well they match, and

¢ indicating whether or not an identification or authenticatof identity has been
achieved.

Logically, a biometric system can be divided into two stagfes enrollment module
and the identification module (Fig. 8.6-2).

In both processes, the first stage is for the user to preseribmetric feature
(e.g. fingerprint) to the system, and a biometric sample @gerprint image) is
captured. The second stage converts this biometric sami®metric data (e.qg.
minutiae® coordinates) for matching. The final stage of the enrollnpeatess is
to form the reference template for the individual; in theeca$ authentication or
identification the final stage is to compare the biometri@adaith the reference
template.

Enrolment
e] — () — ()

Compare

Match

% No match

Authentication or identification

bromic ‘ @ ﬁ

Fig. 8.6-2: Basic biometric process.

e Enrollment produces a biometric data record for storagefatudte matching enroliment
operations through a series of capture/process steps.

e Authentication compares (on a one-to-one basis) newlyucagtesp. processedauthentication
biometric samples against previously enrolled biometimgles from a known
individual. This step answers the question "Is this persba ke claims to be?".

¢ Identification compares (on a one-to-many basis) newlyuragdtresp. proces- identification
sed biometric samples against a database of previousljleshsamples. This
answers the question "Who is this person?".

e Capture obtains the raw biometric data (like a bitmappedefimgage) from a biometric data
biometric capture device (like a finger scanner).

e Process extracts a unique biometric identifier (like fingatmletails) from the biometric identifier
raw biometric data.

38 Small details found in finger images such as ridge endinggurcations.

202

8 Entity Authentication

FAR

8.6.4 Error statistics

The most commonly discussed measure of a biometric’s prdoce is its identify-
ing power. Biometric systems can never provide an absglatgtain identification
because analysis of physiological and behavioural cheniatits has a natural range
of variation. The presentation of a correct/incorrect pasd in a password-based
authentication system always correctly results in acecet@enial of an identity
authentication claim. On the other hand, even if a legiteri@ibmetric identifier
is presented to a biometric-based authentication systergdrrect authentication
may not be guaranteed due to sensor noise and limitatioreatire extractor and
matcher false rejectiof. Similarly, there is a possibility that an impostor will be
incorrectly accepted by a biometric-based authenticatystem false acceptange

The corresponding error rates are callaide rejection rat€FRR) andfalse accep-
tance rategFAR). They determine the quality of a biometric system (Sige 8.6-3).

decision threshold

|-
>

person
accepted

person
rejected

error rate %

[false rejections

[false acceptances

Equal Error Rate 4 . .

>

difference between biometric sample and reference template

Fig. 8.6-3: False rejections and false acceptances.

False Acceptance Rate (FAR)

FAR is the probability that a biometric system will incortigadentify an individual
or will fail to reject an impostor. It is stated as follows:

FAR=NFA/NIIA
or
FAR=NFA/NIV A

where FAR is the false acceptance rate, NFA is the numberlsg fcceptances,
NIIA is the number of impostor identification attempts, antVAis the number of
impostor verification attempts.

8.6 Biometrics

203

False Rejection Rate (FRR)

FRR is the probability that a biometric system will fail tceitify an enrollee, or
verify the legitimate claimed identity of an enrollee. Isimted as follows:

FRR=NFR/NEIA
or
FRR=NFR/NEVA

where FRR is the false rejection rate, NFR is the number séfedjections, NEIA is
the number of enrollee identification attempts, and NEVAe&stumber of enrollee
verification attempts.

In a perfect biometric system, both error rates would be.Zdrdortunately, bio-
metric systems are not perfect, such systems operate bethebdvo extremes. For
most applications, the system parameters are set to achidesired false accep-
tance rate, which results in a corresponding false rejectite. The parameter set-
ting depends on the application. For a bank’s ATM, where therriding concern
may be to avoid irritating legitimate customers, the faksiect rate will be set low
at the expense of the false-alarm rate. On the other handy$ems that provide
access to a secure area, the false-alarm rate will be thadingrconcern.

Because system parameters can be adjusted to achievewliffalse acceptance
rates, it often becomes difficult to compare systems thatigegperformance mea-
surements based on different false acceptance rates.

8.6.5 Attacks

There are several possible sources of attacks on a biorsgstiem, which are des-
cribed below (see Fig. 8.6-4).

1. Fake biometric at the sensor: In this mode of attack, ailples®production
of the biometric being used will be presented to the systeanekample, a
fake finger or a copy of a signature.

2. Resubmission of old digitally stored biometrics sigiathis mode of attack,
an old recorded signal is replayed into the system bypaskmgensor. For
example, presentation of an old copy of fingerprint imagesoorded audio
signal of a speaker.

3. Override feature extract: The feature extractor couldtteecked with a Trojan
horse to change it to produce feature sets of choice.

4. Tampering with the feature representation: After thetuiess have been
extracted from the input signal, they are replaced with atmgized fea-
ture set of choice assuming the representation is knowenQifte two stages
of feature extraction and matcher are inseparable and thaerof attack is
extremely difficult. However, if minutiae are transmittedat remote matcher
(e.g. over the Internet) than this threat is very real.

FRR

204

8 Entity Authentication

Override matcher: The matcher is attacked to producedbieat result.

Tampering with stored templates: The database of edrd#enplates is
available locally or remotely. This database can also béiloiged over
several servers. The stored template attacker tries tofynmae or more tem-
plates in the database which could result in at least dehis¢wice for the
corrupted template.

7. Channel attack between stored templates and the maitdtestemplates from
the stored database are sent to the matcher through a chémoklcould be
attacked to change the contents of the templates beforeghely the matcher.

8. Decision override: If the final result can be overriddethwhe choice of
result from the attacker, the final outcome is very danget6uean if the actual
pattern recognition system has an excellent performanaecteristic, it can
be rendered useless by a simple exercise of overriding Hudtre

Stored

templates

Override
feature extract

3 AORRY

Channel

Feature i Application
Extractor 3 evice

Sensor

Override
matcher

Fig. 8.6-4: False rejections and false acceptances.

There are several techniques to prevent attacks at var@nosspFor instance, sen-
sing finger conductivity or pulse can stop simple attackoattdl. Encrypted com-

munication channels can eliminate at least remote attagsiat 4. The simplest
way to stop attacks at points 5, 6 and 7 is to have the matcletrendatabase
reside in a secure location. Of course even this cannot preteacks in which

there is collusion. Cryptography again can help at point 8.

205

9 Key Management Technigues

9.1 Introduction

Security services based on cryptographic mechanisms asisume cryptographic

keys to be distributed to the parties which are involved imownication before cryptographic keys
securing the communication. The secure management of Kegseis one of the

most critical elements when integrating cryptographictions into a system. Even

the most ingenious security concept will be ineffectivehié tkey management is

weak. Key management includes the

e (Qeneration,

e certification and authentication,
e establishment and distribution,

e escrow/recovery,

e storage, update and destruction,

of keying material. Key management techniques depend oartterlying crypto-

graphic techniques, the intended use of the keys and theeidhpécurity policy.

The appropriate protection of keys is subject to a numberctofs, such as the
type of application for which the keys are used, the thrday face, or the diffe-
rent states the keys may assume. Primarily, depending lyeartype, keys have to
be protected against disclosure, modification, destrntial replay.

9.2 Key Generation

There are several possibilities to generate keys used ptagyaphic systems. The

main criteria for a chosen method is the key lifetime and ftgligation. Crypto-

graphic keys are often differentiated in data encryptioys®EK), key encryption data encryption keys
keys (KEK) and master keys. Keys which are usually used tarsecommuni- key encryption keys
cation should have a limited lifetime, whereas data enawppteys may be used master keys

for a longer period. Master keys, which may have a long hieti are exclusively

used to encrypt KEKs and should be stored in secure hardwanpanents. Every

key generation must be carried out in such a way that unaattbpersons have no

access to the generation process. Therefore the keys mgeshbeated in a trustwor-

thy site or from authorized users of a cryptographic systeatrusted environment.

Beside the key generation environment, the generatiorepsas very important for

the security of a system. In order to evaluate the security @fyptographic algo-

rithm usually made assumption is that every key occurs wighsame probability.

In this respect, an ideal case to generate keys is a truemaprbresses like tossing

a coin or throwing a dice. Such manual methods are expensteannot be used

to generate lots of keys or keys with a short lifetime. Butomsg special cases e.g.

the generation of master keys, the use of these secure nsathamtommended. A

possibility to generate keys automatically is the use oho@s$ based on radioactive

206

9 Key Management Techniques

authentication

sources, quantum effects in semiconductors or resistasise.rDue to the mentio-
ned problems with true random processes, cryptographis &gy often generated
by pseudorandom processes. Most common software for gemgepgeudorandom
numbers available on many computer systems is usually edigiable to be used
for this purpose. One possibility of generating cryptotmagkeys is to choose a
suitable pseudorandom generator (which guarantees uoaigleé values) and to
initialize it with a manually produced master value. Sucteg g§enerator expands
one true random key into several pseudorandom keys.

9.3 Certification and Authentication

Certificates are issued for authentication purposes. Aecitgal containing identify-
ing data together with other information (e.g. public kegslendered unforgeable
by some certifying information (e.g. a digital signatureyaded by aKey Certifica-
tion Cente}. Certification may be an online service where some certifinautho-
rity provides interactive support and is actively involvadhe key distribution pro-
cesses; or it may be an offline service so that certificatesswed to each entity at
some initial stage. The three main types of authenticatiereatity authentication
or identification, message content authentication, andsaggsorigin authentica-
tion. The term verification refers to the process of checkimegappropriate claims,
I.e. the correct identity of an entity, the unmodified messeontent, or the correct
source of a message. The validity of a certificate can be @érnifsing some public
information (e.g. a public key of Key Certification Centgr and can be carried out
without the assistance of the certification authority, s the trusted party is only
needed for issuing the certificates.

9.4 Key Establishment

Key establishment is the process of making a key availablen®or more enti-
ties. Key establishment techniques include secret keyeaggats and key transport
for secret, and public keys. For many environments, prdsottwat allow to esta-
blish keying material in one pass are of particular interésintity authentication
is a requirement, typically a setup phase is needed prioeyaektablishment. The
establishment of keys can be rather complex. Key estabéshprotocols are influ-
enced by the nature of the communication links, the truatigiships involved and
the used cryptographic techniques. The entities may eittramunicate directly or
indirectly, they may belong to the same or to different sigwtomains, and they
may or may not use the services of a trusted authority. THewiolg conceptual
models illustrate how these different aspects affect kgbéishment.

9.4 Key Establishment 207

9.4.1 Point-to-Point Key Establishment

The basic mechanism of every key establishment techniqtieeipoint-to-point

key establishment (see Fig. 9.4-1). If based on symmetymographic techniques,
point-to-point key establishment requires that the twdieainvolved already share
a key that can be used to protect the keying material to bdledtad. If based

on asymmetric techniques, point-to-point key establigitmygically requires that

each of the parties has a public key with its associated terikay, and that the
authenticated public key is known to the other party:

e Fordataintegrity or data origin authentication, the resiprequires the sender’sdata integrity
corresponding public key certificate.

e For confidentiality, the sender requires a public key cedte of the intended confidentiality
recipient.

A B

Fig. 9.4-1: Point-to-point key establishment.

9.4.2 Key Establishment Within One Domain

One of the simplest forms of key establishment employs alesifigusted Third
Party (TTP) (e.g. &ey Distribution Cente(KDC), a Certification Authority(CA)) Trusted Third Party
for the entire system (see Fig. 9.4-2). This authority mdgrofey management
services such as the generation, certification, distobuind translation of keying
material. When entities use asymmetric techniques fordbere exchange of infor-
mation, each entity may need to contact its authority to gea@propriate public
key certificate. In situations where the communicatingrgas trust each other and
can mutually authenticate their public key certificatesaathority is needed. When
symmetric cryptography is used between two such entitiessénder and the recei-
ver are required to share keys with the authority. Key estatvient then is initiated
in one of two ways:

e By one entity generating the key and sending it tkey Translation Center
(KTC). The KTC receives an enciphered key from one entitgjmteers it and
reciphers it using the key shared between itself and the etitéy. Then it may
either forward the re-enciphered key directly, or send @ko@ the first entity,
who forwards it to the second entity.

e By one entity asking a KDC to generate a key for subsequenthiison. The
KDC then either distributes the key directly to both ensitier sends it back to
the initiator, who forwards it to the other entity.

208 9 Key Management Techniques

TTP

A

Fig. 9.4-2: Key establishment using®usted Third Party

9.4.3 Key Establishment Between Domains

The third model involves entities belonging to differentisgty domains (see
Fig. 9.5-1). By definition, each domain has its own authotityd and B either
trust each other or each entity trusts the authority of therg domain, then keys
may be distributed according to the model described aboveerithe entities use
asymmetric techniques and do not have access to a commatodyrservice that
offers public key certificates, each entity shall contastréspective authority to
get its partner’s public key certificate. The authoritiesdond B may exchange
the public key certificates of entitie4 and B and forward them toA and B. A
second approach for public key certificates is cross ceatifin exchanging, where
the CAs certify the public keys of the other CAs. When thetegiuse symmetric
techniques, at least one of them has to contact its authorityceive a secret key
for communication. The authorities then establish a comssmmet key to be used
by the entities. This key may be distributed by one authdatioth entities using
the other authority as a KTC, or via one of the entities whighesponsible for
forwarding the key to the other entity.

9.5 Key Distribution

Key distribution refers to procedures by which keys are ssgyrovided to parties
legitimately asking for them. The fundamental problem of k&change or dis-
tribution is to establish keying material to be used in syrrime@and asymmetric
mechanisms whose origin, integrity, and confidentiality t& guaranteed. As a
result of diverse decisions appropriate to different agimstances, a large variety of

9.5 Key Distribution

209

key distribution protocols exist. Therefore it is necegtarexplicate key distribu-
tion techniques in order to understand which goals therdiffetechniques achieve,
and on which assumption they depend.

Domain A

Domain B

P

- 1L

TTP B

A

Fig. 9.5-1: Key establishment between two domains.

95.1 Techniques for Distributing Public Keys

Protocols involving public key cryptography are typicatlgscribed assuming
priori possession of (authentic) public keys of appropriate ggrirhis allows full
generality among various options for acquiring such keyterAatives for distribu-
ting explicit public keys with guaranteed or verifiable arlicity, including public
exponentials for Diffie-Hellman key exchange (or more galgrpublic parame-
ters), include the following.

e Point-to-Point delivery over a trusted channel: Authepiiblic keys of other point-to-Point delivery

users are obtained directly from the associated user bympargxchange, or
over a direct channel, originating at that user, and whicargutees integrity
and authenticity. This method is suitable if used infredlyeor in small closed
systems. A related method is to exchange public keys andiasso information
over an untrusted electronic channel, and provide auttegidn of this informa-
tion by communicating a hash from it via an independent anitbehannel. One
of the disadvantages of this method is the cost of the trugtadnel.

