
Prof. Dr.-Ing. Firoz Kaderali

Foundations and Applications of Cryptology
Symmetric and Asymmetric Encryption, Digital Signatures, Hash Functions,
Key Management and PKI

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung
und des Nachdrucks, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm
oder ein anderes Verfahren) ohne schriftliche Genehmigungdes Autors reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt
oder verbreitet werden.

iii

Preface

Cryptology as a part of scientific research, especially in the public sector, is a rela-
tively young discipline despite its thousands of years of history. Up until a few
decades ago, it was only conducted seriously in the militarysector and in the sec-
tor of state security. In the 1990s there was an increasing interest in cryptographic
techniques due to the growth in the number of computer networks and the popu-
larity of electronic commerce. Security relevant aspects have to be considered in
the following Internet and network applications: data exchange via FTP or e-mail,
information offered on the WWW, client/server relationships, remote access, virtual
private networks, e-commerce, payments transactions, Internet banking, exchange
of legally valid documents (digitally signed with a timestamp), signing of contracts
over the net, virtual town halls (on-line application forms, issuing of certificates,
passports, on-line enrollment), on-line elections, auctions etc.

Subject of this course is cryptology, the science of information secrecy and security.
The Cryptology consist of cryptography, with data encryption as a main subject, and
cryptoanalysis, which involves and analyses techniques for breaking the ciphers.
The cryptological algorithms and protocols are the most important modules of the
security architecture of any network. At the beginning of the course some mathema-
tical background, important for the understanding of the cryptological algorithms,
is treated. This includes subjects of number, group, and field theory, polynomials
over finite fields, theory of complexity and probability. Before the modern crypto-
graphic algorithms are discussed in detail, an overview of the classical encryption
algorithms is given. Both symmetric (DES, IDEA, stream ciphers based on pseu-
dorandom generators) and asymmetric (RSA, ElGamal) encryption schemes are
presented and analysed. Further focuses are digital signatures, hash functions and
authentication codes, entity authentication and general key management techniques.
Public key infrastructure (PKI) and important PKI-Standards are also presented.

F. Kaderali

Summer 2007

iv Author

Author

Prof. Dr.-Ing. Firoz Kaderali

1963 - 69 Studied theoretical electrical engineering at the Technische
Hochschule Darmstadt

1969 - 74 Assistant at the Faculty of Electrical Engineering at the Technische
Hochschule Darmstadt

1974 Doctorate (Promotion) at the Faculty of Electrical Engineering,
Technische Hochschule Darmstadt, Subject: Network Theory

1974 - 76 Lecturer of Statistical Signal Theory at the Technische Universität
Darmstadt

1976 - 81 Member of the Research Center at SEL (ITT)/Stuttgart. Projektleader
of Bundespost study and Fieldtrial DIGON (Digital Local Area
Network)

1981 - 86 Head of the Department System Development/Large Systems at
Telefonbau und Normalzeit/Frankfurt Development of ISDN-PABXs

Since 1986 Professor for Communication Systems at the FernUniversität in
Hagen, Main interests: Communication Systems, Networks and
Protocols, Network Security

1989 - 94 Head of the regional telecommunications initiative TELETECH NRW
(Consultant and supervisor of over 120 Telecommunications Projects)

1990 - 96 Member of the ISDN Research Commission NRW (Projects on ISDN
Applicationsdesign and Technology Assessment)

Since 1992 Director of the Research Institute of Telecommunications (FTK) in
Dortmund, Hagen and Wuppertal, Joint Institute of the Universities
Hagen (Electrical Engineering) and Wuppertal (Economy)

1995 - 2001 Member of management of mediaNRW, an initiative to promote the
development and spreading of multimedia-applications as a whole
and interactive services in enterprises, private households, and the
public sector

1999 - 2003 Project manager of the research alliance Data Security
Northrhein-Westphalia

2000 - 2002 Chairman of the advisory board of GITS (Gesellschaft für
IT-Sicherheit) in Bochum, Germany

Since 2002 Chairman of the open source initiative CampusSource

Table of Contents v

Table of Contents

Preface. .. iii

Author .. iv
Prof. Dr.-Ing. Firoz Kaderali iv

1 Introduction 1
1.1 IT-Security .. 1
1.2 Cryptography .. 2
1.3 Overview of this Book 3
1.4 Symmetric-key Encryption. 4
1.5 Asymmetric Encryption 8
1.6 One-way Functions 11
1.7 Cryptographic Hash Functions 12
1.8 Entity Authentication .. 14
1.9 Key Management Techniques 15
1.10 Public Key Infrastructure. .. 15
1.11 Recommended Literature 17

2 Mathematical Background .18
2.1 Sets and Mappings. 18

2.1.1 Set Theory 18
2.1.2 Mappings 20

2.2 Groups, Rings and Fields 22
2.2.1 Groups 22
2.2.2 Rings 25
2.2.3 Fields 26

2.3 Number Theory 26
2.3.1 Divisibility 27
2.3.2 Representation of integers in different bases 27
2.3.3 Greatest common divisor 28
2.3.4 Euclidean Algorithm 29
2.3.5 Extended Euclidean Algorithm 30
2.3.6 Prime numbers 31
2.3.7 Congruences 33
2.3.8 Some algebraic systems formed by the SetZn 41

2.4 Finite Fields and Polynomials 42
2.4.1 Polynomial over a Ring 42
2.4.2 Finite Fields. 44

2.5 Complexity Theory 48
2.5.1 Asymptotic Notation 49
2.5.2 O-notation 52
2.5.3 Ω-Notation 53
2.5.4 θ-notation 53

vi Table of Contents

2.5.5 o-notation 54
2.5.6 ω-notation 54
2.5.7 Properties of the Complexity Notations 55
2.5.8 Complexity classes 55
2.5.9 Complexity classP . 56
2.5.10 Complexity classNP . 56
2.5.11 Complexity classco−NP . 57
2.5.12 Complexity classNPC . 58

2.6 Hard Problems in Number Theory 58
2.6.1 Primality Tests 59
2.6.2 Factorization 62
2.6.3 Discrete logarithm 64

3 Stream Ciphers 69
3.1 Classification of Stream Ciphers 69

3.1.1 Synchronous Stream Ciphers 69
3.1.2 Self-synchronizing Stream Ciphers 71

3.2 Design of Keystream Generators 72
3.3 Binary Sequences and Linear Feedback Shift Registers 76

3.3.1 Nonlinear Filter Generator (NLFG) 83
3.3.2 Combiner Generator Without Memory 84
3.3.3 Combiner Generator With Memory 85

3.4 Software-based Keystream Generators 86

4 Block Ciphers 90
4.1 Design Principles .. 90
4.2 Modes of Operation 94

4.2.1 ECB mode 94
4.2.2 CBC mode 95
4.2.3 OFB mode 96
4.2.4 CFB mode 97

4.3 Data Encryption Standard (DES) 98
4.4 International Data Encryption Algorithm (IDEA) 100

4.4.1 Design concept of IDEA 101
4.4.2 IDEA Encryption 101
4.4.3 IDEA Decryption 105
4.4.4 Security and Implementation Issues 106

4.5 Advanced Encryption Standard (AES) 106
4.5.1 Selection of Algorithms for AES 107
4.5.2 The Rijndael Algorithm: Some Notions 107
4.5.3 AES Encryption 109
4.5.4 AES Decryption 118
4.5.5 Security and Implementation Issues 121

5 Public-Key Encryption 122
5.1 Principles of Public-Key Cryptography 122
5.2 RSA Encryption Scheme 125

Table of Contents vii

5.2.1 Description of the Algorithm 125
5.2.2 Security of RSA 128

5.3 The Discrete Logarithm Problem 131
5.3.1 The Problem of Discrete Logarithm inZ∗

p 131
5.3.2 Diffie-Hellman Key Exchange 132

5.4 ElGamal Encryption Scheme 133
5.5 Elliptic Curve Cryptography (ECC) 136

5.5.1 Elliptic Curves Over Real Numbers 136
5.5.2 Elliptic Curves Over Finite Fields 140
5.5.3 Elliptic Curve Cryptosystems (ECCs) 142

5.6 Other Public-Key Cryptosystems (PKCs) 148

6 Digital Signatures.149
6.1 Introduction .. 149
6.2 RSA Signatures .. 150

6.2.1 Some Comments.. 151
6.2.2 Description of the algorithm 151

6.3 ElGamal Signature Scheme 152
6.3.1 Key generation 152
6.3.2 Signature generation. 153
6.3.3 Signature verification 153

6.4 DSA - Digital Signature Algorithm.. 153
6.4.1 DSA key generation 153
6.4.2 DSA signature generation 154
6.4.3 DSA signature verification 154
6.4.4 Security aspects 154

6.5 ECDSA - Elliptic Curve Digital Signature Algorithm 155
6.5.1 ECDSA key generation 155
6.5.2 ECDSA signature generation 156
6.5.3 ECDSA signature verification 156
6.5.4 Note 156
6.5.5 Security aspects 157

6.6 Signatures with Additional Functionality 157
6.6.1 Fail-stop signatures 157
6.6.2 Blind signatures 158
6.6.3 Undeniable signatures 158

7 Hash Functions and Authentication Codes. .161
7.1 Authentication Functions.. .. 161

7.1.1 Message Encryption as Authentication Function 162
7.1.2 Message Authentication Code (MAC) as Authentica-

tion Function 163
7.1.3 Hash Function as Authentication Function 165

7.2 Requirements for Hash Functions 166
7.3 Size of the Hash Value (Message Digest) 169

7.3.1 The Birthday Paradox 169
7.3.2 Lower Bound on the Sizes of Message Digest171

viii Table of Contents

7.4 Construction and Classification of Hash Functions 172
7.4.1 Hash Functions Based on Block Ciphers 173
7.4.2 Hash Functions Based on Modular Arithmetic 176
7.4.3 Dedicated Hash Functions 178
7.4.4 Provable Secure Hash Functions. 184

7.5 Message Authentication Codes (MAC) 184
7.6 Some MAC algorithms 186

7.6.1 MAC based on block ciphers 186
7.6.2 Constructing MACs from Hash Functions 187
7.6.3 Dedicated (Customized) MACs. 187

8 Entity Authentication 189
8.1 Introduction .. 189
8.2 Entity Authentication 189

8.2.1 Authentication based on what the user knows 189
8.2.2 Authentication based on what the user has 190
8.2.3 Authentication based on what the user is 190

8.3 Password-based authentication 190
8.3.1 Password selection 190
8.3.2 Attacks 191
8.3.3 Salting 192
8.3.4 One-time passwords 192

8.4 Challenge-response .. 193
8.4.1 Challenge-response based on symmetric encryption 193
8.4.2 Challenge-response based on public-key encryption 194

8.5 Zero-knowledge .. 196
8.5.1 Feige-Fiat-Shamir identification protocol 197
8.5.2 Guillou-Quisquater identification protocol 197
8.5.3 Schnorr identification protocol. 198

8.6 Biometrics .. 199
8.6.1 Introduction 199
8.6.2 Authentication and Identification 200
8.6.3 Architecture and functionality 200
8.6.4 Error statistics.. 202
8.6.5 Attacks 203

9 Key Management Techniques. .205
9.1 Introduction .. 205
9.2 Key Generation .. 205
9.3 Certification and Authentication 206
9.4 Key Establishment 206

9.4.1 Point-to-Point Key Establishment 207
9.4.2 Key Establishment Within One Domain 207
9.4.3 Key Establishment Between Domains.. 208

9.5 Key Distribution .. 208
9.5.1 Techniques for Distributing Public Keys 209
9.5.2 Secret Key Transport Mechanisms 210

Table of Contents ix

9.5.3 Key-Exchange Algorithms 214
9.6 Key Escrow/Key Recovery 216
9.7 Storing, Updating and Destroying Keys 217

10 Public Key Infrastructure .218
10.1 Introduction .. 218
10.2 Basics of PKI .. 220

10.2.1 Identity Certificates and Trusted Third Parties 220
10.2.2 Certification Structures 229
10.2.3 Attribute Certificates 236
10.2.4 Authorization and Delegation Certificates 239

10.3 Important PKI Standards 242
10.3.1 X.509 242
10.3.2 PKIX 245
10.3.3 SPKI. 246
10.3.4 OpenPGP 248

Assignments.251

Solutions for Assignments. .265

References.305

x Table of Contents

1

1 Introduction

1.1 IT-Security

In the last decades the use of computers and communication networks has consis-
tently grown and they have found their way into many areas of private and com-
mercial life. Thus a new workspace, the cyberspace has evolved. Apart from the cyberspace

many new opportunities opened by cyberspace, there are alsoa number of dangers
resulting from the patchy protection against attacks on computers and networks.
This basically is because of two aspects: Firstly because ofthe prevailing computer
architecture, the PC, whose initial hardware design lacks any security mechanism
and secondly because security aspects have not been taken into account in the deve-
lopment of the Transport Control Protocol /Internet Protocol (TCP/IP), the prevai- TCP/IP

ling communication protocol in computer networks. For example for TCP/IP in the
widespread version 4 no encryption is in use (not even the encryption of passwords),
sender addresses can be easily forged and even complete messages can be forged or
redirected by the intermediate nodes of the network, the routers. When computers
or communication networks are used for the processing and distribution of sensi-
tive data or for commercial applications it is necessary to take additional security
measures.

If an unauthorized person gains access to a computer or communication network,
data is in danger of being spied on, forged or deleted. Even the computer or network
itself can be tampered with or crash. Depending on the application affected, an
attack can have diverse and sometimes even disastrous consequences. Attacks range
from industrial espionage and spying on public offices to theforgery and prevention
of business and financial transactions.

Generally speaking all information, management, supply and transport systems can
be affected. Attacks similar to the ones already described,can be launched against
each of the following systems: air traffic control, highway police, toll collection,
process control in enterprises, etc. The number and scale ofthese IT-Systems has
been constantly growing for several years and as a result of that IT-Security has
become more and more significant.

A particular aspect of IT-Security is data security. Data security can mean protecting data security

data from eavesdropping, alteration (or forgery) and observation (of data exchange).
It can also mean protection from incorrect personalisationduring the data exchange
and enforcement of copyrights linked to the data.

Fig. 1.1-1 shows the four different measures which contribute to data secu-
rity. These are legal measures (e.g. the German “Telekommunikations-
Datenschutzverordnung”), organizational measures (e.g.the four-eye-principle),
physical measures (e.g. protection of hardware against unauthorized access) and
cryptological measures.

2 1 Introduction

Fig. 1.1-1: The four different measures which contribute to data security.

The individual measures must be well coordinated to guarantee comprehensive data
security. For example even the best cryptological methods are of no use when pass-
words are treated irresponsibly (missing or insufficient organizational measures)
or everyone has free access to rooms with important hardware, servers or routers
(missing or insufficient physical measures).

Obviously computers, networks and data have to be protectedfrom the above men-
tioned threats in the “real world” as well as in cyberspace. Based on these thoughts
this book “Foundations and Applications of Cryptology” deals with a “core techno-
logy of cyberspace” [Schneier04], the cryptography.

1.2 Cryptography

Cryptography (from the Greek kryptós, "hidden" and gráphein, "to write") has beencryptography

in existence almost as long as texts have been recorded in written form. It means
"secret writing" or encryption. Today we consider cryptography to be a part of
cryptology, the other part being cryptanalysis. Cryptanalysis is the science of fin-cryptology

cryptanalysis ding weaknesses in cryptosystems.

In classical cryptography essentially two methods were used for encryption. Theclassical cryptography

first method was the use of transposition ciphers (a cipher isa set of algorithms fortransposition ciphers

encryption and decryption). When using this method the sequence of symbols in
the message was altered. The second method was the substitution ciphers, whichsubstitution ciphers

systematically replaced symbols or groups of symbols by other symbols or groups
of symbols.

Example 1.2-1: Caesar Cipher
One of the most well-known and simplest examples of the substitution ciphers
is the Caesar Cipher, in which each letter of the alphabet is replaced by another
one, which is located a given number of places further back inthe alphabet.
Thus the letters of the alphabet are simply shifted. The number of places to be
shifted serves as a "secret key" for the encoding and decoding of the message
and is given in the form of a letter of the alphabet. For example if E (fifth letter
in the alphabet) were the secret key, then the letter A would be substituted by
the letter F and the letter B by the letter G. If one reaches theend of the alphabet

1.3 Overview of this Book 3

when counting the offset, then one has simply to continue counting from the
beginning of the alphabet (modulo 26). Thus the letter Y is substituted by the
letter E.

Encrypted texts, called ciphertexts, which were provided by one of the two methods ciphertext

mentioned above, can be decrypted relatively easily with the help of the frequency
analysis (first known recordings were made in the 9.th century by the Arab Al-
Kindi [Ibraham92]). In its simplest form the frequency of letters in unencrypted
texts, called plaintexts and the ciphertext are compared. For example the letter E is plaintext

most frequently represented in English-language texts. Thus if X appears with the
highest frequency in the ciphertext it is highly probable that it must be replaced by
the letter E for decryption. Frequency analysis is regardedas one of the first steps
in cryptanalysis.

The change to modern cryptography was marked in 1949 by the paper “Communi- modern cryptography

cation Theory of Secrecy Systems” by C. E. Shannon [Shannon49a] and his other
work on information and communication theory [Shannon49b], with which a solid
theoretical basis for cryptography was established. Cryptography gained public
interest in the seventies with the publication of the Data Encryption Standard (DES) Data Encryption

Standardas the official (non secret) encryption standard for the USA and with the paper "New
Directions in Cryptography" by M. E. Hellmann and W. Diffie [Diffie76a]. In this
paper one of the major problems of cryptography, the secure distribution of crypto-
graphic keys was solved using the Diffie-Hellmann key exchange. Furthermore the Diffie-Hellmann key

exchangedevelopment of asymmetric encryption methods was commenced.

In the last decades the term cryptography has been expanded.Apart from encryp-
tion, the term now also covers authentication, digital signatures, access control, data
integrity, data confidentiality and nonrepudiation.

Nowadays cryptography is, on the one hand, a mature technology, which is integra-
ted in many applications and services and, on the other hand,an interdisciplinary
research area where mathematicians, computer scientists and engineers participate.
This interdisciplinary approach can be seen in the topic selection of this book, in
particular in the chapters on the foundations of mathematics.

1.3 Overview of this Book

This bookFoundations and Applications of Cryptologyis structured as follows:
Chapter 1 continues with an introduction to basic cryptographic primitives. Requi-
red basic mathematical principles from the number theory are explained compre-
hensively (also for non-mathematicians) in chapter 2. Chapter 3 (stream ciphers)
and chapter 4 (block ciphers) deal with symmetric-key encryption techniques.
Design and analysis of encryption systems as well as the mostwell-known encryp-
tion systems are introduced and the notions of stream and block ciphers further dis-
cussed. In particular binary sequences and linear feedbackshift registers are looked
at in chapter 3 and important algorithms which are based on block ciphers (IDEA,

4 1 Introduction

DES) in chapter 4. The other form of encryption, public-key encryption is exami-
ned in chapter 5. Whereby, important algorithms (RSA, ElGamal, ECC) are looked
at in detail. Chapter 6 is dedicated to digital signatures; various signature schemes
like RSA, ElGamal, DSA and ECDSA are presented. In chapter 7 hash functions
and authentication codes are introduced. Chapter 8 deals with entity authentication
methods like password based, challenge-response, zero-knowledge, and biometrics.
In chapter 9 key management techniques are handled. The lastchapter is dedicated
to basics of public key infrastructure (PKI) and important PKI-standards. The chap-
ter closes with a list of references and recommended readings.

1.4 Symmetric-key Encryption

One of the most important goals of cryptography is confidentiality. It is a service
used to keep secret the content of information from all but those authorized to have
it. Here the objective of encryption is to alter the message in such a way that only
authorized persons can decrypt and read the message. In order to decrypt the mes-
sage one has to have a key. Depending on how the keys are used, we can subdivide
encryption into two categories. These are:

1. symmetric-key encryption and

2. asymmetric-key encryption (which shall be handled in Section 1.5).

Characteristic of the symmetric-key encryption is the factthat both the sender and
the receiver of an encrypted message have a common secret keyk (see Fig. 1.4-1).
In order to encrypt the messagem, also referred to as plaintext, the sender uses the
functionE together with the key

c = Ek(m)

to obtain the ciphertextc. The ciphertextc is transmitted via a channel which is com-
monly accessible. The secret keyk however has to reach the receiver via a secure
channel. The receiver can now recover the original messagem with the decryption
functionD from the ciphertextc with the aid of the secret keyk:

m = Dk(c).

Thus the encryption functionE has to be invertible.

E D

k k

m cc
unsecure channel

secure channel

m

Fig. 1.4-1: Symmetric-key encryption system with encryption function E, decryption function
D and secret keyk (m = message,c = encrypted message).

When an encryption scheme is designed one should assume thatE andD are known
to the public, and obtaining the messagem from ciphertextc merely depends on

1.4 Symmetric-key Encryption 5

the secret keyk (principle of Kerckhoff). In practice, the principle of Kerckhoff is principle of Kerckhoff

not always used. That means that the encryption scheme is kept secret. There are
two reasons for this: one can obtain an even higher security through this additional
secrecy. This is of special importance when one wants to protect a system not only
against cryptographic attacks but also against attacks on the hardware. Secondly, the
use of a weak and inadequately examined algorithm is concealed through secrecy.
When the technique is used in mass products it is better to assume that, in the long
term, the algorithm cannot be kept secret.

Example 1.4-1: Simple encryption system
Let M = (m1, m2, m3) be the set of messages andC = (c1, c2, c3) the set of
ciphertexts. There are precisely3! = 6 bijections fromM toC. Each keyki from
the key spaceK = (k1, k2, k3, k4, k5, k6) can at any time serve as a member of
one of these bijections. Let, for example, the following bijection be assigned to
keyk2:

Ek2(m1) = c1, Ek2(m2) = c3 andEk2(m3) = c2 .

The decryption functionD for keyk2 is then:

Dk2(c1) = m1, Dk2(c2) = m3 andDk2(c3) = m2 .

When participantA wants to transmit a messagem = m3 to participantB, a
key, for examplek2, is chosen and then interchanged in a secure and authentic
way. ThenA can encrypt the messagem = m2 with E and obtain the ciphertext

c3 = Ek2(m2),

which is transmitted toB via an unsecured channel. ParticipantB who receives
ciphertextc3 and knows the secret keyk2 can compute the plaintext belonging
to it by usingD:

Dk2(c3) = m2.