210 9 Key Management Techniques

e Directaccessto atrusted public file (e.g. public key reg)sA public database,

with trusted integrity, may be set up to contain the name aridestic public

public key register key of each system user. This may be implemented as a pulliegester ope-
rated by a trusted party. Users acquire keys directly froi bgister. While
remote access to the register over unsecured channelsstable against pas-
sive adversaries, a secure channel is required for remoésam the presence of
active adversaries. One method of authenticating a pulditsfby tree authenti-
cation of public trees. Authentication trees provide a mdtfor making public
data available with verifiable authenticity, by using a tsé®icture in conjunc-
tion with a suitable hash function, and authenticating ta value.

online trusted server e Use of an online trusted server: An online trusted serveviges access to
the equivalent of a public file storing authentic public keyeturning reques-
ted individual public keys in signed transmissions; conftddity is here not
required. The requesting party possesses a copy of thesesignature verifi-
cation public key, allowing verification of the authentyoitf such transmissions.
Disadvantages of this approach are that the trusted senrba online, or that
the trusted server may become a bottleneck.

offine server o Use of an offline server and certificates: In a one-time pioeach partyd
contacts an offline trusted party referred to aSaxtification Authority(CA),
to register its public key and obtain the CA's signature fiation public key.
The CA certifies entityA’s public key by binding it to a string identifying,
thereby creating a certificate. Parties obtain authentiipkeys by exchanging
certificates or extracting them from a public directory. Rukey certificates
are a vehicle by which public keys may be stored, distribotdfdrwarded over
unsecured media without danger of undetectable manipulafhe objective is
to make one entity’s public key available to others suchitsauthenticity and
validity are verifiable.

guaranteeing systems e Use of systems implicitly guaranteeing authenticity of lpulparameters: In
such systems, including identity-based systems and theiag implicity cer-
tified keys, by algorithmic design, modification of publicrameters results in
detectable, non-compromising failure of cryptographahteques.

9.5.2 Secret Key Transport Mechanisms

Secret key transport based on symmetric techniques ma&ex (Isng-term) sym-
metric keys shared priori between sender and receiver. The ISOAEQSO96])
specifies twelve such mechanisms, some based on pointitibkey transport and
others based on mechanisms involving a third party. Se@gttlansport using
public key techniques assumes that the sender possegsges an authentic public
encryption key of the intended recipient. Also in this c&8®MIEC specifies mecha-
nisms whose major properties are the number of passes, keyoldkey authen-

39 International Organization for Standardization/In&gional Electrotechnical Commission

9.5 Key Distribution 211

tication, key confirmation, and entity authentication. e tfollowing sections, a
number of typical examples for secret key transport mecmasis given.

Secret Key Transport using Symmetric Techniques

In the basic key transport mechanism in Fig. 9.5-2, the kgeyatrial% is supplied
by entity A

E.. (K)

A B
Fig. 9.5-2: Basic mechanism using symmetric techniques.

1. A sendsB the keying materiak enciphered with the shared k&y 5.
2. B deciphers the message and thus obtains

This basic mechanism only provides implicit key authentocato A. However, the
mechanism can easily be extented to also provide unilaedatbentication of entity
A, implicit key authentication and a freshness guaranteB,tand protection of
replay back toA. In the mechanism shown in Fig. 9.5-3, two additional fields a
transferred in the enciphered part:

Ei,. (T/N]IBIKk)

A B

Fig. 9.5-3: Secret key transport with unilateral authentication.

1. A sendsB atimestam@ or a sequence numbéf, the distinguishing iden-
tifier B (in order to prevent a so-called substitution attack, he.reuse of
this message froml by an adversary masquerading dy and the keying
materialk. The data fields are enciphered with 5.

2. B deciphers the message, checks the correctness of itsgdistining identi-
fier, checks the timestamp or sequence number, and obtakeyik.

212 9 Key Management Techniques

Third Party Secret Key Transport Using Symmetric Techniques

Third Party secret key transport mechanisms based on symrtethniques ass-
ume that both entitiest and B a priori share a secret key (denoted by and
kg, respectively) with the TTP. Furthermore, the third pagyequested to be
online with at least one of the entities. In the following Kegnsport mechanism,
the keying materiak is supplied by a KDC:

m

TTP
TVR ||B
E.., (TVRIBI[K)[|Ewer (T/ N [[A][K)
E,, (T/ Ny [[A[IK)IIE (T /N, (1K)
|
A B

Fig. 9.5-4: Secret key transport with TTP.

1. Arequests keying material from the KDC by sending a messaghe KDC
that contains a time variant parameiévP, (a random number, timestamp,
or sequence number) and the distinguishing identifier ofe¢bgient.

2. The KDC returns a protected messageitthat containsg: enciphered for A
and enciphered foB:

B (TVPA || B[F)Eyy o (T/Nr || A[| F).

3. On receipt of this messagd, deciphers the first part, checks that the time
variant parameter sent to the TTP was used in constructiagréssage,
checks the distinguishing identifier, and obtaingf all checks are positive,
A forwards the second part of the messagebtdollowed by a data field
Ex(T/Na4 || k) which enables3 to authenticatel and to check the integrity
of the retrieved key:.

4. B deciphersthe message, checks the correctness of thedimpest sequence
number, and obtains the keying mate#&all he distinguishing identifier indi-
cates toB that £ was requested byl. Then B deciphers the second part of
the message and checks the correctness of the time variamgi@r and of
its distinguishing identifier.

This mechanism provides entity auhenticatiordofnd key confirmation t@. By
adding a fourth message, it can be extended to provide memtiay authentication
and mutual key confirmation.

9.5 Key Distribution 213

Point-to-Point Secret Key Transport Using Public Key Techmques

ElGamal and RSA key transport are examples for a one-passa@sport mecha-
nism based on asymmetric techniques. For the mechanisrmshdwig. 9.5-5 it is
required thatd has access to an authenticated copy3&f public encryption key

ke -

Ees(T/N[[A[[k)
|

A B

Fig. 9.5-5: ElGamal key transport.

1. A sendsB atimestam@’ or a sequence numbéf, the distinguishing iden-
tifier A, and the keying materidl. The data fields are enciphered witts
public keyk, .

2. B deciphers the received message, checks the correctndsstohe variant
parameter and associates the recovered keying materieAwit

The mechanism provides replay protection and implicit kethantication forA
since onlyB is able to recover the key. In contrast to the analogue mechanism
based on symmetric techniquds,has no assurances regarding the source of the
keying material. To also provide authentication of theiatdr A, the key token is
signed in addition to encipherment:

Ei.. (SA(T/N[A[K))
-

A B

Fig. 9.5-6: Key transport with originator signature.

1. A forms a data block consisting of a timestamp or a sequencédauthe
recipient’s distinguished identifier, and the keying miaiet. Then A signs
the data and enciphers the signature uditig public encryption key. The
result is transferred t®.

2. B deciphers the received message and verifies integrity agih of the key
token. ThenB validates that he is the intended recipient of the token hatl t
the token has been sent timely. If all verifications are ss&fte, B accepts
the keying materiat.

This mechanism provides replay protection, unilateratgauthentication (based
on A’s digital signature), and mutual implicit key authentioat (since onlyB is
able to decipher and only is able to sign). Depending on the needs of the enviro-
ment, the signature may also be applied after encipherment.

214

9 Key Management Techniques

man-in-the-middle
attack

9.5.3 Key-Exchange Algorithms
Diffie-Hellman

The first and best known key agreement protocol isDifée-Hellman(DH) key
exchange. The protocol gets it's security from the diffiguf calculating discrete
logarithms in a finite field, as compared with the ease of ¢alitg exponentiation
in the same field. DH can be used for key distribution - ergitleand B can use
this algorithm to generate a secret key - but it cannot be tesedcrypt and decrypt
messages. Firstl and B agree on large primes, andg, such thaty is primitive
mod n. These two integers don’t have to be seceind B can agree on them over
a public channel. Then the following steps are performed:

1. A chooses a large random integeand send¥$3.X = ¢* mod n,

2. B chooses also a large random integend sendslY = ¢¥ mod n,
3. Acomputest =Y? mod n,

4. Bcomputed’ = X¥ mod n.

Bothk andk’ are equal tg*¥ mod n. No one listening on the channel can compute
this value since they only know, g, X andY. Unless they can compute the discrete
logarithm and recover: or y, they do not solve the problem. Sois the secret
key that both entitiesA and B computed independently. The DH key exchange
protocol can easily be extented to work with three or moregfeed he mechanism
described above is the traditional DH key agreement schemahwrovides neither
key authentication nor key confirmation and is vulnerabligéoman-in-the-middle
attack. The classic man-in-the-middle attack on Diffieliah key exchange is as
follows:

1. A sends his public key t®&. An adversary intercepts this key and sends his
own public key toB.

2. B sends his public key td. The adversary intercepts also this key and sends
his own public key toA.

3. WhenA sends a message i encrypted with the replaced public key of the
adversary, the adversary intercepts the message, dedrygth his private
key, and re-encrypts the message with public kefgpand sends it t@.

4. WhenB sends a message #y encrypted with the replaced public key of the
adversary, the adversary intercepts the message, dedrygtk his private
key, and re-encrypts the message with public keyl,odnd sends it tol.

This attack works, becauseand B have no way to verify that they are communica-
ting with each other. Assuming the adversary does not caysedaiceable network
delays,A and B believe they communicate securely, while the adversanysred
traffic. This attack can be prevented by using protocols Wwpiovide authentica-
tion (e.g. key exchange with digital signatures).

9.5 Key Distribution 215

ElGamal

ElGamal key agreement is a one-pass variant of the DH prbtdoere one entity
uses a static public key agreement key and the other entégisn® have access
to an authentic copy of this key. For EIGamal key agreemetigWing steps are
performed:

1. Achooses alarge random integecomputeg” mod n and sends the result
to B. Furthermore A computes, using and B’s public key agreement key
¢°, the shared key d@s= (¢*)* mod n.

2. On receipt of the message,computes the same shared key using his private
key agreement kely. k = (¢*)* mod n.

If static public key agreement keys are distributed usingjfezmtes, EIGamal key
agreement provides unilateral key authentication.

Station-to-Station Protocol

The DH key exchange is vulnerable to a man-in-the-middlackttOne way to
prevent this problem is to have entityand B sign their messages to each other. The
Station-to-Station protocdISTS) assumes that has a certificate with entity’s
public key and thaB has a certificate with entityl's public key. These certificates
have been signed by a trusted authority. The following stepperformed in order
to generate a secret kéy

1. A generates arandom numhercomputeg” mod n and sends the result to
B.

2. Binturn generates a random numhpecomputes) mod n and the shared
key k = (¢*)Y. B then signs the concatenation gff and ¢ and the distin-
guished identifier ofA and encrypts the signature using the computedikey
The result is appended td and transferred tal.

3. A computes the shared kéy= (¢¥)*, deciphers the encrypted data and veri-
fies B’s signature. If verification is successfu, sendsB an analogously
constructed enciphered signature.

4. B decrypts the received message and verifisssignature.

The STS protocol provides secret key establishment withualwgntity authenti-
cation and mutual key confirmation. Another variant of the&s§¥otocol is being
considered for standardization with the Internet secymibtocol (IPsec).

Encrypted Key Exchange

The Encrypted Key Exchand&KE) protocol provides security and authentication
on computer networks, using both symmetric and public kggtography in a way
that a shared secret key is used to encrypt a randomly gedekay. Within this
protocol A and B share a common passwaétdand using this protocol they can
authenticate each other and generate a common session keythe following
enumeration the basic EKE protocol is described:

216

9 Key Management Techniques

1. A generates a random public-key/private-key key pair andyptethe public
key £/, using a symmetric algorithm ang as the key:Ep (k). A sends
B(A, Ep(K')).

2. B decrypts the message to obtainThenB generates a random session key
k and encrypts it with the public key received from A afds the key and
sendsA: (Ep(Ew (k))).

3. A decrypts the message to obtaiand generates a random striRg. Then
A encrypts it withk and send$3: Ej(R4).

4. B decrypts the message to obtéin and generates another random stiit)g
and encrypts both strings with ThenB sends the result td: £y (R4, Rp).

5. A decrypts the message to obtdin and Rz. Assuming the stringi 4
A received fromB is the same as the onesent toB in step (3),4 encrypts
Rp with k£ and sends it td3: E(Rp).

6. B decrypts the message to obtdp and assuming the stringg B received
from A is the sameB sent toA in step (4), the protocol is complete. Both
parties are able to communicate usings the session key.

EKE can be implemented with a variety of public-key alganthlike RSA or ElGa-
mal.

9.6 Key Escrow/Key Recovery

A key escrow or key recovery scheme is an encrytion systemanackup decryp-
tion capability available under special prescribed coadg. Such a scheme allows
law enforcement authorities, users, or other authorizegdopes to decrypt cipher-
text with the help of key escrow/recovery information sugglby one or more
TTPs. In a general key escrow/recovery scenario one asstivaethe communi-
cating entities A and B are in different domains and thatehsrthe requirement
to be able to recover decipherment keys from either domaiegandently. A key
escrow/recovery scheme typically includes the followingcmanisms:

e The sending entity prepares for transmission the enciphmessage and some
additional information which enables specific third partierecover the decryp-
tion key (should this later become necessary). For thissémeling entity may
need to involve a TTP.

e The recipient checks the correct format of the recoverymatars received with
an encrypted message and rejects messages where this faikscks

In a simple example for such a scheme, the sender A takesgbi®esdeyk used to
encipher the message, encrypts this key with the public encryption key 4, of
the involved TTP and in addition with the public k&y s, of the receiver B's TTP.
The enciphered message is then transmitted together woteraipherments of the
session key:

Ekr sy (F) || By, (F) || Ex(m).

9.7 Storing, Updating and Destroying Keys

217

With such a protocol, both TTPs independently are able teassd the session key
k.

9.7 Storing, Updating and Destroying Keys
Storing Keys

Storage of keying material refers to a key storage facilityolhr provides secure
storage of keys for future use, e.g. confidentiality andgritg for secret keying

material, or integrity for public keys. Secret keys must betgcted by physical

security (e.g. by storing it within a cryptographic devioeenciphered by keys that
have physical security. For all keying material, unauthedi modification must be
detectable by suitable authentication mechanisms.

Updating Keys

Assuming an encrypted data link where users want to changedeagly, the effort
to distribute a new key every day is laborious. An easiertsmius to generate a
new key from the old key, and this process is called key updafihis can be done
using a one-way function. Two entities sharing the same kel/lmth operating
on it using the same one-way function, will get the same tdgsoke, that even an
adversary gets the same result if he can access the old Keg).eBult can be used
to create a new key, but it is obvious that the new key is onlgezsire as the old
one.

Key Destruction

Key destruction refers to procedures by which parties aseirad of the secure
destruction of keys that are no longer needed. Destroyigg Reeans eliminating
all records of this key, such that no information remainifigrahe deletion provides
any usable information about the destroyed key (note: wieégtidg a file on most
computer systems, the file isn’t really deleted; the onipghileleted is an entry in
the disk’s index file, used for telling the machine that the il there). A key may
be destroyed by overwriting it with a new key or by zeroizihgkeying material

stored on magnetic media should either be zeroized or theanitsdlf should be

destroyed.

218 10 Public Key Infrastructure

10 Public Key Infrastructure

10.1 Introduction

A major advantage of asymmetric key cryptography over sytrimkey crypto-
graphy (see [KaderaliOOb], chapter 4) is that the key distion problem is easier
to solve. Symmetric key distribution systems are expenang: hard to manage.
In high-security applications with imminent man-in-thedille attacks, symmetric
systems require expensive and cumbersome secure comutnomidaes, face-to-
face meetings or courier services. In asymmetric cryptesys the public key can
be distributed without the fear of compromising the secretpe key. Nevertheless,
key management in public key cryptography is still a diffi@rid complex issue.

Many currently emerging applications in the field of infotima technology rely on
the principles of asymmetric key cryptography. The bastusgy related features
that public-key systems can supply are confidentialitya d@egrity, authentication,
and non-repudiation. Typical real-world examples are:

Secure Email The need for a secure messaging environment for the Inteyioét
paramount importance. Although in the past the public amess for the pro-
blems concerning insecure email was very low, the spreadtafld about glo-
bal surveillance systems like ECHOLON immediately prodlgeeat con-
cern about this issue. ECHOLON is a code word for a globalraated com-
munication interception system, operated by the inteflaggeagencies of the
United States, the United Kingdom, Canada, Australia, apd [Mealand.
The consortium is led by the American National Security Ae(NSA).
Some estimates state that ECHOLON intercepts up to 3 bitianmunicati-
ons everyday. These include phone calls, emails, inteowtibads, satellite
transmission, etc.

Secure electronic paymentAt the moment, many payments in Internet-based e-
commerce transactions are based on credit cards. Accaalthg credit card
company Eurocard the number of credit card frauds has rsan talerting
degree. Eurocard stated that in the year 2000 the fraudrateased by 32%.
The security of electronic credit card payments can be aszée by applying
asymmetric key cryptography. For example, a mechanismutireatication
of involved parties (customers, merchants, banks) can ®aded. Further-
more, the credit card and payment information should beypited during
the transaction. Today’s most popular credit card paymgstem was intro-
duced by Visa International and MasterCard in 1996 unden#ime Secure
Electronic Transaction (SET). SET employs asymmetrictoymaphy for key
exchange and digital signature (two different key pairs).

Access control At the moment the prevailing method of access control in cafe
and open networks is to employ weak authentication withyasss. Pass-
words that can be remembered (and thus used) by human ugamnsf éhey

10.1 Introduction

219

have a reasonable length, normally have such a low erfftdipat dictionary
attacks are readily successful. Even though sophisticatttods for useful
password selection exist, these methods are often too asorhe for casual
users or users simply do not bother to use them. Hence, itead\isable to
replace low entropy passwords with large entropy asymmietys.

Authorization Allowing a user to access a computer system is a special férm o
authorization. Other forms of authorizations are, e.gatht&orization to pro-
vide medical advice over the Internet, the authorizatiori¢a the content of
a video on demand stream, the authorization to spend morteg iname of
a company, etc. Such authorizations can be realized wittaled authoriza-
tion certificates, which bind a special form of authorizatio a public key.
The holder of the corresponding private key is then able ¢eg@that she is
allowed to carry out the certified action.

Electronic Signature The recent evolution of the Internet into an open and glo-
bal communication platform has greatly stimulated elescrtaommerce and
Internet-based business-to-business transactions. &easing number of
transactions are carried out online which leads to a demamndrf electro-
nic equivalent of traditional contracts. Especially poldns from the lea-
ding industry nations were under pressure from businesskpm@viders of
e-commerce solutions to quickly adopt legislation of el@uic signatures.
Emerging electronic signature acts include the use ofaligignatures as a
legal replacement of hand-written signatures. In febr2@§1, the German
Bundestag approved the adoption of the European electsamature direc-
tive. Before this law can be put into practice, the "Burgdmtis Gesetzbuch”
and the "Zivilprozessordnung (ZPO)" have to be adjusted.directive uses
the termelectronic signaturénstead ofdigital signatureand defines electro-
nic signature as follows:

"Electronic signature" means data in electronic form whark attached to or
logically associated with other electronic data and whienvg as a method of
authentication.

Furthermore, the directive also defines an advanced etectsanature:

"Advanced electronic signature" means an electronic sigreawhich meets
the following requirements: (a) it is uniquely linked to thignatory; (b) it
is capable of identifying the signatory; (c) it is createdngsmeans that the
signatory can maintain under his sole control; and (d) itirkled to the data
to which it relates in such a manner that any subsequent ahahthe data is
detectable.

40 Only random passwords have maximum entropy.

220

10 Public Key Infrastructure

In practice, this will most often be achieved by digital satpres with explicit sup-
port of non-repudiation.

It can be seen from the examples above, that asymmetric kpyography is app-
lied in diverse disguises. For all these applications tavediectively, sophisticated
key management and distribution systems have to be cotetirtuihe key manage-
ment system for applications of asymmetric key cryptogyaptcalledpublic-key
infrastructure(PKI). A typical PKI consists of hardware, software, the pleowor-
king to administer and maintain the infrastructure, as wasllpolicies regarding
security, privacy and liability.

10.2 Basics of PKI

Most public-key applications rely on the fact that a pubky ks uniquely bound to
a real world person. For these application it is absoluteBeatial, that the public
keys which are distributed are authentic. This means thattg,pwhich receives a
public key of an entity must be assured that this entity adstthe corresponding
private key. In [KaderaliOOb], section 7.5.1, techniquasthie distribution of public
keys were introduced. In practice, the association of aiplbly to an entity is most
often achieved through a public-key certificate issuedtoysted third party (TTP)

10.2.1 Identity Certificates and Trusted Third Parties

Identity certificates, originally introduced by Kohnfetd&ohnfelder76] in 1976,
bind a public key to the name of the owner of the correspongimgte key and
are signed by a trusted third party. A certificate is a dateciire that consists of a
name and a public key which form the data part, and a digjalegure over the data
part carried out by a TTP (see Fig. 10.2-1). Hence, idengtyifccates use a name
to identify a key holder. A key holder is defined as the persoatber entitiy that
controls the private key corresponding to the public kegnldty certificates can be
distributed over unsecure channels like open networks.

name of subject » Bob has the public key

Public key of subject » Key Bob

name of issuer » Issuedby: TTP

private key of issuer ——» Signed: Key TTP

Fig. 10.2-1: Structure of an identity certificate.

10.2 Basics of PKI

221

Fig. 10.2-2 shows two parties, Alice and Bob, where Alice t8dn send a confi-
dential message to Bob. Alice is not able to authenticatésBulblic-key herself
and asks a trusted third party for a certificate which conBslss public key. Alice

can accept the certificate and thus indirectly authentiBateif the following two

conditions are met:

1. Alice authenticates the TTP, i.e. she must know the TT&éXgip key.

2. Alice must trust the TTP, that it correctly authenticaBed before it creates
a certificate.

Only if both conditions are met, the authentication is sastd. If Alice does
not authenticate the TTP (check the public key), she is gigbke to man-in-the-
middle-attacks. If she does not trust the TTP, she shoutdhxedt accept the certifi-
cate because the TTP could have been very inaccurate cangéra authentication
of Bob.

Trusts

Authenticates Certifies

A TTP B

Fig. 10.2-2: Certificate from trusted third party (TTP).

While the methods available for authentication are wellarstbod, the notion of
trust has not yet been clearly defined. In contrast to othetdmental concepts of
computer security like privacy and integrity, trust oftemrains an ambigious term.
There are many notions of trust in the field of computer ségeig.

e System trustrust as assurance in the correct and secure functionisgfoiare,
computer systems, and legal systems.

e Entity trust trust as belief in the benevolent, honest, competent, eedigiable
behaviour of autonomous agents (human or software).

e Dispositional trust trust across a broad spectrum of situations and entities.

Example: a person assumes that irrespective of whethetgampgood or bad,
one will obtain better outcomes by trusting them - hence,shmild generally
trust them.

Trust is always expressed in a relation to an erditgto an action. If an entity is
trustworthyit means that this entity iableandwilling to act in other entities’ best
interests.

If we regard trust as a personal relation between two estiikce an Bob, the
following properties seem to be reasonable:

222

10 Public Key Infrastructure

1. Trust is not symmetric. If Alice trusts Bob it does not mehat Bob also
trusts Alice.

2. Trust is not transitive. If Alice trusts Bob, and Bob tsu§arol, Alice does
not necessarily trust Carol.

Trust that is not transitive is also referred todagct trust Nevertheless, in practice
trust is often transitive and is then referred toirdirect trust For instance, pro-
fessional organizations and recommendation servicesrirtrpat by virtue of their
reputation, and insurance companies impart trust by isangahe financial predic-
tability of outcomes. In these two examples trust flows fraputable institutions
to other principals. Generally, certain kinds of trust aemsitive, while others are
not.

A PKI that manages keys in a community/organisation withleeaay existing trust
relationship between the trusted third parties and thesuseeferred to aslosed
PKI. A typical example is a corporate PKI. In @pen PKlthere is no "natural”
trust relationship between trusted third parties and u§gpen PKIls are thus much
harder to realize. A typical example is a PKI for electrongnsiture applications.

Currently, there are two important certificate formats: Xh809 format which was
standardized by ITU-T [IT97b], and the Open PGP format whigs standardi-
zed by IETF RFC 2440 [RFC2440]. Both formats are describefiithner detail
in Section 10.3). In PKls based on X.509 certificates a tcusted party is called
certificate authority (CA) which is an institution respdsisifor certifying users of
the PKI. CAs in open PKIs which provide certificates as a conciakservice are
called trust centers. In PGP every user can also act as &czetiauthority and is
then referred to as introducer. The structure in which atsisertify each other and
rely on certificates issued by other users is known as welusf.tr

The goal of identity certificates is to bind a public key to atity. Each entity must
be represented by a unique identifier to distinguish it frahepentities. X.509 and
PGP employ different concepts to achieve globally uniqeaiifiers.

Distinguished names

X.509 certificates rely on the X.500 [IT97a] approach of idigiished names.
X.500 and X.509 are standards which were published by theifir1988. X.500
describes a distributed international public directoryiclhis based on the client-
server principle. The directory is organized in a hierazahtree structure (direc-
tory information tree (DIT)) with a global authority as rodthe original purpose
of X.500 was to built a global database of named entitiesplfgge@omputers, prin-
ters, etc. These entities are the leaves of the informates fThe nodes of the
DIT represent countries and organisations which are resplenfor the following
parts (nodes and leaves) of the information tree. OriginX1509 certificates were
used to specify which entity was allowed to modify which pafrthe X.500 tree.
This was achieved by binding the name of the entity to a pWtdic (originally a
password). The names in X.500 have a special format and kee clistinguished
names. The distinguished name is a complete path from thetodbe referred

10.2 Basics of PKI

223

entity. Fig. 10.2-3 shows an exemplary information treehwdistinguished names.
Table 10.2-1 shows the allowed attribute types for distisiged names.

It must be noted that the X.500 plan of a single-rooted opdineitelephone book
is unlikely to ever come to fruition. Firstly, collection$ employee and hardware
information are considered valuable or even secret addetst. organizations and
corporations will certainly not publish sensitive dataimagen directory. Secondly,
the idea of a distinguished name, which must be globallyumigs also not likely

to occur. The required global naming discipline is simply achievable, both for

economical and political reasons. There is one exceptidhisorule: the Domain

Name System of the Internet which is a global namespacerldiique names.

Country
c=DE

Organisation
c=DE, o=FernUni Hagen

Organisational unit name
c=DE, o=FernUni Hagen, ou=KS

Common name
c=DE, o=FernUni Hagen, ou=KS, cn=Gerd Steinkamp

Fig. 10.2-3: X.500 directory structure with distinguished name.

Tab. 10.2-1: Attributes for distinguished

names.
Attribute Meaning

c country name

o] organization name
ou organizational unit name
S surname

cn common name

I locality name
sp state or province name
st street address

t title
sn serial number

bc business category

d description

224

10 Public Key Infrastructure

Names in the Domain Name System

The DNS namespace is under the control of the Internet Catiporfor Assigned
Names and Numbers (ICANN). The ICANN is a non-profit orgaticzaformed
by a broad coalition of the Internet’s business, technmehdemic, and user com-
munities. The tasks of ICANN include the coordination of teehnical manage-
ment of the Internet’'s domain name system and the allocatiadhe IP address
space. Hence, in contrast to an X.500 distinguished namBl&riame is truly uni-
que, which is guaranteed by a single authority, the ICANNingke root could be
accomplished, simply because it was setup before the kitgained its interna-
tional economical and political importance. An examplafy®name is shown in
Fig. 10.2-4.

Root:
ICANN

Country

de uk se de

Organisation
fernuni-hagen.de

Organisational unit name
ks.fernuni-hagen.de

Email address:
gerd.steinkamp@bks.fernuni-hagen.de

Fig. 10.2-4: A name in the DNS.

Creation and storage of key pairs and certificates

For each of the different public-key applications like efution, authentication,
electronic signatures an individual key pair has to be exkalhe reason for this is
that the different applications require seperate conatasrs with respect to

e creation, storage and backup,
e expiry and key lifetime.