The way we defined the encryption function in the previous example is not very
effective. For each key, one bijection was defined. It is moreeffective when the key
is integrated in a functionE through mathematical operations.

An encryption system is said to be secure when it is able to overcome the following
attacks:

• Ciphertext-only attack:
The attacker tries to deduce the decryption key or plaintextby only observing
the ciphertext.

6 1 Introduction

• Known-plaintext attack:
The attacker has a quantity of plaintext and corresponding ciphertext and tries
to determine the secret keyk or decrypt further ciphertexts.

These two attacking scenarios can be expanded by variants like chosen-plaintext
attacks or chosen-ciphertext attacks. Here the attacker can choose the plaintexts or
ciphertexts he knows. Another variant is that the chosen texts can be picked out
adaptively. These attacking scenarios are relevant for symmetric-key encryption as
well as for asymmetric encryption.

The methods for symmetric-key encryption can be further divided intoblock ciphersblock ciphers

and stream ciphers. Block ciphers divide the messagem into blocksm1, m2, . . . of
a fixed length. Typical values for the length of a blockmt are 64, 128 or 256 bits.
Normally all blocksmt are encrypted with the same keyk and a ciphertext blockct

(of the same length) is built. A block cipher can be used in various working modes.

Many block ciphers like the DES belong to the group ofFeistel Ciphers. The advan-Feistel Ciphers

tage of these ciphers is that one has a lot of freedom when designing the function
E, and at the same time the guarantee that the decryption functionD exists and that
this function can be expressed explicitly.

Examples of well known and frequently used block ciphers areDES(Data Encryp-DES

tion Standard) andIDEA (International Data Encryption Standard). Both are algo-IDEA

rithms with a block length of 64 bits. DES has a key length of 56bits while IDEA
has a key length of 128 bits. The days of the simple DES are numbered because the
keys of length 56 bits used in DES are now vulnerable to exhaustive search attacks,
which try out all possible keys. This is why the effectiveness of DES is increased
through multiple application (for example Triple DES).

Example 1.4-2: Simple substitution ciphers
Let the plaintext symbols be the numbers from 0 to 9. Let the key k be a number
between 1 and 9. The encryption functionE transforms a plaintext numberm

and the keyk as follows:

c = f(k, m) = m + k mod 10.

The decryption is carried out by subtracting the keyk from the received cipher-
text c:

m = f ∗(k, c) = c− k mod 10.

Now letk = 3 and the messagem = 8 is to be encrypted:

c = f(3, 8) = 11 mod 10 = 1.

1.4 Symmetric-key Encryption 7

Decryption:

m = f ∗(3, 1) = −2 mod 10 = 8.

Such a substitution cipher is not very secure because the keyk can easily
be detected through frequency analysis of symbols in the plaintext and in the
ciphertext.

Beside block ciphers there arestream ciphersin symmetric-key enryption. They stream ciphers

do not encrypt the message block-wise, but symbol-wise and the currently used
keystream alters from symbol to symbol. Formally, an additive stream cipher (see
Fig. 1.4-2) is a functionf which produces a keystreamzt, 1 ≤ t ≤ l with the
length l > n from a secret keyk with the lengthn. The messagem, which is to
be encrypted, hasl message symbols. This is illustrated as the message symbol
sequence

m = m1, m2, . . . , ml

and is combined with the keystreamzt to produce the ciphertext sequencect via a
symbol-wise XOR operation:

ct = zt + mt.

The decryption is carried out in such a way that the receiver of the encrypted mes-
sage sequencect produces the same keystreamzt with the functionf and the secret
keyk. The receiver recovers the message sequencemt through a symbol-wise XOR
of keystreamzt and ciphertext sequencect:

mt = zt + ct.

The keystream sequencezt is a pseudorandom bit sequence. It should, besides cer-
tain statistical features, correspond to further cryptographic standards.

f f

k k

mt ct
ct

unsecure channel
+ +

secure channel

mt

ztzt

Fig. 1.4-2: Principle of an additive stream cipher.

The prototype of all stream ciphers is theOne-time-pad, where it is assumed thatOne-time-pad

the keystream sequencezt is a random sequence and the lengthn of the keyk

has to be at leastl, wherel is the length of the message. If the key is only used
once then this technique is absolutely secure, and its security can even be proven
theoretically. However, it has the disadvantage that the key has to be as long as the

8 1 Introduction

plaintext. When the same key is used several times the systemcan be cracked with
a known-plaintext attack. In practice it is unusual to use a One-time-pad. Instead a
pseudorandom sequence generator is used for generating thekeystream sequence
zt. Here the advantage is that only a short secret information is needed to initialize
the pseudorandom sequence generator. As in the case of blockciphers, only a short
secret information has to be transmitted from the sender to the receiver.

Example 1.4-3: Additive stream ciphers
A wants to transmit toB the encrypted message sequence

m = 0, 1, 0, 1, 1, 1, 0, 1

with an additive stream cipher.A andB choose a suitable keystream generator.
Then they interchange via a secure and authentic channel a key k with which
the keystream generator is initialized. Let the generator produce the keystream
sequence

z = 1, 0, 1, 0, 1, 0, 1, 1

at A as well as atB as both have the common and secret keyk. The ciphertext
sequencec is obtained through a symbol-wise XOR with the message sequence
m and the keystream sequencez:

c = m + z = 1, 1, 1, 1, 0, 1, 1, 0.

The ciphertext sequencec can now be transmitted via an unsecure channel and
the participantB can recover the message sequencem through a symbol-wise
XOR with the aid of the key stream sequencez:

m = z + c = 0, 1, 0, 1, 1, 1, 0, 1.

1.5 Asymmetric Encryption

A major problem which is inherent to the previously explained symmetric-key
encryption techniques is the distribution and administration of the symmetric key
k. When two participantsA andB want to communicate, they must first exchange
a secret keykA,B. For this they must have a secure channel, so that the key can be
transmitted secretly and with integrity. Integrity means,that the receiver can detect
if the message was changed during the transmission. The higher the number of par-
ticipants in a network that want to communicate, the more difficult the problem
becomes. When there areN participants communicating with each other, each pair
of participants must exchange a secret key. Hence

N(N − 1)

2

1.5 Asymmetric Encryption 9

keys must be transmitted and stored secretly. Another possibility is to carry out the
whole communication via a central trusted third party. In this case onlyN key pairs
have to be generated, distributed and stored. The key management is easier, when
asymmetric techniques are used. Concepts and ideas of asymmetric cryptography
are based on the research of W. Diffie and M. Hellmann in the mid 70s ([Diffie76a]).
The first asymmetric encryption system was the RSA technique which was proposed
in 1978 by R. Rivest, A. Shamir and L. Adleman ([Rivest78a]).

The principle of asymmetric encryption is as follows (see Fig. 1.5-1): each partici-
pantT of the system has a private keykd = kd,T and a public keyke = ke,T of T .
kd is kept secret andke is made public. Now, when a second participant wants to
send a messagem to participantT , he has to obtain the public keyke, for example
from an electronic directory similar to a telephone book. The encryption function
E assigns the ciphertext to the message by using the keyke:

c = Eke
(m).

ParticipantT , to whom the ciphertextc is sent, uses his private keykd onc with the
decryption functionD:

m′ = Dkd
(c).

The functionsE andD must have the following properties:

1. correct decryption:
the correct plaintext must be reproduced. This means that

m′ = Dkd
(c) = Dkd

(Eke
(m)) = m

for all plaintexts m,

2. asymmetric-key property:
it is practically impossible to recover the private keykd from the public keyke.
The same applies to the corresponding functions: it is practically impossible
to deduceDkd

(.) from Eke
(.).

10 1 Introduction

When the principle of asymmetric encryption was described,one could see that
no keys had to be exchanged secretly for encrypted communication. But there is
another problem: when someone wants to send a message to participantT , he must
be sure that the public key ofT , which he gets from a public key register, is the
actual public key ofT . If an attacker manages to replace the public key ofT in the
database with his own key or when he puts the key otherwise in circulation, he can
decrypt all messages sent toT . Thus, the public keys must be authentic. This can
be obtained by using secure registers or digital signaturesand certificates.

Asymmetric encryption techniques not only facilitate key management and key
exchange for users, but can also be used for digital signatures. Unfortunately the
known asymmetric techniques are not as efficient as many symmetric-key encryp-
tion techniques. That is the reason for combining, in practice, asymmetric and
symmetric-key techniques as a hybrid technique (see Fig. 1.5-2). When a message
m is to be encrypted and transmitted, the sender initially produces a symmetric ses-
sion keyk. The session key is encrypted with the public keyke of the receiver using
an asymmetric techniqueEasy and the messagem is encrypted with the keyk using
a symmetric-key techniqueEsym:

c1 = Easy,ke
(k)

and

c2 = Esym,k(m).

The receiver obtains the ciphertextsc1 andc2 and decrypts them in the following
order:

k = Dasy,kd
(c1)

and

m = Dsym,k(c2),

wherekd is the secret key of the receiver for the asymmetric technique.

Esym Dsym

k

m c2
c2

unsecure channel
m

Easy Dasy

k :e public keyke

k :d private key

c1
c1

unsecure channel

authentic channel

k

Fig. 1.5-2: Principle of a hybrid encryption system.

1.6 One-way Functions 11

1.6 One-way Functions

One-way functions are a basic building block of cryptography. Many primitives
like asymmetric cryptography, hash functions, digital signatures or pseudorandom
bit generators are based on them. A one-way functionf : X → Y is a function
whose valuey = f(x) is easily computable, but the preimagex for essentially ally
is computationally infeasible. The termfor essentially allmeans that, for instance,
there can be a table for a small number of preimages, which contains anx for a given
y. The termeasily computablemeans thaty can be determined in polynomial time,
andcomputationally infeasiblemeans thatx for a giveny cannot be, on average,
determined in polynomial time (see Fig. 1.6-1).

fx

easy to compute

infeasible to compute

y

Fig. 1.6-1: Principle of a one-way function.

If f is a bijection (f : X → X) it is also called a one-way permutation. A one-
way function is calledcollision-freewhen it is practically impossible to find two collision-free

different valuesx andx′ in the preimage setX with f(x) = f(x′).

The one-way functions introduced so far can be used by all participants equally.
Modern cryptography requires a further concept, namely thepreimagex can only
be computed easily fromy when a secret value is known. This concept is achieved
by a trapdoor one-way function. Atrapdoor one-way functionf : X → Y is a one- trapdoor one-way

functionway function for which there is a secret information so that the function is easily
invertible. One example for this is to square modulon:

f(x) = x2 mod n,

with n = pq, wherep, q are prime numbers. The computation ofy = f(x) can be
carried out in polynomial time. Without knowingp andq, x from a giveny cannot
be determined in adequate time. When the factorization ofn is known, effective
algorithms exist to determinex. In this case the trapdoor information is thatp andq

are known.

12 1 Introduction

1.7 Cryptographic Hash Functions

Cryptographic hash functions belong to the group of one-wayfunctions (see Sec-
tion 1.6). Hash functions are important elementary security mechanisms which are
especially used to protect authentication and integrity ofmessages. A further exam-
ple is the computing of electronic signatures where, instead of signing a message
m, the cryptographic hash valueh(m) is signed.