A decryption key has different backup requirements thanleat@nic signature
key. The decryption key must be backed up and stored over himdevifetime of
the encrypted documents. A signature private key, on ther dthnd must nevebe
backed up! Non-repudiation can only be achieved if only thvaer has access to
the private signing key. Otherwise, impersonation can oddence, the signature
key must be securely stored in a way, that only the rightfuhemof the key can
control it. For instance, this can be achieved by storingptinate key on a tamper-
resistant smart card which is secured by the owner’s bioosetk signature private
key requires arelatively short lifetime because it musta@mincompromised. This
is in complete contrast to the decryption key, which expinéh the encrypted
document. Hence, in some cases it never expires. If the piganykey expires prior
to the document, the document is lost. It can be seen, thatishiact functions of

10.2 Basics of PKI 225

encryption and electronic signature cannot be truly anekcéffely provided using
just one key pair.

An electronic signature key must never be used for challeagponse authentica-
tion because it would compromise security by allowing chegkaintext attacks.
For example, Bob challenges Alice with a random numhbeencrypted under
Alice’s public key, and Alice is required to respond with ttecrypted random
number. If Bob challenges Alice with(x), wherez is a message unknown to Alice,
Alice’s response to this authentication request may uimgity provide to Bob her
electronic signature on the hash value of the message

There are two options for the creation of the key pair:

e The key pair is created by the certificate authority. The Cgoatreates the
certificate which binds the public key to the holder’s idgntif this is a key
pair for electronic signatures, the user has to trust thel@Ait does not copy
the private key during creation. This is not a big issue irsetbPKIs but has to
be considered in open PKIs (like that conforming to the Eaespdirective for
electronic signatures).

e The key pair is created by the user. The user uses his ownreguaigo create
the key pair. Afterwards, he either creates a certificatesblfne.g. PGP) or
contacts a certificate authority to testify the binding & idientity to the public
key.

As already mentioned, in high-security applications thegbe key has to be secu-
rely stored. The environment, in which keys are stored ayptographic operations
are carried out is called personal security environmenEjPBhe private key must
never leave the PSE. Encrypted documents are decryptee iRSk, because the
private decryption key is needed for this operation. Doausi@re signed inside
the PSE for the same reason. Furthermore, the PSE may alsaoheotorrespon-
ding public-key certificate. Another important functiorthe generation of key pairs
which requires high-quality random numbers that the PSE bmiable to generate.
This may be a reason to delegate key generation to a professi®\ which can
afford the required cryptographically sound equipmente/atively, user work-
stations can generate random numbers by evaluating randentseproduced by
the user, like mouse movements or keyboard typing. A simflE Bt just some
memory space on the user’s personal computer, secured bysaga. A high-
security PSE is a hardware device like a smart card that isipalfy protected
against tampering and secured with biometrics againstthoemed access.

Although devices like smart cards seem to be well suited aSE Ehe following

problem has to be considered in electronic signature agjits: The PSE must
be able to display the document to be signed. In the smartecanthple, a sensible
place to put the display would be the card reader (here thecBB&ists of the smart
card and the card reader). Nevertheless, for most signapyiecations the display
integrated in the card reader will simply be too small. It baysufficient to display
the value of an electronic cheque, but it will not be able tovsla multipage elec-
tronic contract. Hence, such a large document must be gisglautside the PSE.

226

10 Public Key Infrastructure

This introduces a major security risk, because now the usetdtrust equipment
that is outside his PSE to correctly display the documengtsigned. In the case
of the Internet-connected PC, all it needs to let the user amgarbitrary document
is a trojan horse. The trojan horse would display the docurtenuser thinks he
is signing, but would send a different document (in practiee hash value of the
document) to the PSE. A more general term often used insteB&B is trusted

computing base (TCB). Electronic signature applicatiozedha TCB (which inclu-

des the display) to provide the required evidence for nguid@&tion that a court is
willing to accept.

Time stamping and Notarization

Time stamping is a service in which a trusted third party naetstamp authority
(TSA) - signs a message, in order to provide evidence thaistes prior to a given
time. Time stamping is mandatory for non-repudiation aggtions like the electro-
nic signature. For instance, a user cannot claim that adctios was later forged
after compromise of a private key occured, because theeexdstof the signed time
stamp indicates that the transaction in question could ae¢ libeen created after
the indicated time.

Time stamping is a special form of notarization. A notarywsss is a more general
service which is not only able to testify the existence of eLooent at a given time,
but also vouches for the truth of more general statemenfseatfged points in time.

Certificate Distribution, Expiration and Revocation

There are two basic mechanisms for the distribution of fieaties:

1. In the pull model the acceptor of authentication infoloraie.g. a compu-
ter that authenticates a user) pulls the certificate fronrificate directory,
which often is a database holding all relevant certificabepending on the
size of the PKI this can be a single directory server or aitisied database
consisting of multiple directory servers.

2. In the push model the certificates are sent out to all ugeos gertificate
creation. Alternatively, the user that acts as a signer {i@.@n authentication
situation) may provide an appropriate certificate as e\idevhen needed.

In many applications certificates are not issued for an irgfinime period but are
bound to a validity window. An expiration date shall help éduce the risk of com-
promise of the private key (precaution against cryptamslyA certificate becomes
invalid or insecure in the following situations:

e The expiration date of the certificate has been reached.

e A change in the owner’s relationship to the trusted thirdyphas occured or the
owner’s access rights have changed. For instance, thishapphen the owner
leaves or changes his role within an organization. If thémisished name of
a user in an X.509 based PKI changes (or the email address i), RGew
certificate has to be created.

10.2 Basics of PKI

227

e The user looses his private key. In this case he must be mowiith a new key
pair and a new certificate. Alternatively, if the applicatgupports key recovery,
the user may be provided with the recovered key. In order &blenkey reco-
very the private keys of all users must be stored in a confialdotation. The
procedure of storing copies of private keys is also refetoess key escrow. As
mentioned before, key escrow only makes sense for decrypéys.

e The private key has been compromised. Typical reasons foc&mpromise
are:

e an attacker got access to the password securing the prismate k
e an attacker got access to the private key itself, e.g. bytanglysis.

Certificate revocation is the mechanism under which an issarerevoke the asso-
ciation (key-name) before the end of its documented lifetiiftherevocation state
indicates the validity or cancellation of its associatidhe "freshness" of the revo-
cation information is essential for the security of the aailon. It is up to the
operator of the PKI to define the meaning of freshness. Thewolg issues have
to be considered [Daniel00]:

e Allverifiers (users of the PKI) must be able to correctly detme the revocation
state of a certificate within well-known time bounds.

e The costs associated with the management, retrieval, aifccagon of certifi-
cates should increase at a rate slower than increases irzéhefshe serviced
community.

e Any revocation service must be able to support guarantegsstent with exis-
ting security policies and requirements.

A frequently employed means for revocation is to list theokad certificate in a
certificate revocation list (CRL). The CRL identifies theaked certificates by their
serial number and is concatenated with a time stamp whidbates its freshness.
The list is signed by the responsible revocation authowtyich is normally the
certificate authority that issued the certificate, to guamimtegrity. The CRL can
be published over the same distribution channels as thiéicaks. This can either
occur in push or pull mode. In push mode, the notification ofifeeate revocation
(here the CRL) is automatically sent to all users of the PiKpull mode, the verifier
of a certificate has to check if the certificate is still valiy, requesting the CRL
from the responsible revocation authority. The advantdg€RLs is simplicity,
the disadvantage the high communication costs. An optioedoce the size of
the CRLs ist to publish only new entries. A CRL that only caméanew entries is
called delta-CRL. The users of the PKI have to cache all r&voie information and
update it according to the issued delta-CRLSs.

Often, a compromise between security and scalability hdsetbund. The more
frequently revocation information has to be published.(|mdorm of a CRL), the
higher the communication costs become. In some high-sgcapplications the
verifiers are obliged to contact an online revalidation menbefore relying on a
certificate. The revalidation service’s answer to a reqigest statement that the
certificate is either valid or invalid. It must be noted, timesuch a system the power

228

10 Public Key Infrastructure

of certificates is considerably reduced. A certificate doatssuffice by itself to
provide authentication information. Every certificatehie system is stale by default
and must be refreshed by online revalidation.

Although popular in commercial PKIs due to their simplicilBRLs have been cri-
ticized in the research community. Rivest [Rivest98] mdwled propositions which
should help to improve on conventional revocation mechmasis

Proposition 10.2-1: Recency requirements must be set by the acceptor, not by
the certificate issuer (CA).

The acceptor of the certificate is the one who is taking the Hence, he should
decide what a satisfactory recency requirement is.

Corollar 10.2-1: Periodically-issued CRLs are wrong, because they are incon
sistent with Proposition 1.

CRLs are issued by the CA which also dictates the updatevadtérhe acceptor of
the certificate must accept the provided recency evidence.

Proposition 10.2-2: The signer can (and should) supply all evidence the accep-
tor needs, including recency information.

Instead of having thacceptorquery the CA for CRLS, theigneris asked to obtain
any necessary evidence, and present it with his signature.advantage of this
approach is, that it allows the acceptor, which often is @eseto be implemented in
a stateless manner. For example, the server may replyy,$bease make sure that
all of your evidence is at most one week old", and then forgetiaithe request. The
server does not have to store state information about thaesg, it simply rejects
it and expects the user to come back later with appropriatierge. A stateless
server design is less vulnerable to denial-of-serviceksta

Proposition 10.2-3: The simplest form of "recency evidence" is just a (more-)
recently issued certificate.

This proposition leads to a considerable organisationailead if certificates have
to be periodically reissued. In practice, the more efficigpiution would be to

implement a revalidation service. Revalidation has theaathge, that it can be
automated, e.g in form of a software agent. A certificatiorvise, on the other

hand, in most cases cannot be automated.

Certificate Policy and Certificate Practice Statement

A certificate policy is a set of rules that define the applitgbof a certificate to

a community/organisation with certain security requiratseThe certificate policy
of an organisation leads to a certificate practice staterf@&8). The CPS expli-
citely states a CAs policies concerning the issuance, taaance and revocation
of certificates. Furthermore, it may contain informatioatlegal aspects and lia-
bilities towards entities relying on the certificates. THeSCcan be seen as a ver-
bose version of the certificate policy. As much as possibterafication practice
statement should indicate any of the widely recognizeddstads to which the CA's

10.2 Basics of PKI 229

practices conform. The level of details makes a CPS pragyiend thus it normally

only applies to a single organization. A certificate polioyg, the other hand, app-
lies more broadly than a CPS. If a particular certificateqyois widely recognized

and imitated, it has great potential as the basis of autahwdificate acceptance
in many systems. Interconnection of PKIls is thus carriedooupasis of certificate

policies, and not on certificate practice statements. A Cthaisingle CPS may
support multiple certificate policies used for differenphlgations and purposes.
Also, multiple different CAs, with non-identical certifitan practice statements,
may support the same certificate policy.

10.2.2 Certification Structures

A more general certification path than that presented in FdgR-2 can consist of
several TTPs and certificates as shown in Fig. 10.2-5. Thim e@tahe top of the
graphic is based on direct trust. Alice can only authendi@ab if she authenticates
the first TTP and directly trusesachTTP in the chain. The trust vectors originating
from Alice and ending in a TTP are also called trust anchaorghé example at the
bottom of Fig. 10.2-5 Alice only sets up one trust anchor torikarest TTP and the
trust propagates from each TTP to its successor. Which distbérust models can
be applied depends on the application including the rekseéedrity policies and the
participants.

~Trust TQSt -~
- Trust \ \ ~ \
Trust \ \ \ \

Auth-»e—Cert »eo—Cert »e—Cert »eo—Cert »

A
7 Trst Ve ?ust\/ Fu_st\/ ﬂt\
Auth-»e—Cert »o—Cert »eo—Cert »e—Cert »
A B

Fig. 10.2-5: A certificate chain relying on direct trust (top) and indir&ust (bottom).

The certificate path shown in Fig. 10.2-5 consists of alliteates77" P{ £'} of the
path. 7T P{E} is certificate issued by a TTP for entity, which can either be a
user or another TTP. The certificate path to Bob may look dsvist

TTP{TTP)}, TTPA{TTP;}, - , TTP, {TTP,}, TTP,{Bob}.

The trust model at the bottom of Fig. 10.2-5 is typical for Gased PKIs. In these
PKls trust is often a form of system trust which is transitiVee web of trust, on the
other hand, is based on entity trust which is produced byasoeiationships. This
form of trust is not transitive and the trust model at the tbpig. 10.2-5 applies.

230

10 Public Key Infrastructure

In the following, important certification structures aresdebed.

Single-CA

In the model shown in Fig. 10.2-6 one single-CA is respoiesibf certifying all
end entities (EE). The arrows represent certificates. Togrgphical distribution
of the participants must be locally constrained if the diedte policy requires phy-
sical attendance for certification. It is obvious that the @l become a bottlen-
eck because the task of authenticating users cannot be atgtineyond a certain
degree. Obviously, this model is only feasible for smalllegggions with a limited
number of participants.

EE

EE

EE
EE

Fig. 10.2-6: Single-CA.

10.2 Basics of PKI 231

Single-CA plus Registration Authorities

This model still consists of a single-CA but allows for a deganumber of partici-
pants who can also be geographically distributed (see Big-1). There are multi-
ple registration authorities (RA) which are trusted by thetG verify the mapping
between a name and a key. Hence, the CA delegates the taskrafegsstration
and authentication to the RAs and performs the cryptogcaphasks itself (e.g.
key generation, signing). This model is more convenientterusers because they
do not have to travel to the CA's location for registratioach RA has a key pair
associated with it. The CA knows the RAs’ public keys whichsés to authenticate
messages sent by the RAs. If the CA receives a valid signestsedfom an RA, it
creates a certificate.

Delegation of Identification,
~"Registration

Certification

R

/ _~ldentification, Registration
\J

EE EE EE EE EE EE EE EE EE

Fig. 10.2-7: Single-CA plus registration authorities (RA).

Oligarchy of CAs

Instead of being configured with the public key of a single;@#gerything is con-
figured with public keys from multiple CAs. For example, thezan be dozens
of organisations from which one can obtain a certificatesThodel is currently
implemented in web browsers (open PKI). The advantage btrer the single-CA
model is that competition among CAs should prevent abusiteeng for obtaining
certificates. The disadvantage of this model is that it is g&ure than the single-
CA model. In the single-CA model security depends only ondingle-CAs key.
When there are multiple CAs the security depends on all Kégspromise of any
of the dozens of keys is as serious as compromise of the $iagl@ the single-CA
model.

232 10 Public Key Infrastructure

Subordinated hierarchy

In this model there are multiple CAs arranged in a tree-lieedrchy (see Fig. 10.2-
8). The CA at the top of the hierarchy, which is referred tocag CA certifies all
other subordinated CAs. Each CA certifies one or several Ckedollowing level
of the hierarchy. Hence, the root CA delegates the duty dification to other CAs.
The subordinated CAs are normally strictly limited in terofshe name subtree
they can certify. Hence, this hierarchical model resembiesstructure of large
corporations with a root authority at the top level and sdbw@ted departments at
the lower levels. In the model displayed in Fig. 10.2-8 ther&E) does not need
to trust the CA closest to her, but she must trust the root @hgch the root CA is
the user’s trust anchor. This trust transitively propagateer all subordinated CAs.
If the private key of the root CA is compromised, all certifesiin the hierarchy
become invalid. In practice, the number of CAs in the chainesricted (often
to 3) because trust quickly degrades as it is propagategsaerdong chain. The
advantage of this model is that the workload of certificatsodistributed across the
hierarchy. Each CA only certifies entities which are somehalated to it (e.g. are
working in a related department of a large corporation).

I

'

EE EE EE

N\

EE EE EE EE EE EE

Fig. 10.2-8: Hierarchy of CAs.

10.2 Basics of PKI

233

Cross-certified Mesh

A cross-certified mesh envolves when PKIs belonging to diffesecurity domains
want to cooperate. A security domain is defined as a systemruhd control of a
single authority which the entities therein trust. Eachusiég domain has its own
security and privacy policy defined either implicitly or éxjily by its authority. To
enable communication between two domains the root CAs -@exddy each other
(see Fig. 10.2-9). Nevertheless, also subordinated CAsroms-certify each other.
This is often done to reduce the length of a high-usage aatiifin path (short-cut).
It must be noted, that cross-certificates are not necegbadirectional.

The problems connected with cross-certification are:

e Cross-certification can only be carried out between domaihih agreed on a
common certificate policy. In practice, this is a big probjdrcause certificate
policies of different organisations are not compatible leyadlt. Fig. 10.2-10
shows two incompatible certificate policies.

Security Domain

| % EE
\ B e

@

Short-cut

EE EE EE

@ @
RV

Fig. 10.2-9: Cross-certified mesh.

234 10 Public Key Infrastructure

Certificate Policiy A Certificate Policiy B

P > Acceptance

Key length 2048% Key length 1024 bit > proboble
it ? ---2__» Accepfance
? Revocation: ot proloable

Revocation: CRE % Revalidation

Fig. 10.2-10: Comparison of two incompatible certificate policies.

¢ In this model there is in general more than one certificatiatin fpetween two
entities. In practice, there are no mechanisms which cadléanore than one
certification path.

e The cross-certification is often transparent to the useEy (& the PKI. The
chain along which trust is transitively propagated can bezquite long. It is
not obvious, how secure these chains really are.

Bridge CA

Cross-certification does not scale well to larger numbeAs. The organisational
overhead of linking security domains by cross-certifiaatipows as:?, wheren is
the number of domains to be fully connected. The bridge CAehadn help to
reduce the costs and problems of linking independent ggaomains. Fig. 10.2-
11 shows a bridge CA that cross-certifies with each secudtyain. It must be
noted that the bridge CA is not a root CA but a federal neutrsiitution. It acts
as a peer rather than a superior to the root CAs in the diffesecurity domains.
A bridge CA is thus able to connect diverse existing PKIs likeporate PKIls,
banking PKIs, and government PKIs. Nevertheless, a unitertificate policy is
still needed. In practice a bridge CA provides the certiécaplicy to which all
connecting PKIs must conform. This model appears to be timepcandidate to
transform today’s PKI island solutions into a national Pktwork. If bridge CAs
in different continents and countries cross-certify, thisdel may even extend to a

global open PKI.

10.2 Basics of PKI

235

Security Domain
EE

EE EE EE

@ @
RV

Fig. 10.2-11: Bridge CA.

Egalitarian structure

In the egalitarian model, as shown in Fig. 10.2-12, all eeditare both, certificate
authority and end entity. Each entity decides which othéities it wants to trust
with regard to the certification of other entities. This mlodas made popular by
Phil Zimmerman and his email encryption programiaretty Good Privacy (PGP)
which coined the expression Web of Trust. It must be noted ttihe egalitarian
model is totally distributed. There is no central instibitithat must be relied upon.
Hence, every participant can freely set his trust anchomveny other participant,
who will than act as an introducer for other entities to hirhislresults in a certifi-
cation graph with multiple parallel paths of arbitrary l&#mgrhe model can thus be
compared with the cross-certified mesh model, but the streicif the graphs and
the semantics of the nodes and edges is slightly differdm.structure of the graph
often resembles social relationships between the entiigsfriendship, work rela-
tion, family relation, etc.

Note that Fig. 10.2-12 only shows certificates issued by #erauiof the Web of
Trust. The actual trust anchors are not displayed in thiglgcaWhile the certifica-
tion graph is unique for all participants (ideal case), tlusttgraph which contains
the trust relations is specific (subjective) for every uber.an example of a com-
bined certification and trust graph see Fig. 10.3-1 in whitibe®s subjective trust
graph is superposed on the certification graph.

236 10 Public Key Infrastructure

Bob

Carol

Fig. 10.2-12: An example for an egalitarian certification structure: Wieb of Trust.

10.2.3 Attribute Certificates

Identity certificates like X.509 certificates only solve queet of the problems in
public-key applications: They bind a person to a public keg thus help to authen-
ticate an entity. They give no information about which acttbe certified entity

is allowed to perform. The mapping of entities to rights isngbetely left to the

application itself.

Example 10.2-1:

Let us consider an application that employs strong autba&tibin to grant access
to a computer system (see Fig. 10.2-13). All users of theegystre provided
with a smart card containing a X.509 identity certificatee Th509 certificate
was issued by a CA belonging to the organization who owns dhgpaiter net-
work (closed PKI). When a user wants to get access to the camgystem she
inserts the smart card into a card reader and enters her @asswproove that
she is the rightful owner of the private key which is also stbon the smart card.
Each computer in the network is configured with the public &kthe CA. The
authentication can now be performed as a challenge-resgmased on digital
signatures (see [KaderaliOOb], Section 8.4.2After the authentication process
the computer system knows the name of the user, but it doeknowst if the
user is allowed to access the system. Hence, the systemaolstip the name
of the user in an access control list (ACL). The ACL is held ofirectory server
(light-weight database). The directory server and the A@_aministered by
the system administrator, who is the responsible persascioess control. If the
user name is listed in the ACL the system grants access tetre u

10.2 Basics of PKI 237

i Access Control List
Au;:irr‘]tlc Is Alice in ACL? Directory
- E— @ Alice
—Bob
QO Carol
CompUter\Yis/
6> Smartcard
[]
I
X.509 ~ ¥ 'nl
Certificate: |~
Alice has 1 System Administrator
public key: Certification Authority
K_Alice

Fig. 10.2-13: Example for strong authentication with certificates.

In the example above, Alice presents a piece of evidencedariity certificate - to
the computer system. This is referred to as push model. Thdehtonforms with
the rule, that the signer should supply all evidence the@ocaneeds, including
recency information (see Section 10.2.1). Neverthelesagtimes it is more con-
venient to request the certificate from a corresponding oxtgervice (e.g. a direc-
tory server (pull model)). Alice does not present any evagetihat she is allowed
to access the network. Hence, the access right is pulledédbgdbessed computer
from the directory.

This example shows, that the PKI alone (in this case a si@dleeoes not suffice to
make decisions about access rights. There has to be a seechdmism, a directory
server holding the ACL, to successfully grant access rdgquébe maintenance of
such a directory server leads to organizational overheatlabso represents a criti-
cal point of failure. There is always the chance that thectiingy server fails, which
would prohibit any user from working with the system. To ehate this risk, red-
undancy mechanisms have to be installed which further atteetoomplexity of the
system. Furthermore it must be noted, that every accesgsetpads to messages
sent over the network from the accessed computer to thetoliyeserver and back.
For an attacker, the directory server is a valuable tarfjtelattacker is able to get
access to the directory he is able to add and remove arbusangs.

The integrity of the access information can be achieved avdlgital signature. One
approach is, to include the access authorization insidX t6@9 identity certificate
(in the extensions fields). Nevertheless, this is often naable method, because
the certificate authority is seldom the authority respdeditr granting the appro-
priate rights. This can be seen in our example where we haver@€ponsible for
issueing identity certificates and a system administratow grants access rights.
These are obviously different entities. Furthermore, tyreathics of the two types

41 The private key must never leave the smart card. The sign&stcomputed on the smart card
itself.

238

10 Public Key Infrastructure

of certificates may be different. Identity certificates ofteave a validity period of

several years. The access right on the other hand may onBlib€ar a much shor-

ter time period, e.g. a day or a week. If the identity certitBchas to be reissued
or revoked in synchronization with the authorization imh@tion, this may have a
severe impact on the performance of the access controlhsyste

Recognizing that identity certificates are not the ideat@lto put authorization
information, an alternative approach is to place the aightion information in an
extra attribute certificate. This attribute certificate &rcture consisting of a data
part which holds the attribute information and the subjecinfe of an entity) to
which the attributes are bound, and a sighature part contaasignature over the
data part carried out by an attribute authority (AA).

In our example, the access control system can be simplifi@atipducing attribute
certificates carrying the authorization information besithe identity certificates.
These attribute certificates can either be stored in thetding server or, like the
identity certificate, on the user’'s smart card. Fig. 10.Zhdws how attribute cer-
tificates can help to reduce the complexity of the access@osystem. It can be
seen that the directory server was removed. Instead of aaing a list with autho-
rized users, each user gets an attribute certificate signteelsystem administrator
(AA), which binds the right to access the computer systenhéoperson holding
the certificate. The integrity of the certificate is main&rby the system adminis-
trator’'s signature. The system administrator himself igifoed by the CA. Each
computer on the network is configured with this certificatd e CA's public key.

When Alice wants to access the network, she presents twa itdravidence: the
identity certificate which states that Alice is bound to tley ktored on the smart
card, and the attribute certificate which states that Alecgranted access to the
network. After the authentication process the accesseguotandoes not query a
directory server, but processes the attribute certifidatbe signature checks out
ok, Alice is granted access to the network.

Authentication
| : Q\ II @

' Computer
Alice X.509 Certificate:
SysAdmin has
Smartcard public key:
K_SysAd ®
Attribute X509 ini
Certificate: Certificate: System Administrator
Alice may Alice has $
access the public key:
network K_Alice
IJ:LI
A

Certification Authority

Fig. 10.2-14: Access control with attribute certificates.

10.2 Basics of PKI 239

The distribution of authorization information is just oneneany possible uses for
attribute certificates. Basically, an attribute certifecaan be used to bind any kind
of information to an entity. A proposal for the standardizabf attribute certificates
was made by the ANSI X9 committee. ITU-T included this prag@as X.509v3
[IT97D].

10.2.4 Authorization and Delegation Certificates

Besides the two types of certificates already presented ibarthird important kind
of certificate - the authorization certificate. The main agation for such certifica-
tes is authorization in distributed environments, like litiernet, where no central
trusted authorities exist. An important new mechanism jolex by authorization
certificates is the possibility to delegate certified righbtsther entities.

An authorization certificate is a digitally signed piece wiformation that assigns
a subject, usually represented in the form of a public keg, @nmore permissi-
ons, which allows the subject to perform specified actionsr@or more specified
objects in a target system. Authorization certificates &e egeferred to asigned
capabilities Fig. 10.2-15 shows a typical authorization certificate.

authorization

subject——Key2:may access service S-

during the period-:’fi——_'-l:é\j:-// validity period

— issuer

Fig. 10.2-15: An authorization certificate.

A delegation certificate is an authorization certificateggt tallows the subject to
delegate the assigned permissions further. A delegatitificate has the following
meaning:

Sken (during the validity periodl; — 75, if | have any of the rightsk | give the
rights also tKey2).

Skey1(...) denotes a signed message that includes both the signatutiessoriginal
message. The key that signed the certificétey() is the issuer and the key to
whom the rights are giverkey? is the subject of the certificate, and the rights
R given by the certificate are the authorization. With theedation certificate, the
issuer delegates the rights to the subject. The certifiaterbes invalid outside the
validity period7; — 7. The validity period can be exploited to regulate the amount
of trust the issuer places into the subject. By specifyingesrely short validity
periods the issuer can force the subject to frequently makeeoconnections to
the issuer. In practice, authorization and delegationfweates are often treated as
synonyms.

240

10 Public Key Infrastructure

An important difference to attribute certificates is, thategjation certificates are
key-oriented. Subjects in delegation certificates aredwttified by a name, but by
their public key. The chance that two persons have the satrie ey (e.g. 512 bit
RSA keys) is so low that it can be neglected. Hence, a publiékeuly a globally
unique identifier.

The use of the public key as identifier leads to a considersibiglification: the
same authorization that requires the combination of antiiyecertificate and an
attribute certificate can be expressed in a single delegedidificate (see Fig. 10.2-
16). There is no need for a trusted CA and every key may d@dtmtights to
any other key. Hence, delegation certificates allow egalitecertification structure
comparable to the web of trust. In order to bound the delegatnain, an issuer can
specify whether he allows the granted rights to be delegated

Identity certificate

Bob has public key
Key2
Signed: CA Key2 may access
—> service S
Bob may access Signed: service owner
service S . o
Signed: service owner Delegation certificate

Attribute certificate

Fig. 10.2-16: Delegation certificates avoid trusted CAs.

If we use delegation certificates in our access control ei@ntipe system can be
further simplified. Fig. 10.2-17 shows the system and it carobserved, that the
CA was removed from the system. Instead, the system admaitastdirectly binds
the access authorization to Alice’s public key. Alice onbsio present one piece
of evidence to the accessed computer: the authorizatidificate. Each computer
securely stores the reduced ACL, which only consists of thmimistrator’s public
key. When an authorization certificate is presented by g tieeaccessed computer
employs the administrator’s public key to verify the accasthorization.

10.2 Basics of PKI

241

Authentication l w
—> A v,

Computer

Alice

Smartcard

Authorization []

Certificate:
Key2 may
access the

network .
AA: System Administrator

T

Fig. 10.2-17: The access control system employing authorization czatés.

Normally, the administrator would not allow Alice to furthdelegate this access
right. On the other hand, there can be situations where suehegation could be
useful. If Alice wants to delegate the access right she doesave to reveal a pass-
word - thus compromising system security - but can creatdegdgon certificate
herself (see Fig. 10.2-18). According to the trust in theso#ntity, she can limit
the access rights and the validity perid®B(— 74 < T1 — T2, R3 C R2).