A cryptographic hash functionh is an algorithm which maps any messagem on
a hash value (test value)h(m) of a fixed length. Without loss of generalization we
only consider the binary alphabet with the symbols{0, 1}. Formally a hash function
is then defined as

h : {0, 1}∗ → {0, 1}n

wheren gives the fixed length of the hash values. The valueh(m) should be effi-
ciently determinable and it should be computationally infeasible to determinem
from h(m) (see Fig. 1.7-1).

hm

easy to compute

infeasible to compute

y

Fig. 1.7-1: Principle of a hash function.

A collision(m, m′) of h is a pair of messages for whichm 6= m′ andh(m) = h(m′)collision

is valid. A hash functionh is called (weakly)collision resistantwhen it is difficultcollision resistant

to find a collision(m, m′) for a givenm. Sometimes it is sufficient that the hash
function used is collision resistant. Others, like ones used in electronic signatures
for instance, need stronger properties. A hash functionh is called strongly collision
resistant (or collision-free) when it is practically impossible to find any collision
(m, m′).

Hash functions are usually applied on a block basis, i.e. a messagem is divided into
blocks of a fixed length (e.g. 64 bits) and each block is compressed using the hash
function. The compressed values are concatenated to give the hash functionh(m).
In this process the last block to be compressed might have to be filled up by zeros
(i.e. padded) to give the full length (e.g. 64 bits).

1.7 Cryptographic Hash Functions 13

The hash functions MD4 and MD5 were designed by R. L. Rivest and S. Dusse in
1990 and 1992 respectively. The abbreviation MD stands for message digest. MD4
provides hash values with a length of 128 bits. MD5 is a strengthened version of
MD4. It is more complex than MD4, but similar in design. The developers explain
that 264 operations are required to find two distinct messages with the same hash
value, and about2128 operations to find a message yielding a pre-specified hash
value. According to recently published attacking methods MD4 is no longer regar-
ded as secure.

In 1992 the American National Institute of Standards and Technology (NIST) pro-
posed to standardize a dedicated hash function, whose design was similar to the one
of MD4 and MD5. This technique generates hash values with a length of 160 bit. In
1993 it was published as Federal Information Processing Standard (FIPS 180) and
is now referred to as Secure Hash Standard (SHS).

When messages are transmitted, intentional or unintentional faults can occur. They
can be caused by technical defects or failures of the communication technology, but
also by aimed manipulations of attackers. In order to detectand correct uninten-
tional faults, methods of coding theory are used. To each message wordm of the
lengthl a valid code wordm′ of the lengthl′, l′ > l is assigned. With the informa-
tion added tom, fault detection or even fault correction can be carried out. The code
wordm′ is sent to the receiver, is received as code wordm′′ and is checked if it is a
valid code word.

The methods of coding theory are not sufficient to protect messages from attackers
because the attacker can send, instead of the valid code wordm′, another valid code
word to the receiver. The receiver cannot detect the manipulation as it becomes a
valid code word.

In order to protect oneself against manipulations, digitalsignatures or hash functi-
ons in combination with a symmetric key can be used. Digital signatures solve the
problem with an asymmetric approach and have further usefulproperties. We will
introduce a solution based on hash functions.

When a messagem is to be transmitted from a sender to a receiver, a secret keyk

must be chosen and exchanged first, like it is in symmetric encryption systems. The
sender has first to compute the hash valueh(m) of the messagem and then encrypt
it using the secret keyk asEsym,k(h(m)). Finally, the tupelm, Esym,k(h(m)) is sent
to the receiver. The receiver can check the correctness of the received messagem′.
For this purpose the receiver computes the hash functionh(m′) and then uses the
secret keyk on h(m′) to calculateEsym,k(h(m′)). The authentity of the message
(m = m′) is given in caseEsym,k(h(m)) = Esym,k(h(m′))1.

1 In fact, the functionsEsym,k andh must fulfill some requirements to provide message authen-
tity. A description of these requirements is beyond the scope of this course. For more details,
see [Menezes96a] on page 366.

14 1 Introduction

1.8 Entity Authentication

Authentication is one of the most important of all information security objectives.
Until the mid 1970s there was the general belief that secrecyand authentication
were intrinsically connected. With the discovery of hash functions and digital signa-
tures, it was realized that authentication and secrecy weretruly independent and
separate information security objects [Menezes96a].

Authentication attempts to solve following problems with cryptographic methods:

• How can I identify myself to another person, beyond all doubt?

• How can an information system check the access authorization of a user?

• How can I be sure that a message is originated from the indicated sender?

A typical example for entity authentication is to prove one´s identity to a computer,
for instance an ATM (automated teller machine). The ATM mustbe sure that the
person who has the credit card is actually the owner of that credit card. In this case
a PIN (personal identity number) has to be keyed in.

In the real world we recognize people by their appearance, behavior or their voice.
We perceive personal characteristics of persons to authenticate them. When a com-
puter checks the personal characteristics of a person, thisis called biometric authen-
tication. Examples for this can be:

• Iris scan

• Fingerprint

• Face recognition

• Voice recognition

• Recognition by measuring typing speed or other behavioral biometrics.

In electronic systems these techniques usually do not work without problems or the
costs of a biometric system might be too high. That is the reason, why in cryptogra-
phy methods are examined, in which, for authentication, a person has to submit a
secret information or has to prove that he is in possession ofa certain information.
Examples of secret information are:

• Password

• PIN

• Symmetric key

• Asymmetric key pair

• The solution of a problem which cannot be solved in polynomial time.

The different techniques which prove that one has a secret information can be clas-
sified according to the following criteria:

• Whether the secret must be transmitted directly to the verifier or if a value is
sent to the verifier which is computed with the secret.

• If the secret is needed for verification.

1.9 Key Management Techniques 15

Besides entity authentication discussed here, there is a need for message authenti-
cation, with which the origin and integrity of a document is proved. For this, digital
signature or symmetric techniques are suitable. They are based on hash or encryp-
tion functions.

1.9 Key Management Techniques

Security services based on cryptographic mechanisms oftenassume cryptographic
keys to be distributed to the parties which are involved in communication before cryptographic keys

securing the communication. The secure management of thesekeys is one of the
most critical elements when integrating cryptographic functions into a system. Even
the most ingenious security concept will be ineffective if the key management is
weak.

Key management includes the

• generation,

• certification and authentication,

• establishment and distribution,

• escrow / recovery,

• storage, update and destruction,

of keying material. These topics will be discussed in detailin chapter 9. Key mana-
gement techniques depend on the underlying cryptographic techniques, the intended
use of the keys and the implied security policy. The appropriate protection of keys is
subject to a number of factors, such as the type of application for which the keys are
used, the threats they face, or the different states the keysmay assume. Primarily,
depending upon their type, keys have to be protected againstdisclosure, modifica-
tion, destruction and replay.

1.10 Public Key Infrastructure

A major advantage of asymmetric key cryptography over symmetric key crypto-
graphy is that the key distribution problem is easier to solve. Symmetric key dis-
tribution systems are expensive and hard to manage. In high-security applicati-
ons with imminent man-in-the-middle attacks, symmetric systems require expen-
sive and cumbersome secure communication lines, face-to-face meetings or courier
services. In asymmetric cryptosystems the public key can bedistributed without
the fear of compromising the secret private key. Nevertheless, key management in
public key cryptography is still a difficult and complex issue.

Many currently emerging applications in the field of information technology rely on
the principles of asymmetric key cryptography. The basic security related features
that public-key systems can supply are confidentiality, data integrity, authentication,
and non-repudiation. Typical real-world examples are:

16 1 Introduction

Secure E-mail The need for a secure messaging environment for the Internetis of
great importance. Although in the past the public awarenessfor the problems
regarding insecure e-mail was very low, the spread of details about global
surveillance systems immediately produced great concern about this issue.

Secure electronic paymentAt the moment, many payments in Internet-based e-
commerce transactions are based on credit cards. Security of electronic credit
card payments can be increased by applying asymmetric key cryptography.
For example, a mechanism for authentication of involved parties (customers,
merchants, banks) can be provided. Furthermore, the creditcard and payment
information should be encrypted during the transaction.

Access control The most common used prevailing method of access control in cor-
porate and open networks is to employ weak authentication with passwords.
Passwords that can be remembered (and thus be used) by human users, even
if they have a reasonable length, normally have such a low entropy2 that dic-
tionary attacks are readily successful. Even though sophisticated methods for
useful password selection do exist, these methods are oftentoo cumbersome
for casual users or users simply do not bother to use them. Hence, it can be
advisable to replace low entropy passwords with large entropy asymmetric
keys.

Authorization Allowing a user to access a computer system is a special form of
authorization. Other forms of authorizations are, e.g. theauthorization to pro-
vide medical advice over the Internet, the authorization toview the content of
a video on demand stream, the authorization to spend money inthe name of
a company, etc. Such authorizations can be realized with so called authoriza-
tion certificates, which bind a special form of authorization to a public key.
The holder of the corresponding private key is then able to prove that he or
she is allowed to carry out the certified action.

Electronic Signature The recent evolution of the Internet into an open and glo-
bal communication platform has greatly stimulated electronic commerce and
Internet-based business-to-business transactions. An increasing number of
transactions are carried out online which leads to a demand for an electro-
nic equivalent of traditional contracts. Especially politicians from the lea-
ding industry nations were under pressure from businesses and providers of
e-commerce solutions to quickly adopt legislation of electronic signatures.
Emerging electronic signature acts include the use of digital signatures as
a legal replacement of hand-written signatures. In February 2001, the Ger-
man ’Bundestag’ approved the adoption of the European electronic signature
directive. The directive uses the termelectronic signatureinstead ofdigital
signatureand defines different types of electronic signatures.

2 Only random passwords have a maximal entropy.

1.11 Recommended Literature 17

"Electronic signature" means data in electronic form whichare attached to or
logically associated with other electronic data and which serve as a method
of authentication.

Furthermore, the directive also defines an advanced electronic signature:

"’Advanced electronic signature’ means an electronic signature which meets
the following requirements:

a. it is uniquely linked to the signatory,

b. it is capable of identifying the signatory,

c. it is created using means that the signatory can maintain under his sole
control and

d. it is linked to the data to which it relates in such a manner that any
subsequent change of the data is detectable."

In practice, this will most often be achieved by digital signatures with explicit
support of non-repudiation.

It can be seen from the examples above, that asymmetric key cryptography is app-
lied in diverse disguises. For all these applications to effectively work, sophisticated
key management and distribution systems have to be constructed. The key manage-
ment system for applications of asymmetric key cryptography is calledpublic-key
infrastructure (PKI). A typical PKI consists of hardware, software, the people wor-
king to administer and maintain the infrastructure, as wellas policies regarding
security, privacy and liability. In chapter 10 we will have alook at the basics of
public-key infrastructures. We introduce identity certificates, explain certification
structures and give an overview on important PKI standards,like X.509, PKIX or
OpenPGP.

1.11 Recommended Literature

There are many good reference books on cryptography. Here wemention some
books which can be useful for further study.

[Menezes96a]: An extensive reference book for cryptography. Basic mathematical
principles as well as cryptographic primitives and protocols are illustrated in detail.

[Buchmann99a]: A detailed illustration of basic mathematical principles for cryp-
tography, especially of the number theory. All important primitives of cryptography
are illustrated in detail. It also offers separate chaptersfor the factorization of integer
numbers, prime number tests and solutions to the discrete logarithm problem.

[Schneier96a]: like [Menezes96a] it is very extensive, butless formal and systema-
tic.

[Stinson95b]: A book that treats the most interesting topics of cryptography. Many
examples and excercises.

18 2 Mathematical Background

2 Mathematical Background

The algebraic part of this chapter is intended as an introduction to some funda-
mental algebraic systems such as groups, rings and fields. For further reading we
recommend the following books: [Herstein86] for abstract algebra, [Lidl94] for fun-
damental algebra and finite fields, [Koblitz94], [Jackson87] for an introduction in
number theory, [Buchmann99], [Menezes96], [Koblitz98] for algorithms in number
theory and finite fields.

2.1 Sets and Mappings

An algebraic system can be described as a set of objects together with some opera-
tions for combining them. In our short introduction we first begin with the notion of
thesetS as a collection of objects, calledelementsof S. The elements of the setSset

can be combined, in one or several ways, for obtaining once more, elements of this
setS. These ways for combining elements ofS are calledoperationsonS. Then weoperations

try to condition or regulate the nature ofS by imposing certain rules or axioms and
define the particular structure onS. Theseaxiomsact as a license to reach certainaxioms

mathematical objectives.

2.1.1 Set Theory

Here we only give a short overview of the basic notions and operations from set
theory. As mentioned above, a setS can be described as a collection of distinct
objects calledelementsof S.elements

NOTE

The following notation will be used throughout:

1. N denotes the set of natural numbers; that is, the set{0, 1, 2, . . .}.

2. Z denotes the set of integers; that is, the set{. . . , −2, −1, 0, 1, 2, . . .}.

3. Q denotes the set of rational numbers; that is, the set{a
b
| a, b ∈ Z, b 6=

0}.

4. IR denotes the set of real numbers.

To denote that a given elementa is an element ofS, we writea ∈ S. The setT
will be said to be asubsetof the setS, if every element ofT is an element ofS.subset

In this case, ifa ∈ T implies thata ∈ S, we writeT ⊂ S. In terms of the basic
terminology of sets, two setsS andT areequal, (written S = T) if they consistequal sets

of the same set of elements, i.e.T ⊂ S andS ⊂ T . Thus, the standard method
for demonstrating the equality of two sets is to prove that these two relations hold
for them. In contrast to the previous case, if at least one of the opposite containing
relations is not verified, the two setsS andT are said to benot equaland this will

2.1 Sets and Mappings 19

be denoted byT 6= S. A subsetT forms aproper subsetof S if T ⊂ S andT 6= S,
i.e. if S contains more elements thanT . As a particular set, theemptyset is a set empty set

having no elements. It is a subset of every set and is denoted as∅.
Supposing that the setsA andB are subsets of a given setS, we now deal with
methods for constructing other subsets ofS from A andB. In this regard we intro-
duce theunionof A andB denoted asA∪B, as the subset ofS containing elements union

of S that are elements ofA or elements ofB. The "or" we have just used means that
the elements ofA∪B can be contained inA, in B or in both sets. Byintersectionof intersection

A andB, writtenA∩B, we mean the subset ofS consisting of those elements that
are both inA and inB. Two setsA andB are said to bedisjoint, if their intersection
is empty. Although the union and intersection are defined fortwo sets, they can be
generalized to an arbitrary number of them.

The third operation we can perform on sets is thedifferenceof two setsA andB. difference

The difference is denoted byA−B and consists of the set of elements that are inA

but not inB. Under the consideration thatA is a subset of the setS, the difference
S−A defines the complement ofA in S and is denoted byA′. Another construction
we can realise on the setsA andB is thecartesian product, writtenA×B. The set cartesian product

A×B defines the set of all ordered pairs(a, b) wherea ∈ A andb ∈ B. We write

A×B = {(a, b) | a ∈ A, b ∈ B}.

Two pairs(a1, b1) and(a2, b2) are said to be equal if and only ifa1 = a2 andb1 =

b2. Generally, the cartesian product can be defined on an arbitrary number of sets
A1, A2, . . . , An. We write

A1 × A2 × . . . An = {(a1, a2, . . . , an) | ai ∈ Ai}.

We now consider the cartesian product of a setA with itself, A× A. If the setA is
finite with n elements, then the setA × A is also finite and containsn2 elements.
Instead of referring to subsets of the cartesian product, wecan refer torelations.

A binary relationR on A itself is a subset of the cartesian productA × A, i.e. binary relation

R ⊂ A × A. The elementsa, b ∈ A are said to be related (a is related to b), if
(a, b) ∈ R. We further denote a binary relation on the setA as∼. The relation∼
can have one or more of the following properties:

1. Reflexivity: For alla ∈ A, a ∼ a (i.e. (a, a) ∈ R).

2. Symmetry: For alla, b ∈ A, a ∼ b implies b ∼ a (i.e if (a, b) ∈ R, then
(b, a) ∈ R).

3. Transitivity: For alla, b, c ∈ A, a ∼ b andb ∼ c impliesa ∼ c (i.e.(a, b) ∈ R

and(b, c) ∈ R implies(a, c) ∈ R).

The binary relations which possess all three features mentioned above are very
important. Such relations are calledequivalence relations. A formal definition fol- equivalence relations

lows:

20 2 Mathematical Background

Definition 2.1-1: A binary relation∼ on the setA is said to be an equivalence
relation onA, if it is reflexive, symmetric and transitive.

Example 2.1-1:
Let S be the set of all integers. Givena, b ∈ S, definea ∼ b if a− b is an even
integer. We can show that this is an equivalence relation on S.

1. Since0 = a− a is even,a ∼ a (reflexivity).

2. If a ∼ b, that is, ifa− b is even, thenb− a = −(a− b) is also even, thus
b ∼ a (symmetry).

3. If a ∼ b andb ∼ c, then botha − b andb − c are even, thusa − c =

(a− b) + (b− c) is also even, proving thata ∼ c (transitivity).

After the definitions of binary relation and equivalence relation, we now introduce
the concept of anequivalence classwhich plays an extremely important role inequivalence class

mathematics.

Definition 2.1-2: If A is a set and∼ is an equivalence relation onA, then the equi-
valence class ofa ∈ A is the set{x ∈ A | a ∼ x}. It is denoted bycl(a).

In Example 2.1-1, the equivalence class ofa consists of all the integers of the form
a + 2m, wherem = 0,±1,±2, In this example there are only two distinct
equivalence classes, namely,cl(0) andcl(1).

2.1.2 Mappings

One basic concept in mathematics is that of afunctionor mappingfrom one set tofunction, mapping

another. The definition of a function from one set to another can be given in a formal
way in terms of a subset of a cartesian product of these sets:

Definition 2.1-3: If S andT are nonempty sets, then a mapping fromS to T is a
subsetM of S × T so that for everys ∈ S there is a uniquet ∈ T so that the
ordered pair(s, t) is in M .

Informally defined, a mapping (or function)f from one setS to another setT is
a rule that assigns to each elements ∈ S a unique elementt ∈ T , i.e. given an
elements of the setS, there is only one elementt in T that is associated tos by the
mappingf . The mappingf from S to T will be denoted byf : S → T . Theimageimage

of s ∈ S is the elementt ∈ T which mappingf associates withs. It is denoted as
t = f(s).

We now consider the inverse case: given a mappingf : S → T and a subsetA ⊂ T ,
the setB = {s ∈ S | f(s) ∈ A} is called theinverse imageof A underf andinverse image

2.1 Sets and Mappings 21

is denoted byf−1(A). f−1(t), the inverse image of the subset{t} ⊂ T consisting
only of the elementt ∈ T is of particular interest.

Now that we have briefly looked at mapping we shall single out some of them.

1. Let S be an arbitrary nonempty set. A mapping ofS × S → S is called a
binary operationonS. binary operation

2. Let T be a nonempty set, and letS = T × T be the cartesian product ofT

with itself. The functionf : T × T → T , defined byf(t1, t2) = t1, is called
theprojectionof T × T onto its first component. projection

3. LetS andT be nonempty sets, and lett0 be a fixed element ofT . The function
f : S → T defined byf(s) = t0 for everys ∈ S is called aconstant function constant function

from S to T .

4. Let S be a nonempty set. The functionf : S → S, defined byf(s) = s for
everys ∈ S, is called theidentity functiononS. identity function

5. Two mappingsf andg from one setS to another are declared asequal, if and equal mappings

only if f(s) = g(s) for everys ∈ S.

Now we introduce some types of mappings by the way they behave.

Definition 2.1-4: The mappingf : S → T is onto or surjective if everyt ∈ T surjective mapping

is the image underf of somes ∈ S; that is, if and only if, given anyt ∈ T , there is
an s ∈ S so thatt = f(s).

Definition 2.1-5: A mappingf : S → T is one to one (written 1-1) or injective injective mapping

if for s1 6= s2 in S, f(s1) 6= f(s2) in T . In other words,f is 1-1 if f(s1) = f(s2)

implies thats1 = s2 (distinct objects have distinct images).

Definition 2.1-6: The mappingf : S → T is said to be a 1-1 correspondence or

bijection iff is both 1-1 and onto. bijective mapping

If we have a mappingf : S → T and a mappingg : T → U , we can introduce an
operation of combining mappings under certain circumstances. The most obvious
combination off andg is to form their product defined by the mappingg ◦ f from
S into U , so that(g ◦ f)(s) = g(f(s)) for everys ∈ S. The mappingg ◦ f : f → g

is denoted ascompositionor productof the mappingsf andg. composition of
mappings

For three mappingsf : S → T , g : T → U andh : U → V , the generalassociative
law holds, i.eh ◦ (g ◦ f) = (h ◦ g) ◦ f .

22 2 Mathematical Background

2.2 Groups, Rings and Fields

In this section we introduce some topics of elementary algebra. Especially the basic
definitions and properties of groups, rings and fields will beconsidered.

2.2.1 Groups

The theory of groups is one of the oldest parts of abstract algebra as well as one
particularly rich in applications. In order to give a formaldefinition of a group, we
first introduce the notion of asemigroup.semigroup

Definition 2.2-1: A semigroup is a pair(G, ∗) of a setG and an operation∗ with
the following properties:

1. ∗ is a binary operation on the setG, i.e.∗ : G×G→ G.

2. ∗ is an associative operation i.e. for all a, b,c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c).

A semigroup (G, ∗) is calledcommutative, if the binary operation∗ on G is com-
mutative, i. e. for all a,b ∈ G, a ∗ b = b ∗ a.

Definition 2.2-2: A pair (G, ∗) is called a group, if it satisfies the following axioms:

1. (G, ∗) is a semigroup.

2. There is an elemente ∈ G, called identity element so that for alla ∈ G :identity element

a ∗ e = e ∗ a = a.

3. For eacha ∈ G, there is an elementa−1 ∈ G, called inverse of a, so that:inverse element

a ∗ a−1 = a−1 ∗ a = e.

The group(G, ∗) is an abelian (or commutative) group, if the group operation∗ is
commutative.

The associative law guarantees that expressions such asa1 ∗ a2 ∗ ∗ ∗ an with aj ∈
G, 1 ≤ j ≤ n, are unambiguous, since no matter how we insert parentheses, the
expression will always represent the same element ofG. To indicate then-fold
composite of an elementa ∈ G with itself, wheren ∈ N, we shall writean =

aa · · ·a (n factors a) if we use multiplicative notation. We callan thenth power of
a. If we use additive notation for the operation∗ onG, we writena = a+a+· · ·+a

(n summandsa).