~,

Administrator Ss Alice A Bob
holds key1 "@s\ holds key2 Yt holds key3
key2 has rights R2 key3 has rights R3
during the period T1-T2 during the period T3-T4
Signed: keyl Signed: key2

Fig. 10.2-18: Delegation of access righis3 — 74 < T'1 — T2, R3 C R2.

242

10 Public Key Infrastructure

10.3 Important PKI Standards
10.3.1 X.509

The X.509 version 1 certificate format (X.509v1) was first lghed in 1988 by the
ITU-T. It was first extended in 1993 to become X.509v2. As altex attempting to
deploy certificates within the Internet, X.509v2 was regtiseehold additional exten-
sion fields. The resulting X.509v3 format was officially $ed in 1996 [IT97b].
X.509 certificates are formatted according to the ASN.1rabssyntax notation.
The details of ASN.1 are beyond the scope of this book.

X.509 Identity Certificates

An X.509 certificate has the following structure:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAl gorithm Al gorithmdentifier,
signature BIT STRI NG }

The fieldt bsCer ti f i cat e holds the data part, the fiedd gnat ur eAl gori t hm
identifies the chosen signature algorithm and the f&ldjnat ur e carries the
signature of the certificate.

The signature algorithm is identified by @bj ect |dentifier, OID.

Algorithmldentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER,
par anet ers ANY DEFI NED BY al gorithm OPTI ONAL }

The fieldal gor i t hmspecifies a combination of hash function and signature algo-
rithm. An application has to list supported signature atpars, including the allo-
wed parameters. The fiefhr anet er holds the parameters of the signature algo-
rithm.

The fieldsi gnat ur e carries the signature, which is created by employing the
identified algorithm in combination with the CAs privatedsature) key on the
data sectiont(bsCerti fi cate).

The fieldt bsCerti fi cat e consists of a sequence of subfields, which make up
the data part of the certificate (ASN.1 syntax).

10.3 Important PKI Standards 243

TBSCertificate : 1= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serial number CertificateSerial Nunber,
si gnature Al gorithm dentifier,
i ssuer Nare,
validity Validity,
subj ect Nane
subj ect Publ i cKeyl nf o Subj ect Publ i cKeyl nf o,
i ssuer Uni quel D [1] IMPLICIT Uniqueldentifier OPTI ONAL
subj ect Uni quel D [2] IMPLICIT Uniqueldentifier OPTI ONAL
ext ensi ons [3] EXPLICIT Extensions OPTI ONAL }

{version} Designates the version: v1, v2, or v3.

{serial number} A unique number is used to identify the certificate, e.g. && in
certificate revocation lists.

{signature} Used for identification of the employed signature algorithhmust
not be confused with the field holding the actual signatuhe Structure and
content is identical to the fielgli gnat ur eAl gori t hm

{issuer} This field holds the name of the issuer (CA). The name must bstiad
guished name conforming to X.500-Syntax (see Table 10.2-1)

{validity} This field specifies the validity window and holds the sub8eld
not Bef or e andnot Af t er .

{subject} Here the distinguished name of the subject is given.

{subjectPublicKeylnfo} This field specifies the subject's public key (sub-
field subj ect Publ i cKey) and the according algorithm (subfield
al gori t hm that must be used with this key.

{issuerUniquelD} This field contains an optional bit string used to make the CA
name unambigious in the case that the same name was reassigtierent
enities through time.

{subjectUniquelD} Same as above for subject.

{extensions} X.509v3 certificates may contain extension fields that cdd arbi-
trary data. An application can theoretically define an urboh number of
extension fields. For instance, the extension fields may hattiorization
information. The drawbacks of placing authorization infiation in iden-
tity certificates have been illustrated in Section 10.2.8. éktension field
has three parts: extension typex¢ nl d), extension valuegxt nVal ue),
and criticality indicator¢r i ti cal). The extension type is a gobally unique
identifier that references the syntax and semantics of ttemsion value. The
extension value holds the actual value of an extension fiaflly, the criti-
cality indicator is a flag that instructs a certificate-usapglication whether it

244

10 Public Key Infrastructure

is safe to ignore the extension field if it does not recogrieestxtension type.
X.509v3 defines several standard extension fields, typi@aheles are fields
that contain information about key usage (electronic dignea encryption,
etc.), certification path constraints, CRLs, and certiéigailicies. Besides the
standard extensions, applications may define private sixtes for their own
use (e.g. email address, server URL, etc.).

X.509 Attribute Certificates

The ITU-T X.509 standard also defines an attribute certgidatmat. It has the
following structure:

AttributeCertificatelnfo ::= SEQUENCE {
version Ver si on DEFAULT v1,
subj ect CHO CE {
baseCertificatelD [0] IssuerSpecial,
subj ect Nane [1] Ceneral Nanes 1},
i ssuer CGener al Nanes,
signature Al gorithm dentifier,
serial numnber CertificateSerial Number,
attrCertValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attri bute,
i ssuer Uni quel D | MPLI CI' T Uni quel dentifier OPTI ONAL
ext ensi ons EXPLI CI T Extensions OPTI ONAL }

{version} The version number differentiates between different wersof the attri-
bute certificate. Currently, the version number is v1.

{subject} This field conveys the identity of the certificate’s subjeeterenced eit-
her by theser i al Nunber associated with the subject’s X.509 identity cer-
tificate or by thesubj ect Nane.

{issuer} This is the name of the Attribute Authority (AA) who creatéx tattribute
certificate.

{serialNumber} This number uniquely identifies the attribute certificate.

{signature} This field identifies the cryptographic algorithm used toitaity sign
the attribute certificate.

{attCertValidityPeriod} This field conveys the time period during which the attri-
bute certificate is considered valid.

{attributes} This field contains the actual attributes that are bounddcttbject.

{issuerUniquelD} This field uniquely identifies the isuuer of the attributetifier
cate in those instances where the issuer name is not sufficien

10.3 Important PKI Standards 245

{extensions} This field allows the addition of new fields to the attributetiéeate.

The X.509v3 standard leaves a lot of room for applicationadjust the certifi-
cates to their requirements. Many of the standard and extefiglds can take a
wide range of options. Nevertheless, this flexibility makesxtremely difficult to
produce independent implementations that are able to tgpetth one another. To
overcome this problem, templates for certificates and pho®s are created, which
are referred to as profiles. A profile defines which extensedgimust be supported
and what values the certificate fields might carry for a certgde of application.

10.3.2 PKIX

The IETF Internet X.509 Public Key Infrastructure (PKIX) Yong Group formed
in 1995 to develop standards for an Internet PKI based onXcg@tificates. These
standards consist of X.509v3 and CRL profiles, as well asrabpeotocols for PKI
services. The specifications are documented in a family & Bécuments. These
RFCs can be grouped in five areas:

Profiles This first area involves profiles of the X.509v3 certificate éme X.509v2
CRL standards for the Internet.

Operational protocols These protocols can be used by participants to retrieve cer-
tificates. Protocols defined so far use LDAP (Lightweightdotory Access
Protocol), HTTP, FTP, and X.500 for certificate distributio

Management protocols This area covers management protocols, in which diffe-
rent entities in the system exchange information needeg@rfgser manage-
ment of the PKI. For example, a management protocol can ganiema-
tion about a revocation request from a client to a CA. Thestegfion infor-
mation from a registration authority (RA) to a CA is anothpplcation for a
management prototcol.

Policy outline This section deals with certificate policies and certifigatactice
statements, covering the areas of PKI security not dirediyressed in the
rest of PKIX. RFC 2527 [Chokhani99] defines a certificate gyo#ind certifi-
cate practices framework.

Time stamping and data certification PKIX provides time stamping via a Time
Stamping Protocol (TSP). Furthermore, the working grougppses a data
certification service to provide notary functionalities.

246

10 Public Key Infrastructure

10.3.3 SPKI

The Simple Public-Key Infrastructure (SPKI) working groups built by the IETF
to standardize a PKI based on authorization and delegatidificates as described
in Section 10.2.4. The SPKI team addresses the problemhbatame of a key
holder which is conveyed by traditional identity certifieatis rarely of security
interest. A user of a certificate has to know whether a givenHader has been
granted some specific authorization.

There are two types of certificates in SPKI:

1. The basic certificate is an authorization certificate Wisemmunicates a per-
mission from one principal to another principal.

2. The second type is a name certificate which maps a name isstiher field
to either a key or a name in the subject field.

In this book, we will only describe the authorization cectiie. An SPKI authoriza-
tion certificate is a 5-tuple and contains the following fee{gimilar to the certificate
displayed in Fig. 10.2-15):

<l ssuer, Subject, Delegation, Authorization, Validity>

Issuer The cryptographic key issuing this certificate and granthmgpermission
or rights it communicates.

Subject The cryptographic key acquiring the permission or rights.

Delegation A flag noting whether the Subject is also acquiring the riglde¢legate
all or part of the permission it acquires through this cexditie.

Authorization {<tag>} A field specifying the permission being communicated.

Validity A specification of the dates or online conditions under whtioh cer-
tificate is assumed to be valid. The dates have the f¥ivYY- MM DD
HH: Mt SS.

The starting point of a SPKI certificate chain is always an AQlLry. An ACL entry
is like a certificate, except that it has no issuer and is rgytesd. It is protected in
the application by other means.

Example 10.3-1:

In the access control example shown in Fig. 10.2-17 the AQl bolds the
public key of the administrator and is securely stored imgwemputer that
can be accessed. The administrator delegates the rightéssathe computer
network to Alice, but does not allow her to further delegais tight.

The data format chosen for SPKI is called S-expression. iBhiés parenthesized
expression with the limitations that empty lists are nadwa#d and the first element

10.3 Important PKI Standards 247

in any S-expression must be a string, called the "type" ofetkression. Alice’s
SPKI certificate may look as follows:

(cert

(i ssuer
(public-key
(rsa-pkcsl-nd5
(e #03#)
(n
| ANHCG85j XFGmi cr 3MGP] 53FYYSYlaWAue6PKnpFEr HhKMJ a4 Hr K4AWSKTO
YTTlI apRznnELD2D71 WI3@PDOI yi INJpNzMxQVHr r Anl QoczeQZui z/ yY
VDzJ1Ddi | mi xyb/ Jyme3D0OUi UXhd6VGAz0x0cgr Kef Knnj y410Kr o3uW|)))
)
(subj ect
(public-key
(rsa-pkcsl- nd5
(e #11#)
(n

| ALNdAXf t avTBG2z HV7BEV59gnt NI xt JYqf Wi 2kTcFl g
| PSj KI Hl eyi 9s5dDcQoVNMej Rj F+z8Tr | CEn9MsyOvXB0
OWYRt W 7aH2WAZx+x8er OWR+yn1CTRLS/ 681 WB6W 1x8h
i PycMoi | CAbSYj HC/ ghq2mvCZO7VQXIENZ Yr 45|)))

)

(tag (access acne.org/alice/* (read wite))
(not-before "1998-03-01_12:42:17")
(not-after "2012-01-01_00: 00: 00")

)
{ KDQBY2VydCg20m zc3VI ci g0OThhc2gz OMLKNTE20l Lf Zt eG8j 83hj WnQ

4z Ul pKSg3OnNLYnpl Y3QoMTE6b2JgZVWNOLWhhc2goNDpoYXNoMez pt ZDUXN q
zMoKVI r 51 3M wef f CMCXNMTT 6cnVuZWLhY3MuZXhl KSkpKDVBd GFnMTA6dmi
ydXm zZnJdl ZSkp}

Issuer and subject are identified by their public keys. THaipkeys consist of an
identifier (including hash function) and the public-key graeters: andn. PKCS1
[Kohnfelder78] is a document published by RSA which dessilbhow RSA is
employed for encryption and digital signatures. The puédponent is encoded
in hexadecimal notation, the moduluss encoded in base64 notatidnThe aut-
horization to access the computer network with read/wetenpssions in her home
directory is given within thd ag field. The certificate is digitally signed by the
administrator (base64 encoded). If the administrator diallbw Alice to delegate
her access right the certificate would change to

(propagat e)
(tag (access acne.org/alice/* (read wite))

42 65 character subset of ASCII, each character represéitis 6

248

10 Public Key Infrastructure

10.3.4 OpenPGP

Pretty Good Privacy (PGP) is an email encryption programmigem by Phil Zim-
merman in 1991 at MIT. Zimmerman wanted to create a solutiahdould be easily
used over the Internet. He released the programme as fre@ndralso published
the source code. PGP soon became a great success and gusréml only wor-
king PKI solution for the global Internet. PGP does not rety"official” certifi-
cation authorities, but allows any user to certify otherras&his model became
publicly known asVeb of Trus{see Fig. 10.2-12). Due to the immense success the
PGP message and certificate format were published as Ihtameards in RFC
2440 [Callas98] under the name OpenPGP. It must be note@peatPGP not only
supports the Web of Trust certification model but also thednahical certification
structures based on CAs. Hence, OpenPGP is not only usedvayepusers for the
Internet but also by large corporations.

An OpenPGP certificate is a kind of meta certificate which maytain several
keys, user IDs and signatures. OpenPGP certificates areatiprmmaferred to as
"PGP Key", not "PGP certificate". The general format of ani@eP(v4) key looks
as follows:

Pri mary- Key
[Revocation Sel f Signature]
[Direct Key Self Signature...]
User ID[Signature ...]
[User ID[Signature ...] ...]
[[Subkey [Bi ndi ng- Si gnat ur e- Revocat i on]
Pri mary- Key- Bi ndi ng- Si gnhature] ...]

Entries in square brackets are optional and ellipses itelrepetition. An OpenPGP
key holds one primary key and may contain several subketse Key contains sub-
keys, the primary keynustbe a signing key. The subkeys may be keys of any type
(encryption keys, signing keys). The primary key may cantsveral user IDs,
which may carry several signatures. The Primary-key-naimeirog must include

a self-signature. This is the padser | D [Si ghat ure] without brackets.
Hence, a PGP key at least consists of a primary key, a userda aelf-signature
carried out by the primary key. Futhermore, there are sortiertgd fields:

{Revocation Self Signature} A PGP key carrying this signature is revoked. The
signature is calculated directly on the key being revokedevoked key is
not to be used. Only revocation signatures by the key bewakesl, or by an
authorized revocation key, should be considered validaavon signatures.