Following the customary notation, we have the following rules:

Multiplicative Notation Additive Notation

a−n = (a−1)n (−n)a = n(−a)

anam = an+m na + ma = (n + m)a

(an)m = anm m(na) = (mn)a

2.2 Groups, Rings and Fields 23

Forn = 0 ∈ Z, one adopts the conventiona0 = e in the multiplicative notation and
0a = e in the additive notation, where the last "zero" represents the identity element
e of G.

Example 2.2-1:

1. LetG be the set of integers with the usual addition + as the group opera-
tion. The ordinary sum of two integers is a unique integer andthe asso-
ciativity is a familiar fact. The identity element ise = 0 (zero), and the
inverse of an integera is the integer−a, becausea + (−a) = (−a) + a =

e = 0. We denote this group byZ.

2. The set consisting of a single element {e}, with the operation ∗ defined by
e = e ∗ e, forms a group. The sole element of the group {e} is the identity
element and its own inverse element.

3. LetG be the set of remainders of all the integers after division by6 – that
is, G = {0, 1, 2, 3, 4, 5} – and leta ∗ b be the remainder of division by 6
of the ordinary sum ofa andb. The existence of an identity element and
of inverses is again obvious. We can see that 0 is the identityelement of
this groupG, since for each elementa of the setG = {0, 1, 2, 3, 4, 5}, the
remainder of division by 6 of the ordinary sum ofa and 0 deliversa, i.e.
for a ∈ G, a ∗ 0 = 0 ∗ a = a. Each elementa ∈ G possesses an inverse
in G, e.g. the element 1 ofG has 5 ofG as inverse, since the remainder
of division by 6 of the ordinary addition of 1 and 5 delivers the identity
element 0. In the same manner we find out that the element 0, 2, 3, 4 and
5 respc. have the inverses 0, 4, 3, 2 and 1. It requires some computation to
establish the associativity of∗. This group can be readily generalized by
replacing the integer 6 by any positive integern.

Another natural characteristic of a groupG is the number of elements it contains.
If this number is finite, the groupG is said to be afinite group. The number of finite group

elements in a finite group is called theorder of G and is denoted by|G|. order of the group

It might be desirable in some interesting cases to deal with appropriate parts of
the groupG, which are smaller, over which we have some control, and are so that
the information gathered about them can be used to get relevant information and
insight aboutG itself. Note here that the behaviour of these parts ofG depends on
the group operation∗. The parts ofG are calledsubgroupsand will be defined in subgroup

what follows.

Definition 2.2-3: A nonempty subsetM of a groupG is said to be a subgroup ofG
if, under the group operation∗, M itself forms a group.

24 2 Mathematical Background

Example 2.2-2:
Let M be a set of even integers, i.eM ⊂ Z. The setM closed under the ordinary
addition + forms a group, since

1. if a, b ∈ M , thena + b ∈ M . That is, ifa andb are even, thena + b is
even, and

2. the setM possesses the element 0 as identity element, and

3. every element a ofM possesses an inverse(−a) so thata + (−a) =

(−a) + a = 0.

SubsequentlyM is a subgroup of the group(Z, +), becauseM ⊂ Z and(M, +)

is a group.

We now consider the order and some further properties of the group elements.

Definition 2.2-4: Let g be an element of the groupG. The order ofg is the leastorder of group element

positive integerδ so thatgδ = e, provided that such an integer exists. The order of
g is defined to be infinite, ifδ does not exist.

We shall introduce the set

〈g〉 = {gk | k ∈ Z}.

Definition 2.2-5: If g ∈ G exists so that〈g〉 = G, G is said to be cyclic andg is a
generator ofG.generator

Example 2.2-3:
We consider again the groupG of item 3 of Example 2.2-1. We remember that
G = {0, 1, 2, 3, 4, 5} and that the group operation∗ is defined to be the remain-
der on division by 6 of the ordinary sum ofa andb. We now want to determine
the set〈1〉. It must be clear that the expressiongk, introduced in the definition
of 〈g〉 with g ∈ G, is relative to the used group operation. In our example, we
have:

gk = g ∗ g ∗ . . . ∗ g (k multiple).

2.2 Groups, Rings and Fields 25

So, we get:

1 ∗ 0 = 1

1 ∗ 1 = 2

1 ∗ 1 ∗ 1 = 3

1 ∗ 1 ∗ 1 ∗ 1 = 4

1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 = 5

1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 = 0

1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 ∗ 1 = 1

...

If we continue this computation, we always obtain an elementof the groupG as
a result. Thus, we can write:

〈1〉 = {0, 1, 2, 3, 4, 5} = G.

We conclude that 1 is a generator of the groupG and thatG is a cyclic group.

2.2.2 Rings

In most number systems used in elementary arithmetics thereare two distinct binary
operations: addition and multiplication. Examples are provided by the integers, the
rational numbers, and the real numbers. We now define a type ofalgebraic structure
known as aring that shares some of the basic properties of these number systems. ring

Definition 2.2-6: The triple(R, ∗, ◦) is called a ring, if the following properties are
verified:

1. (R, ∗) is an abelian group with identity element0R. 0R is called the zero
element of the ring. zero element

2. The group operation◦ is associative, that is,(a ◦ b) ◦ c = a ◦ (b ◦ c) for all
a, b, c ∈ R.

3. There is an element1R ∈ R so that for each elementa ∈ R : a◦1R = 1R◦a =

a. 1R is the multiplicative identity of the ringR.

4. For all a, b, c ∈ R, a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ c), (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c),
i.e. the operation◦ is distributive over∗.

The ring (R, ∗, ◦) is a commutative ring, if the operation o is commutative. An
elementa ∈ R of the ring(R, ∗, ◦) is invertible or unit, if it is invertible in (R, ◦).
The set of unit elements in a ring(R, ∗, ◦) forms a group under the operation o
which is called the group of the units of R and is denoted by(R∗, ◦).

26 2 Mathematical Background

Example 2.2-4:
The set of integersZ with the usual operations of addition and multiplication is
a commutative ring, since

1. (Z, +) is an abelian group with zero element 0, and

2. the group operation· is associative, that is,(a · b) · c = a · (b · c) for all
a, b, c ∈ Z, and

3. 1 is the multiplicative identity element of the ringZ, since for each ele-
menta ∈ Z : a · 1 = 1 · a = a, and

4. for alla, b, c ∈ Z, a · (b+ c) = (a · b)+ (a · c), (a+ b) · c = (a · c)+ (b · c),
i.e. the operation· is distributive over+, and

5. the operation· is commutative.

2.2.3 Fields

The next algebraic system we will consider is afield. It plays an important role infield

geometry, in the theory of equations, and in certain parts ofnumber theory.

Definition 2.2-7: A commutative ring(K, ∗, ·) is a field, if for all a ∈ K, with a
6= 0K (0K is the zero element of the set K),a is invertible or a unit.

Example 2.2-5:

1. (Z, +, ·) is not a field, since the only non-zero integers, which possess
inverse related to the multiplication· are 1 and -1.

2. (IR, +, ·) is a field withIR being the set of real numbers,+ and· are the
ordinary operations: addition and multiplication.

2.3 Number Theory

The present section is intended as an introduction to the basic concepts of number
theory. Several central topics in this section such as primenumbers and congruences
are very important not only in cryptography, but in many scientific fields.

2.3 Number Theory 27

2.3.1 Divisibility

First we introduce the notion ofdivisibility of integers. divisibility

Definition 2.3-1: Let a, b ∈ Z. We say thata dividesb if there is an integern so
that:

b = an.

In this casea is said to be a divisor ofb andb is a multiple ofa. The divisibility of
b by a is denoted bya | b. To indicate thata is not a divisor ofb, we writea ∤ b

Example 2.3-1:
5 | 125 and−8 | 360, since125 = 5 · 25 and360 = (−8) · (−45).

3 ∤ 5.

Theorem 2.3-1: If a andb are integers withb > 0, then there are integersq and
r, with 0 ≤ r < b, so thata = qb + r.

In the previous theorem, the integerq can be determined as:

q = ⌊a/b⌋ = max{α ∈ Z; α ≤ a/b},

whereq is thequotientof the division ofa by b. The symbol⌊a/b⌋ denotes the quotient

largest integer less than or equal toa/b. The integerr is called theremainderof the remainder

division ofa by b and is denoted bya mod b.

Example 2.3-2:
If a = 18 andb = 4, thenq = 4 andr = 2.

2.3.2 Representation of integers in different bases

Positive integers can be expressed in various ways. The ordinary representation is
used in the decimal system. For example, the integer 234 can be written in base 10
as follows:

234 = 2 · 102 + 3 · 101 + 4 · 100.

The same number can be written in base 6 as:

234 = 1 · 63 + 0 · 62 + 3 · 61 + 0 · 60 = (1030)6,

or in base 2 as:

234 = 1 ·27 +1 ·26 +1 ·25 +0 ·24 +1 ·23 +0 ·22 +1 ·21 +0 ·20 = (11101010)2.

Generally, each integera ≥ 0 has aunique representation in base

28 2 Mathematical Background

b (b ∈ Z, b > 1). We writerepresentation of an
integer in baseb

a = an · bn + an−1 · bn−1 + an−2 · bn−2 + . . . + a1 · b1 + a0 · b0 =
n

∑

i=0

aib
i,

where0 ≤ ai < b, for 0 ≤ i < n andan 6= 0. We write

a = (anan−1an−2 . . . a1a0)b.

Example 2.3-3:

1. For machine computations, it is preferable to write the positive integers
in the binary representation(b = 2). For example the integer 47 will be
represented as follows:

47 = 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = (101111)2.

2. The integer 47 can be expressed in base 8 as follows:

47 = 5 · 81 + 7 · 80 = (57)8.

Since8 = 23, we can convert the integer 47 from packets of base 2 to base
8. For this purpose we group three digits in the binary representation of
47 from the right. We obtain:

47 = ((101)2(111)2)8 = (57)8.

2.3.3 Greatest common divisor

Having introduced the concept of a divisor of an integer, we will now deal with the
concept of thecommon divisorof two (or more) integers.common divisor

Given two integersa andb, the integerc is a common divisor ofa andb, if c | a and
c | b. A notion ofgreatest common divisoris a very important one. It is the largestgreatest common

divisor possible common divisor ofa andb and is formally defined as:

Definition 2.3-2: Leta, b, c andd ∈ Z with d > 0. d is the greatest common divisor
of a andb denotedd = gcd(a, b) if:

1. d | a andd | b

2. wheneverc | a andc | b, thenc | d.

2.3 Number Theory 29

Example 2.3-4:
The common divisors of 12 and 18 are±1,±2,±3,±6, andgcd(12, 18) = 6.

gcd(20, 30) = 10 andgcd(−12, 8) = 4.

We notice that the greatest common divisorgcd(a, b) of two integersa andb always
exists and is unique. Furthermore, it can be written as a linear combination ofa and
b. This combination is however, not unique. For instance,

gcd(24, 9) = 3 = 3 · 9 + (−1) · 24 = (−5) · 9 + 2 · 24.

Theorem 2.3-2: If a, b ∈ Z, are not both 0, then their greatest common divisor
gcd(a, b) exists, is unique, and moreover can be written as linear combination
of a andb, i.egcd(a, b) = xa + yb for some suitable integersx andy.