{Direct Key Self Signature} This signature is calculated directly on a key. Such a
signature may contain information about the key that ndhesetifiers want
to make about the key itself (e.g. authorized revocatior),kegher than the
binding between a key and a name.

10.3 Important PKI Standards 249

{Signature} There are four types of signatures which declare the amducere
tainty in the authentication of the public key to be signed:

1. Generic certification of a User ID and Public Key packete T¥suer of
this certification does not make any particular assertioto dw well
the certifier has checked that the owner of the key is in faeipirson
described by the User ID.

2. Persona certification of a User ID and Public Key. The issdighis
certification has not done any verification of the claim thatdwner of
this key is the User ID specified.

3. Casual certification of a User ID and Public Key. The isai¢his cer-
tification has done some casual verification of the claim ehtdy.

4. Positive certification of a User ID and Public Key. The &sof this
certification has done substantial verification of the claindentity.

{Binding-Signature-Revocation} The signature is calculated directly on the sub-
key being revoked. A revoked subkey is not to be used. Onlya&ion signa-
tures by the primary signature key that is bound to this syhkeby an aut-
horized revocation key, should be considered valid revoeaignatures.

{Primary-Key-Binding-Signature} This signature is a statement by the primary
signing key and indicates that it owns the subkey. This sigeds calculated
directly on the subkey itself, not on any User ID.

Every key holder signs the binding of primary key and user iDdelf, which is
referred to as self-certificate.

Example: Bob’s PGP key:

Primary Key: DSA (Signature)

User | D: bob<bob@cne. or g>
signed by: primary key (self-certificate)
signed by: Alice
si gned by: VerySane CA

User | D: bob<bob@cne. con>
signed by: primary key (self-certificate)
si gned by: Carol

Subkey: RSA (Encryption & Signature)
signed by: primry key

In this example the primary key is only used to certify otheens. The RSA subkey
is used for email encryption, data integrity and data orayithentication.

The PGP keys can be distributed to other users either by marssichange or by
uploading the key to a directory server. Other users can badnthe keys from
users they want to communicate with. Key known to the usestared in keyrings.
Public keys are stored in the public keyring, private keys stored in the secret

250

10 Public Key Infrastructure

keyring. The secret keyring is protected by a password (@ssphrase or mantra)

and should be stored in a safe place (e.g. on a floppy disk).98@®are normally
includes a front-end to display the keys available in the'sigeyring.

If a user wants another user to act as an introducer, he msighae trust value to
this user’s key (he thus sets a trust anchor). PGP suppertsltbwing trust levels:

e untrustworthy
e don’t know

e marginal

o full.

If the user is fully trusted, he can act as an introducer. éf tiser is marginally
trusted, another signature from a (marginally) trusted iseeeded before this
user may act as an introducer. PGP supports the direct tad¢lnas displayed at
the top of Fig. 10.2-5.

Example:

Fig. 10.3-1 shows an example for PGP’s Web of Trust. Alicdhenticates and
certifies Carol and Don who both certify Jane. Although Aligky trusts Jane

she has not authenticated herself and she has to rely onttiengéigation carried
out by Carol and Don. Since Alice only marginally trusts Ganed Don, there
have to be two signatures on Jane’s key before Alice is wiltim accept the
key as valid. After Jane is authenticated Alice can use hertaxlucer for Bob.

Since Alice fully trusts Jane a single signature on Bob’s fkeyn Jane suffices
to authenticate him.

" marginal
R 4

Don \‘

Alice Jane ———» Bob

Carol /

<

marginal

Fig. 10.3-1: Example for PGP’s Web of Trust: Alice indirectly autheiaties Bob.

251

Assignments

Assignments for Chapter "Introduction”

Assignment 1 15P.
a) In which categories can encryption systems be divided? 2P.

b) Recall Example 1.4-1. Define an encryption functign and a decryption 3 P.
function Dy, which are not the identity functions.

c) Recall Example 1.4-1. Encrypt the message sequeneem,, ms, mo under 3 P.
the keyks;.

d) Explain the following two attacks: 4P.
e Chosen-ciphertext attack

e Chosen-plaintext attack.

e) Recall Example 1.4-2 with = 7. Encrypt the message sequence= 7,5,1. 3 P.

Assignment 2 Suppose there are two persafisand B using an asymmetric-key 4 P.
encryption system. Both have generated a matched pairwtprand public keys:
(ka.a, ke a) for A and(kq g, ke p) for B. After the key generation processand B
exchange their public keys: 4 from A to B andk, 5 from B to A. Suppose entity

A wants to send a messagge encrypted as ciphertextto B.

a) How canA generate the ciphertextfrom the message:? 1P
b) How canB decrypt the ciphertextto receive the message? 1P
c) B isn’'t able to decrypt the ciphertext What could have happened? 2P.

Assignment 3 Install the Crypto-Calculator on your PC or use the onlieesion 6 P.
of the Crypto-Calculator. You can find the links on the bookiegage. Download
the manual for the Crypto-Calculator.

a) Compute the functiod345°™® mod 377 using the functiomrod. exp. ?P.

b) What cryptographic encryption and decryption functians implemented in 2 P.
the Crypto-Calculator. What types of inputs and outputsaaeglable?

c) Encrypt the message 193243434 with the key 1599999 fthrak encryption 2 P.
functions. Perform the reverse operation as well and whiige¢sult in a table.

252

Assignments

12 P.

SP.

4 P.

3P

12 P.

Assignment 4 As mentioned in the course, Cryptography is the sciencénef t
methods of encryption and decryption. One simple examplarieencryption algo-
rithm is the Caesar encryption algorithm invented by Caesar. There are many
slightly different variants of the algorithm. We will useettiollowing variant for
this assignment:

As alphabet we use only upper case letters (A-Z). The characters of {hieablet

in a given plaintext are encrypted by a cyclic shift of eachrelter depending on a
givenkey. The key is a choosen character from the alphabet and thiquosf this
character in the alphabet determines by how many positiacis eharacter must be
shifted, e.g. for the key "B" a cyclic shift of two charactéakes placed — C,

B — D, .., Z — B). Characters (especially blanks) which are not part of the
alphabet are left untouched by the encryption algorithm.

Example:
Plaintext: CRYPTOGRAPHY and CRYPTOANALYSIS

Encryption key: B
Encrypted text: ETARVQITCRJA and ETARVQCPCNAUKU

a) Encrypt the plaintext "CRYPTOGRAPHY AND CRYPTOANALY S18vith
the given algorithm and the key "E".

b) A special case of the Caesar encryption algorithm is thealed ROT13
encryption algorithm. ROT13 uses the key "M" for encryption which shifts
each character by 13 places. What is special about the RQ¥I@®ion?

c) Why should "Z" not be used as encryption key?

Assignment 5 The following text is encrypted with the variant of the Cesacryp-
tion algorithm given in Assignment 1.

LQ WKHLU DSSOLFDWLRQ FUBSWRORJLFDO PHWKRGV DUH QRW
ORQJHU DOLIQHG WR WKH DFTXLVLWLRQ RI SULYDFB RQOB. WKH
UDQJH RI DSSOLFDWLRQV WRGDB FRQWDLQV DOVR OLPLWHG
DFFHVV IRU HADPSOH WR SDB-WY, HOHFWURQLF VLIQDWXUH
VFKHPHV WR HQVXUH DXWKHQWLFLWB RU DOVR WR EXLOG
VBVWHPV IRU HOHFWURQLF SDBPHQWWV.

Determine the used encryption key and the plaintext.

Solution hints: Instead of trial-and-error you can use a cryptoanalytic@ggh. Calculate
a frequency distribution for the characters of the enciyext and compare it with the
frequency distribution of the English language.

In various English texts of 1000 characters, the alphabetirgscwith about the following
relative frequencies:

253

73 9 30 44 130 | 28 16 35 74 2 3 35 25

78 74 27 3 77 63 93 27 13 16 5 19 1

Assignments for Chapter "Mathematical Background"

Assignment 6 Prove tha(Z; , x,,) is a group. &, is the multiplication modul,
p is prime).
Assignment 7 Compute the following expressions:

a)17"' mod 101

b) 28~ mod 75

c)21/2 mod 28

d) 701/357 mod 1234.

Assignment 8 In the following the seZ;, will be dealt with in greater detail.
a) Find the elements of the sé},.
b) Compute the order of the elementsAif,.

c) Find the generators @f;,.

SP.

6 P.

15P.

15P.

15P.

15P.

SP.

1P

3P.

1P

Assignment 9 Determinex from the following system of simultaneous congru8 P.

ences:

=12 mod 25
=9 mod 26
z =23 mod 27.

Assignment 10 Letp(z) = 2° + 2% + 1 € GF(2) be an irreducible polynomial.

8 P.

a) Construct GR2°) over the polynomiap(z). The elements of GB®) should 2 P.

be represented as polynomials in GF

254

Assignments

2P.

1P

3P

4 P.

2P.

2P.

3P

4P,

20 P.

b) Compute(z* + 22 + z + 1) - (z* + 1) in GH(2°).

c) Find the inverse ofa® + 1) in GF(2°).

d) Prove thap(z)is a primitive polynomial.
Assignment 11 Determine whether the number 1729 is prime or not usingdhe f
lowing tests:

a) Fermat's test.

b) Miller-Rabin test.

Assignment 12 Use Pollard’s rho algorithm to factorize 221.

Assignment 13 Using the "baby step
equation” = 5in Zj.

giant step" method, determirfeom the

Assignments for Chapter "Stream Ciphers"

Assignment 14 We consider an LFSR with the feedback polynomial
c(x) =2° + 2° + 1 € GF(2)[7]

and an initial state
s = (50,51, 59, 83, 54)7 = (1,0,0,0,0)" € GF(2)°,

Further, we consider a nonlinear filter generator (NLFGhwlie feedback polyno-
mial ¢, an initial state

So = (S0, S1, S2, S3, S4)T =(1,0,0,0, O)T € GF(2)5

of the LFSR, the filter functiorf : GF(2)®> — GF(2), given in algebraic normal
form (ANF) as

[z, 29, 03) = 21702 + 3,
and the tapping sequence
I'= (717 V2, 73) = (07 2, 3)

The operations of in the ANF are addition and multiplication modulo 2.

255

a) Which functions and procedures are available in the O©ryterpreter to 4 P.
handle LFSRs? Describe the functionality, the input ang@wiLiypes!

b) Build a table with the current state 5P
Sy = (4, Sts1s- -5 Sea)” € GF(2)°

of the LFSR attimeé, 0 < ¢ < 10.

c) What is the period of the output sequence s, s1, . .. of the LFSR? 2P.
d) Is the feedback polynomialprimitive? Give a reason for your answer. 2P.
e) Compute the output of the filter functigifor all possible input values. 2P.

f) Determine the output sequence- z, z1, . . ., of the nonlinear filter generator5 P.
for0 <t < 10.

Assignment 15 We consider the Boolean functigh: GF(2)? — GF(2)?, 20 P.
f(x1, 22, 23) = 2122 + 23,

from assignment 1. Now the inpuis€ GF(2),¢ > 0, for f are from a true random
source, i.e. the, are balanced and statistically independent for any 0. The
outputz, is given by

2y = f(St, St+2, 5t+3)
for¢t > 0.

a) Give an exact mathematical description of " theare balanced and statisti-2 P.
cally independent for angy> 0" !

b) Which inputs are needed to produce the output elenents.,)? 2P

c) Compute a truth table for the outply;, z;,,) for all possible input values. 8 P.
Arrange the input; according to their occurence in time.

d) Which inputs lead to the outp(t;, z:,,) = (0,0)? 4 P.
e) What is the value of the conditional probability 4P.

P(St+3 = O‘Zt =0A Zt41 = 1)7

256

Assignments

6 P.

4P,

2P.

11 P

3P.

2P.

3P

3P.

SP.

7P

Assignments for Chapter "Block Ciphers"

Assignment 16 Do some exercises with the Java-Applet on the modes of pera
on the book home page and write down some results (plairedigkt pairs, 1Vs,
key) for each algorithm and mode.

a) Choose some texts, encrypt them with DES and IDEA in ECBC OBFB
and CFB mode.

b) Insert some transmission error and observe how this effects the decryp-
tion in each mode.

Assignment 17 We consider in this exercise the DES algorithm.

a) What is the bit length of the key, the plaintextn and the ciphertext for the
DES algorithm?

b) Which functions can be found in the Crypto-Interpretartfte DES Algo-
rithm? Describe the functionality, the input and outputetyi

c¢) Encrypt the message sequenge= 456, m; = 312 andmy = 456 with DES
in the ECB mode under the kdy = 4534. Write down the encryption and
decryption process and the ciphertext sequepcg andc,.

d) Encrypt the message sequengg= 456, m; = 312 andmy = 456 with DES
in CBC mode under the key = 4534 and initial valuelV = 3241. Write
down the encryption and decryption process and the cipttextguence,, ¢,
andc;.

Assignment 18 In this exercise we consider the IDEA key schedule algorith
Suppose that the cipher keykis= 00010002000300040005000600070008
in hexadecimal. Compute the six subkéys, 5, k9 k9 k9 kD) 1Y) andky
for each round, 1 < j < 8, and the four keys for the output operation.

Assignment 19 Sketch a picture (or block-diagram) which describes roygie
encryption algorithm in AES! What are the most importanpst
(As example, see how the IDEA algorithm is sketched in Fig-¥and Fig. 4.4-2).

257

Assignment 20 5P.

a) Prove the following statement: When an attacker can fiaetthe modulus. 2 P.
of the RSA-scheme, then he can compute the secret keyf the userA.

b) Show how the receiver of an RSA-encrypted message cad spedbke decryp- 3 P.
tion operation using the Chinese Reminder theorem!

Assignment 21 Can the paife = 1123, n = 117739) be an RSA encryption key? 3 P.
If so, then compute the decryption key!

For the computations use the functions of the Crypto-Catoul(spri ne,

gcd, factor, rcp andother).

Assignments for Chapter "Public-Key Encryption”

Assignment 22 Can we use the group;, and the elemerg = 9 in it as public 2 P.
elements of EIGamal encryption scheme? Explain why!

If you require some computation use the functions from thg@-Calculator (e.g.
nod_exp).