How does one go about finding the greatest common divisor of two integersa and
b? The simplest, but inefficient way, is to find all common divisors ofa andb and
then choose the greatest of them. Another way is to employ theEuclidean algorithm
which is a nontrivial efficient old algorithm. It will be discussed in the next section.

2.3.4 Euclidean Algorithm

TheEuclidean algorithmis an efficient algorithm for computing the greatest com-Euclidean algorithm

mon divisor of two integers that does not require the factorization of the integers. It
is based on the following simple theorem.

Theorem 2.3-3: Leta, b ∈ Z. Then,

1. if b = 0, thengcd(a, b) = |b|,

2. if b 6= 0, thengcd(a, b) = gcd(|b|, a mod |b|) .

The previous theorem enables the computation of the greatest common divisor
gcd(a, b) as follows:

We supposer0 = a, r1 = b anda > b > 0, then we introduce the notation

ri+1 = ri−1 mod ri for each integeri ≥ 1 andri 6= 0.

Then, we computeri+1 = ri−1 mod ri for i = 1, 2, 3 . . . until we obtain for a fixed
i0 ≥ 1:

ri0+1 = 0.

Then, the greatest common divisor isri0.

If a = 0 resp.b = 0, thengcd(a, b) = b resp.gcd(a, b) = a.

Example 2.3-5:
We want to determinegcd(110, 40). Using the notation introduced above, we
obtain the following table:

30 2 Mathematical Background

i 0 1 2 3 4

ri 110 40 30 10 0

From the table we getr4 = 0, i.e. i0 = 3 andr3 = 10 is the greatest common
divisor of 110 and 40, i.e.

gcd(110, 40) = 10.

2.3.5 Extended Euclidean Algorithm

The Euclidean algorithm can be extended so that it not only yields the greatest
common divisor of two integers a and b, but also integers x andy satisfying the
linear combination:

ax + by = gcd(a, b).

This algorithm is called theExtended Euclidean algorithmand is veryExtended Euclidean
algorithm important, since it can be used to compute a multiplicative inverse in

groups (see Section 2.3.7).

Corollar 2.3-1: For all a, b, n ∈ N, the equationax + by = n has two integers
x andy as solution ifgcd(a, b) dividesn.

This corollar means that the equationax + by = gcd(a, b) is always solvable.

Given two integersa andb as input, with the Extended Euclidean algorithm the two
unknown integersx andy as well as the greatest common divisor ofa andb can be
determined so that

ax + by = gcd(a, b).

This will be illustrated in what follows:

Let r0 = a, r1 = b, r2 = a mod b andq1 = ⌊a
b
⌋.

If r2 6= 0, then:

r3 = r1 mod r2 andq2 = ⌊r1

r2
⌋.

Generally, we continue with this notation untilri = 0:

ri+1 = ri−1 mod ri andqi = ⌊ ri−1

ri
⌋, 1 ≤ i ≤ n.

We start withx0 = 1, y0 = 0, x1 = 0, y1 = 1 and compute in every further iteration
xi+1 andyi+1 as:

xi+1 = qixi + xi−1,

yi+1 = qiyi + yi−1

2.3 Number Theory 31

for 1 ≤ i ≤ n. Let n be defined so thatrn+1 = 0. Then, the integersx andy (the
solutions of the equation) can be computed as:

x = (−1)nxn

y = (−1)n+1yn.

Example 2.3-6:
Givena = 146 andb = 20, we want to solve the equation146 · x + 20 · y =

gcd(146, 20) with the three unknownsx, y andgcd(146, 29).

The following table shows the steps of the Extended Euclidean algorithm to solve
the equation:

i 0 1 2 3 4

ri 146 20 6 2 0

qi 7 3 3

xi 1 0 1 3

yi 0 1 7 22

From the table we obtainn = 3, sincer4 = 0. Then we get:

x = (−1)3x3 and

y = (−1)3+1y3.

Regarding the table, we havex3 = 3 andy3 = 22. Sox = −3 andy = 22. Thus,

gcd(146, 20) = 146 · (−3) + 20 · 22 = 2.

2.3.6 Prime numbers

We now focus our attention on an ultra-important class of positive integers, namely
theprime numbersor simply the primes. These numbers play a major role in cryp-prime numbers

tography, since they are essential for the realization of many asymmetric algorithms
and other cryptographic protocols. For example the RSA public-key system uses
prime numbers (see chapter 5). In this section, we introduceprime numbers and
give an overview of their properties which are relevant for cryptographic applicati-
ons.

Prime numbers are numbers that have no divisors other than 1 and themselves, such
as 2, 3, 5, 7, 11, 13, 17, etc. All primes are odd, except 2 – the "oddest" prime. The
number 1 is considered neither prime norcomposite. A formal definition of primes composite

will be given in what follows.

32 2 Mathematical Background

Definition 2.3-3: An integerp > 1 is said to be prime if its only positive divisors
are 1 and p. Otherweisep is called composite.

Example 2.3-7:
The numbers 2, 11, 13 and 2269 are prime. The numbers 4, 6 and 2268 are
composite.

Can we build integers from primes in a very precise and well-defined manner? This
question is made clear by one important theorem called thefundamental theorem of
arithmetic.

Theorem 2.3-4: Every integern ≥ 2 can be written as product of prime powers:

n =

k
∏

i=1

pei

i ,

with pi 6= pj for 1 ≤ i < j ≤ k. This decomposition is unique up to rearran-
gement of factors.

Example 2.3-8:
The number 392 has the factorization into the primes23 and72:

392 = 23 · 72

= 72 · 23.

But, if we do not consider the rearrangement of the primes23 and72, we assert
that the factorization of 392 is unique.

Before we describe some properties of prime numbers, we introduce the notion
of relatively prime numbers. Integersa and b are said to be relatively prime, ifrelatively prime

numbers their greatest common divisor is one, i.e.gcd(a, b) = 1. We further introduce two
important number-theoretic functions, namely theEuler phi functiondenotedϕ(n)Euler phi function

and the functionπ(x).

The Euler phi functionϕ(n) gives the number of natural numbers, between1 and
n inclusive, which are relatively prime ton. For instance, to findϕ(6) we must
consider each of the numbers 1, 2,. . ., 6. Here 2, 3, 4, 6 are not relatively prime to
6, sincegcd(2, 6) = 2 6= 1, gcd(3, 6) = 3 6= 1, gcd(4, 6) = 2 6= 1 andgcd(6, 6) =

6 6= 1. However, the integers 1 and 5 are relatively prime to 6. Thus, ϕ(6) = 2. For
a formal definition ofϕ(n) with n ≥ 1, we write

ϕ(n) = |{1 ≤ m ≤ n− 1 | gcd(n, m) = 1}|.

Theπ(x)-functionπ(x) denotes the number of primes belowx. For instanceπ(2) =

1, because we count 2 as the first prime,π(10) = 4, since there are four primes
below 10, namely 2, 3, 5, and 7.

2.3 Number Theory 33

Property

We now specify some properties of prime numbers without prooving them.

1. If n =
∏k

i=1 pei

i andm =
∏k

i=1 pfi

i , thengcd(n, m) =
∏k

i=1 p
min(ei,fi)
i .

2. If p is prime, thenϕ(p) = p− 1.

3. If n, m ≥ 1 with gcd(n, m) = 1, thenϕ(nm) = ϕ(n)ϕ(m).

4. If n =
∏k

i=1 pei

i , thenϕ(n) = n ·∏k
i=1(1− 1

pi
).

5. Forn ≥ 5, ϕ(n) > n
6 ln ln n

.

6. limx→∞
π(x)

x/ ln x
= 1. Consequently, for a large integerπ(x) can be approxima-

ted byx/ ln x.

7. For everyx ≥ 17, π(x) > x
ln x

.

8. Forx > 1, π(x) < 125506 x
lnx

.

Example 2.3-9:

1. ϕ(8) = 4, since for everyx ∈ {1, 3, 5, 7} gcd(x, 8) = 1.

2. ϕ(2269) = 2268, since 2269 is prime.

3. ϕ(64) = ϕ(26) = 64(1− 1
6
) = 25.

2.3.7 Congruences

We are all familiar with examples ofmodular arithmeticeven if we have never
considered them to be different ways of calculating. One common example is given
by counting hours. On a clock 3 hours added to 4 o’clock is 7 o’clock: 3 + 4 = 7.
But 2 hours added to 11 o’clock is 1 o’clock! Similary 3 hours substracted from
5 o’clock is 2 o’clock but 3 hours substracted from 3 o’clock is 12 o’clock. In
this arithmetic system 12 takes the place of zero and numberswhich differ by 12
or a multiple of it are considered to be the same. With this approach the previous
example can be written in mathematical notation as:

3 + 4 ≡ 7 mod 12

2 + 11 ≡ 1 mod 12

5− 2 ≡ 3 mod 12

3− 3 ≡ 0 mod 12.

For example the notation2 + 11 ≡ 1 mod 12 will be read as "2+11 is

congruentto 1 modulo 12". We remember that 12 and all multiples of 12 aretrea-
ted as zero and that, as a result, numbers which differ by a multiple of 12 are the

34 2 Mathematical Background

same, we can perform addition and substraction just as usual. We can also use the
multiplication in the same manner:

4 · 5 = 20 ≡ 8 mod 12

5 · (−1) = (−5) ≡ 7 mod 12

3 · 8 = 24 ≡ 0 mod 12

3 · (8− 2)− 7 · (4− 13) = 81 ≡ 9 mod 12.

However, when we begin using division the results appear even more strange. Let
us find the following divisions modulo 12: 10 / 5, 27 / 5, 5 / 7 and2 / 3. In the first
case the result of dividing 10 by 5 is 2, since5 ·2 ≡ 10 mod 12. In the second case
the numbers 27 and 15 differ by 12, so they are treated as beingthe same

3 · 5 ≡ 27 mod 12.

Thus27/5 ≡ 3 mod 12. Similarly 5/7 is 11 because

7 · 11 ≡ 5 mod 12.

The division2/3 mod 12 does not exist. To explain this we firstly calculate the
multiples of3 mod 12:

Multipler 3 · Multipler

0 0

1 3

2 6

3 9

4 0

5 3

6 6

7 9

8 0

9 3

10 6

11 9

Certainly 2 does not appear as the value of any of these multiples3 ·0, . . . , 3 ·11, but
does that show that it could not be the value of any multiple of3? It does, because
any other number must be congruent modulo 12 to one of the numbers0, 1, . . . , 11,
so that its product with 3 would be congruent to one of the products3 · 0, . . . , 3 · 11.
For instance,77 = 6 · 12 + 5 ≡ 5 mod 12 so that3 · 77 = 18 · 12 + 3 · 5 ≡
3 · 5 mod 12 and similarly -34 ≡ 2 mod 12 so that3 · (−34) ≡ 3 · 2 mod 12.
After giving these examples with modular arithmetic modulo12, we will discuss
the congruence topic in a general form.

2.3 Number Theory 35

Definition 2.3-4: Let a, b ∈ Z andn ∈ N. One says,a is congruent tob modulon congruence

and writesa ≡ b mod n, if n is a divisor of(a− b).

Example 2.3-10:
36 ≡ 12 mod 4, since4 | (36− 12), i.e4 | 24.