Assignment 23 5P.
a) Compute all points on the elliptic curvg; (7,6). 25P.

b) On the curver;(7,6) compute the poinf) = 3P if the point P is P(5,1)! 25P.
Explain all computational steps and do not use the Java Appézause in
the book we have not dealt with the algorithms for finding aasgquoot of
element inZ,, we square all elements af;; in order to take the square root.
You can use the following table for finding the required squaots:

y |ofl1fl2f3lals|e|7|8|9o]10
w2inZy, |o|1]4]o|5]3|3|5]9]4]1

Assignment 24 For exchanging confidential messages Alice and Bob use the.
ElGamal encryption scheme with elliptic curves. As publiengents of the sys-
tem they use the curve,;(7,8) and the pointz(2, 8) which is a generator of the
group E17(7,8), +).

Alice knows that Bob’s public key i&, = (12, 16). She wants to send him the mes-
sage "Christmas” which is encoded to the pairit13, 1) (using some algorithm).
Suppose that Alice uses the random parameter3 for masking the message.

258

Assignments

15P.

2P.

15P.

6 P.

4P.

10 P.

2P.

2P.

3P

3P

9P.

For the computational operations in the elliptic curve grglease use the Java-
Applet on the course homepage!

a) Which ciphertext” does Alice send?
b) Can you guess Bob’s private key?

c) Show how Bob decrypts the message?

Assignments for Chapter "Digital Signatures”

Assignment 25 What are the properties of an electronically signed docuf€he
explanation of the properties is also required.

Assignment 26 Compute the RSA signature (without hash function)ref =
11111 usingn = 28829 and the smallest possible exponent.

Assignment 27 RSA signatures: To send the signed message (11001011), to
Bob, Alice does the following: To create a matched pair ofgiie and public keys,
she takes two primeg,= 13 andq = 19, to compute her public key = 25. Solve
the following tasks:

a) Compute Alice’s private key.

b) Create the digital signature for the messagwithout applying a hash func-
tion to the message.

c) Alice has sent the signed messageio Bob. How can Bob verify Alice’s
signature?

d) Messagen and signatures have not been encrypted by Alice before trans-
mission, enabling an attacker to alter two bits of the messBgb receives
m’ = (11010011),. How can he decide whether the message has been altered
or not since it was signed by Alice?

Assignments for Chapter "Hash Functions and Authentication Codes”

Assignment 28 Explain why it is necessary for a hash function to be likettivee
properties shown below. Which kind of attacks can we avoith Wiese properties?

259

a) Weakly collision free 3P
b) Strongly collision free 3P
c) One-way function. 3P

Assignment 29 Explain why it is recommended that the minimal size of a hashP.

value should be 128 bits!

Assignment 30 4 P.
a) Explain how hash functions are generally constructed! 2P

b) How can hash functions be classified with respect to thigde$ the compres- 2 P.
sion function? Explain briefly what is the main charactérisf each class!

Assignment 31 4P
a) Explain how MACs based on block ciphers work! 2P
b) Explain how can we construct a MAC from a hash function! 2P

Assignment 32 Use the online Crypto-Calculator to compute the followiragsh 3 P.
values and comment the results:

a) Hash of "Die Pruefung werde ich bestehen” with MD5 05P.
b) Hash of "die pruefung werde ich bestehen” with MD5 05P.
c) Hash of "Die Pruefung werde ich bestehen” with SHA 05P.
d) Hash of "die pruefung werde ich bestehen” with SHA 05P.

e) Hash of "Die Pruefung werde ich bestehen” with squaringdat® 0.5 P.

10552043297

f)Hash of "die pruefung werde ich bestehen” with squaringdoio O0.5P.

10552043297

260 Assignments

Assignments for Chapter "Entity Authentication”

6 P. Assignment 33 Illustrate the functionality of the Feige-Fiat-Shamierdification
protocol by means of an example considering $bkection of system parameters
theselection of per-entity secretnd theprotocol actions

6 P. Assignment 34 lllustrate the functionality of the GQ identification pozbl by
means of an example considering #edection of system parametgtise selection
of per-entity secretsand theprotocol actions

Assignments for Chapter "Key Management Techniques"

6 P. Assignment 35 Give a short description of the following procedures: istgpy
updating, and destroying of keys.

10 P. Assignment 36 The Diffie-Hellman key exchange protocol can be extended to
work with three or more persons. Write down the steps whiclstrbe done for
the DH key exchange with three persons.

Assignments for Chapter "Public Key Infrastructure”

6 P. Assignment 37 Examine the certificate you have received from the FernUni-
versitat in Hagen. In the case you don’t have a certificatee t@ne from
https://ca.fernuni-hagen.de/ and summarize your X.5@%icate attributes.

4 P. Assignment 38 Use your favorite web browser and look at the web site
https://meine.deutsche-bank.de. Why does your bowsst tine certificate issued
by this webserver?

261

Assignment 39 You have opened (browsed) the web page https://ca.fernuniP.
hagen.de/ and your browser displays a warning about an wnkoertificate. The

following details are shown:

Certificate:
Dat a:
Version: 3 (0x2)
Serial Nunmber: 1 (0x1)
Signature Al gorithm nd5WthRSAEncryption

| ssuer: C=DE, ST=Nordrhein-Westfal en, L=Hagen

O=Fer nUni versitaet in Hagen
OU=Zentrum fuer Medien und IT ,
CN=Certification Authority (CA) 2005

/ enmai | Addr ess=caadmi n@ er nuni - hagen. de

Validity
Not Before: COct 4 12:28:01 2005 GV
Not After : COct 4 12:28:01 2007 GMI
Subj ect: C=DE, ST=Nordrhei n-Westfal en,
O=Fer nUni versi taet in Hagen
OU=Zentrum fuer Medien und IT,
CN=ca. f er nuni - hagen. de

/ emai | Addr ess=caadm n@ er nuni - hagen

Subj ect Public Key Info:
Public Key Al gorithm rsaEncryption
RSA Public Key: (1024 bit)
Modul us (1024 bit):

00: a4: 3a: 68: 64:f2:94:; 1f: 85: 97: 13:
95: f4:9d: 46: 6¢: cc: 9b: 5¢: 98: 2a: 97
ae: c3:b9:f2:51: e8: 46: 35: 05: 5d: e8:
51: 64: 0d: e5: db: 21: 52: ab: bb: d2: 66
21: 66: ba: 4c: bb: 65: 47: bl: 8f: 5d: 6e:
e9: ba: e7:df:bl:68:fa: 7b: 11: 2f: ba:
40:9d: 3c:51:91: af : 34: d6: 73: 89: 77
1b: 34: 04: 8a: 4c: 9f : 62: 2b: 66: 8h: d3:

29: 1d: 7b: 6e: 39: 74: 3d: e4: d5
Exponent: 65537 (0x10001)
Signature Al gorithm nd5WthRSAEncryption

3a: c6: 9e: 73: d6: db: Oa: 27: 44: 9f : 57: c0: 3b: 8b: 25:
db: ce: 20: bl: fe: e2: 8a: 64: ad: 62: 86: c0: 65: e4: a4:
91: 50: be: 46: 14: ae: 9a: 64: 1c: 7c: 1d: 2a: bb: 06: f 1:
e6:f1:84:c7:6e:3e:f8:9c:93:53: a6: a6: 44: 2b: 00:
10: cc: 5a:e8:4d:f4:c3: 7b: d0: 66: 92: b6: 72: 76: c1
f7:11:c4:ef:c6:a3:05: bc: 10: 39: 2c: 3a: ba: 8e: eb:
d6: a2: 3e:22:92:fd: 61: 40: fb: f9: 44: 64: 35: ¢c9: 63:

al: 9e

Your browser computes the shal-Fingerprid8 d5 8c Oe
31 99 c4 78 74 Oc 65 af b9 44 55 03

Can you trust this certificate?

de

1b: 6d: Oe: c7
07: 34: 5b: 9h:
ff:7c:de: Of:
18:d9: 17: Of :
1f : bc: 94: eb:
da: 12: da: 00
83: 0d: 6b: 58:
1c: a4: a4:92:

fd: 2c: 28:
cf:9e: 42:
96: 35: 94:
06: 9e: 6f :
f2:d3: b5:
2c: 87: 48:
41: 74 d2:

c9 8d 74 e7

262 Assignments

14 P. Assignment 40
2P. a) Why should an OpenPGP key carry a self-certificate?

12 P. b) Alice and Bob are friends. Alice wants to send Bob an entexyjand signed
e-mail using PGP. She does not know Bob’s public key. Giveoat Statement
about the following methods of authentication explainiogisecure they are.

1. Alice asks Bob to send her his public key in an e-mail.

2. Alice receives Bob’s public key in an e-mail. She phoneb Bod asks
him to dictate the hash value (fingerprint) of his public key.

3. A PGP public key server is a giant public key ring contagine public
keys of many PGP users. Alice downloads Bob’s public key fagmublic
key server. The key is signed by a CA which Alice does not know.

4. Bob has an authentic copy of Alice’s public key. Bob seridphblic key
in an encrypted e-mail to Alice.

5. In any e-mail conversation with Alice so far (e.g. the [E&e-mails), Bob
has included a fingerprint of his public key. Now, he sends-amaé to
Alice including his public key.

6. Bob mails a diskette with his public key to Alice (tradited mail).

16 P. Assignment 41

14 P. a) Create an SPKI certificate which conveys the followindpatization to Alice:

"Alice may use the support of the company BigBucks during32001
- 31.05.2001. She may delegate this authorization to héeagles."

Use the Crypto-Calculator to create the digital signatiitee certificate is
issued and signed by BigBucksSupport. Alice’s public kefL 28 bit RSA):

n: 133742360663487486655573698906059112007
e: 30103164899134424358636143543737677
BigBucksSupport holds the following key pair (128 bit RSA):
n: 199939325098129215714149624045672866973
e: 42682163418151075735531010069604871163

d: 162281496330336818581120049457375032759

Solution hints: Procedure:

1. Use MD5 as hash algorithm.

2. You may freely make up a tag you think is suitable.

263

3. Use decimal notation for all keys and the signature.

4. The certificate has the following structure:

(cert
(i ssuer
(public-key
(rsa-nd5
(e #...4#)
(n #...4#)
)
)

{signature in decimal notation}

5. For the actual signing operation it is usefull to format tertificate into a single
line, because the Crypto-Calculator only can handle silggestrings:

cert(issuer(public-key(rsa-nd5(e #...#) ...) ...) ...)
{signature}

These two lines must be present in your solution.
6. If you write a PROCESS (which is advisable), you should atslude the code

in your solution. Otherwise, you should include a listinghwthe commands for
the Crypto-Calculator.

b) How does the certificate change, when DSA keys are emplmgtdad of 2 P.
RSA keys?

264 Assignments

265

Solutions for Assignments

Solution for Assignment 1:

a) Encryption systems can be subdivided into the following tcategories:
symmetric-key (secret-key) and asymmetric-key (pubég)kencryption. The
methods can be further divided into block ciphers (opegatin blocks of fixed
length) and stream ciphers (operating on symbols).

b) Let, for example, the following bijection be assigned &y ks
Ekg (ml) = C3, Ek:; (mg) = C2 a.r]dE’;€3 (mg) = C.
The decryption functioD for key ks is:

Dk:; (Cl) = ms, Dk:; (62) = Mo andeg (Cg) =m;.

c) The ciphertext sequenecdor the message sequenee= m;y, ms, ms is:
¢ = (,C,C3.

d) The explanation of the two attacking types:

e Chosen-ciphertext attack: The attacker tries to deduceal¢oeyption key by
pairs of plaintexts and ciphertexts, which (ciphertexts)@osen by him.

e Known-plaintext attack: The attacker has a quantity of elngdaintext and cor-
responding ciphertext and tries to determine the secretlaydecrypt further
ciphertexts.

e) The ciphertext of the message sequence 7,5, 1 withk =T7isc=4,2,8.
Solution for Assignment 2:

a) The encryption of the messageis done byc = £, ,(m).
b) The decryption is done by’ = Dy, ,(c).

c) A possible error is: During the exchange of the public keysattackeC' has
intercepted the transmission frofto A and has inserted a self generated public
key k. . A has used this public key to encrypt the messagéd his attack can be
detected if the keys are certified.

266

Solutions for Assignments

Solution for Assignment 3:

a) 239

b) The following three cryptographic encryption functicare implemented in the
Crypto-Calculator:

e encrypt _des
e encrypt_idea

e encrypt_rcs.
For decryption purposes the following three decryptiorctions can be used:

e decrypt_des
e decrypt_idea

e decrypt_rc5.

All these functions have Integer as input as well as output.

c) The result of the encryption and decryption is illustdatethe table below:

Message Key Function Result

193243434 1599999 encrypt_des 17269227889117512911
193243434 1599999 encrypt_idea 15143491676147334603
193243434 1599999 encrypt_rc5 14237518539867853697
17269227889117512911 | 1599999 decrypt_des 193243434
15143491676147334603 | 1599999 decrypt_idea 193243434
14237518539867853697 | 1599999 decrypt_rc5 193243434

Solution for Assignment 4:

a) HWDUYTLWFUMD FSI HWDUYTFSFQDXNX

b) A ROT13-encrypted text can be decrypted by a second rumeoROT13 algo-
rithm.

c) Due to the cyclic shift operation the encrypted text il to the plaintext.

Solution for Assignment 5:

In the encrypted text of 242 characters, alphabet occutsthé following frequen-
cies:

Solutions for Assignments 267

A B C D E F G H I J K L
1 8 0 20 1 15 5 24 4 5 6 21 0

O P Q R S T U \% W X
0 14 6 17 24 9 1 13 16 25 5 2 0

From the solution hints we know that the character "E" occnost frequently in
the English language. The characters which occurs mosidréty in the encrypted
text are "W" (25), "H" (24) and "R" (24). First we assume that™in the encrypted
text corresponds to "E" in the plaintext which results in deeryption key "R" and
the plaintext:

TY ESPTC LAAWTNLETZY NCJAEZWZRTNLW XPESZOD LCP YZE
WZYRPC LWTRYPO EZ ESP LNBFTDTETZY ZQ ACTGLNJ ZYWJ. ESP
CLYRP Z2Q LAAWTNLETZYD EZOLJ NZYELTYD LWDZ WTXTEPO
LNNPDD QZC PILXAWP EZ ALJ-EG, PWPNECZYTN DTRYLEFCP
DNSPXPD EZ PYDFCP LFESPYETNTEJ ZC LWDZ EZ MFTWO
DJDEPXD QZC PWPNECZYTN ALIXPYED.

Obviously this text makes no sense, so we try "H", which tssalthe decryption
key "C" and the plaintext:

IN THEIR APPLICATION CRYPTOLOGICAL METHODS ARE NOT
LONGER ALIGNED TO THE ACQUISITION OF PRIVACY ONLY. THE
RANGE OF AP