The relation congruence modulo n, i.e.≡ mod n, possesses the following proper-
ties:

1. Reflexivity: since for alla ∈ Z, a ≡ a mod n.

2. Symmetry: since for alla, b ∈ Z, if a ≡ b mod n, thenb ≡ a mod n.

3. Transitivity: since for alla, b, c ∈ Z, if a ≡ b mod n andb ≡ c mod n,
thena ≡ c mod n.

Hence, we conclude that the congruence modulo n is anequivalence relationon the
set of all integers.

We now give some useful properties of congruences modulo n which are easy to
prove. For alla, b, c, d ∈ Z, if a ≡ b modn andc ≡ d mod n, then the following
holds:

1. −a ≡ −b mod n.

2. a + c ≡ b + d mod n.

3. a · c ≡ b · d mod n.

4. a/c ≡ b/d mod n.

In item 3 of the above listed properties, if we consider the special case (a = c and
b = d), we obtaina2 ≡ b2 mod n. Using the item 3 again with this special case
(a = c andb = d) we geta3 ≡ b3 mod n. After applying that fork − 1 steps we
deduce

ak ≡ bk mod n,

for any natural numberk.

Theequivalence class of an integera is the set of all integers congruent toa modulo equivalence class

n. It will be denoted bya + nZ. Formally defined, we write

a + nZ = {b ∈ Z | b ≡ a mod n}.

It works out that, in fact

a + nZ = {a + nZ | z ∈ Z}.

36 2 Mathematical Background

Example 2.3-11:
The equivalence class of 2 mod 7 is the set:

2 + 7Z = {2 + (7 · 0), 2 + (7 · ±1), 2 + (7 · ±2), 2 + (7 · ±3), . . .}
= {. . . , −19, −12, −5, 2, 9, 16, 23, . . .}.

From Theorem 2.3-1, we now recall that each integera can be written as:

a = kn + b with 0 ≤ b < n, k ∈ Z and n ∈ N.

If we use the notation of congruences modulo n, we can write:

a ≡ b mod n, with 0 ≤ b < n, n ∈ N.

Hence, each integer is congruent modulo n to one and only one integer between 0
andn− 1, since0 ≤ b < n.

We define the set of all equivalence classes modulo n denoted by Z/nZ and call
the elementsresidue classes. Also the setZ/nZ explicitly contains the elementsresidue classes

nZ, 1 + nZ, 2 + nZ, ..., (n − 1) + nZ. If we choose an arbitrary element of each
residue classnZ, 1 + nZ, 2 + nZ, ..., (n − 1)nZ, we form a set holding as a set
of representativesfor the residue classesZ/nZ. Any set of representativesfor the
residue classes is called acomplete set of residues modulo n.complete set of

residues modulo n

Example 2.3-12:
The residue classesZ/3Z consist of the elements (sets)0 + 3Z, 1 + 3Z and
2 + 3Z, where

3Z = {. . . , −9, −6, −3, 0, 3, 6, 9, . . .}
1 + 3Z = {. . . , −8, −5, −2, 1, 4, 7, 10, . . .}
2 + 3Z = {. . . , −7, −4, −1, 2, 5, 8, 11, . . .}.

If we choose an arbitrary element of each residue class3Z, 1 + nZ and2 + nZ,
we get a set of representatives for the residue classesZ/3Z (resp. a complete set
residues modulo 3), i.e {0, 1, 2}, {0, 7, -4}. . .

There is an infinite number of possible complete sets of residues but a computer
always uses{0, 1, 2, . . . , n− 1} as a standard set.

Definition 2.3-5: The integers modulo n, denotedZn, is the set of (equivalence clas-
ses of) integers{0, 1, 2, . . . , n− 1}. Addition, substraction and multiplication inZn

are performed modulo n.

2.3 Number Theory 37

Since the setZ/nZ and the setZn have the same mathematical behaviour, we only
use the setZn.

Example 2.3-13:

1. Z6 = {0, 1, 2, 3, 4, 5} is a complete set of residues modulo 6.

2. In Z6 :

5 + 4 = 3 mod 6

5 · 4 = 2 mod 6.

We introduce the setZ∗
n defined as: definition of Z∗

n

Z∗
n = {a ∈ Zn | gcd(a, n) = 1}.

In particular, ifn is a prime, thenZ∗
n = {a ∈ Z | 1 ≤ a ≤ n− 1}.

Example 2.3-14:

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Z∗
7 = {1, 2, 3, 4, 5, 6}.

We will now return to the operations in modular arithmetic, more precisely we will
only look at division modulo n. So we can explain more adequately why the divi-
sion of 3 by 2 modulo 12 does not exist. First we begin with the definition of the
multiplicative inversein Zn.

Definition 2.3-6: Leta ∈ Zn. The multiplicative inverse of a modulo n is an integermultiplicative inverse

x ∈ Zn so that:

ax ≡ 1 mod n.

If such anx exists, then it is unique anda is said to be invertible or unit. The inverse
of a is denoteda−1.

Claim

a is invertible inZn, if and only if gcd(a, n) = 1.

38 2 Mathematical Background

Example 2.3-15:

1. 2 is not invertible inZ6, sincegcd(2, 6) 6= 1.

2. 2 is invertible inZ7 and has the inverse 4, since2 · 4 ≡ 1 mod 7.

Definition 2.3-7: Leta, b ∈ Zn. Division ofa by b in Zn is the product ofa anddivision in Zn

b−1 modulo n and is only defined ifb is invertible.

Example 2.3-16:

1. Division modulo 12 of 2 by 3 does not exist, since 3 is not invertible in
Z12, i.e.gcd(3, 12) 6= 1.

2. Division modulo 12 of 27 by 5 delivers 3, since

27/5 mod 12 ≡ 27 · 5−1 mod 12

≡ 27 · 5 mod 12, (5−1 ≡ 5 mod 12)

≡ 135 mod 12, (135 = 3 + 11 · 12)

≡ 3 mod 12.

We look at how to find the multiplicative inverse in the setZ∗
n.

Given an elementa ∈ Z∗
n, we want to find themultiplicative inversea−1 of a ∈ Z∗

n,computing of the
multiplicative inverse i.e. we must determine an elementx ∈ Z∗

n so thatax ≡ 1 mod n. In this case, the
congruenceax ≡ 1 mod n implies thatn | (ax − 1), i.e. there is an integerk so
thatax = 1 + nk. This can be written as:

ax− nk = 1. 2.3-1

Since the integersa, x ∈ Z∗
n, we havegcd(a, x) = 1 and Eq. 2.3-1 will be written

as:

ax + n(−k) = gcd(a, n), 2.3-2

and, if we puty = (−k), we obtain:

ax + ny = gcd(a, n).

Corollar 2.3-1 says that the equationax + by = gcd(a, b) will always be solvable
and its solution will be determined by the two integersx andy. We can now use the
Extended Euclidean algorithm to find such integersx andy.

2.3 Number Theory 39

Example 2.3-17:
We want to find the multiplicative inverse of 16 inZ∗

21. So we must solve the
equation:

16x + 21y = gcd(16, 21) = 1.

For this purpose, we use the Extended Euclidean algorithm and obtain the table
by permuting the notation ofxi andx resp. byyi andy:

i 0 1 2 3 4

ri 21 16 5 1 0

qi 1 3 5

yi 1 0 1 3

xi 0 1 1 4

From the table we obtainn = 3, y = (−1)3 · 3 = −3 andx = (−1)3+1 · 4 = 4,
i.e.

16 · 4 + 21 · (−3) = 1

16 · 4 = 1 + 21 · 3
16 · 4 ≡ 1 mod 21.

The multiplicative inverse of 16 inZ∗
21 is 4.

One of the important results of modular arithmetic, which isused in public cryp-
tography, is given in the next theorem called theChinese remainder theorem. It Chinese remainder

theoremenables resolving of simultaneous congruence equations.

Theorem 2.3-5: Let m1, m2, . . . , mn ∈ N, with gcd(mi, mj) = 1 for each1 ≤
i < j ≤ n. The system of simultaneous congruences:

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ an mod mn

has a unique solution

x = (

n
∑

i=1

aiyiMi) mod m,

wherem =
∏n

i=1 mi, Mi = m
mi

andyi is the solution of the congruence:

yiMi ≡ 1 mod mi, for each1 ≤ i ≤ n.

40 2 Mathematical Background

Using the Chinese remainder theorem, we can decompose an operation in a given
group in operations in its subgroups.

Example 2.3-18:
We want to solve a system of congruences

x ≡ 2 mod 3

x ≡ 4 mod 5.

We have:

m1 = 3, m2 = 5.

We calculate:

m = m1 ·m2 = 15,

M1 =
m

m1
= 5,

M2 =
m

m2

= 3.

The solution of the congruences (e.g. with the use of the Extended Euclidean
algorithm)y15 ≡ 1 mod 3 andy23 ≡ 1 mod 5 is 2 and 2 resp. Finally

x ≡ (
2

∑

i=1

aiyiMi) mod m

x ≡ a1y1M1 + a2y2M2 mod m

x = 2 · 2 · 5 + 4 · 2 · 3
x ≡ 44 mod 15

= 14.

We verify that:

14 ≡ 2 mod 3

14 ≡ 4 mod 5.

We now introduce the notion of quadratic residue modulo n andthat of the square
root of an integer modulo n.

Definition 2.3-8: Leta ∈ Z∗
n, a is called quadratic residue modulo n, or squarequadratic residue

modulo n
modulo n, if there isax ∈ Z∗

n so thatx2 ≡ a mod n. If such ax does not exist,
thena is called quadratic non residue modulo n.

Qn (resp. Qn) denotes the set of all quadratic residues (resp. non residues) modulo
n.

2.3 Number Theory 41

Definition 2.3-9: Let a ∈ Z∗
n. If x ∈ Z∗

n and x2 ≡ a mod n, thenx is called a
square root ofa modulo n. square root modulo n

Example 2.3-19:
If we calculate the values of an integera from the congruencex2 ≡ a mod n

in Z∗
7 we obtain:

12 = 1 ≡ 1 mod 7

22 = 4 ≡ 4 mod 7

32 = 9 ≡ 2 mod 7

42 = 16 ≡ 2 mod 7

52 = 25 ≡ 4 mod 7

62 = 36 ≡ 1 mod 7.

We conclude that the quadratic residues modulo 7 are 1, 2, and4 while the
quadratic non residues modulo 7 are 3, 5, and 6. Thus,

Q7 = {1, 2, 4} andQ7 = {3, 5, 6}.

2.3.8 Some algebraic systems formed by the SetZn

This section summarizes some important results which are needed throughout this
course. We remember that the setZn contains the elements0, 1, 2, . . . , n−1, where
n is a positive integer.

1. The pair(Zn, +) consisting of the setZn and the operation addition modulo n
forms an abelian group and is calledadditive group. (Zn, +) has 0 as identity additive group

element. Each elementa of the setZn has an inverse−a. The order of the
group(Zn, +) is |Zn| = n.

2. The pair(Zn, ·) consisting of the setZn and the operation multiplication
modulo n is not a group, since with reference to multiplication, not all ele-
ments ofZn have an inverse. For example, 2 has no inverse inZ6.

3. The pair(Z∗
n, ·), where· is a multiplication modulo n, forms a group with

identity element 1. Such a group is called themultiplicative groupof Zn. In multiplicative group

contrast toZn, each element ofZ∗
n, closed under the operation·, is invertible.

Note that per definition each elementa of Z∗
n satisfiesgcd(a, n) = 1. The

order ofZ∗
n is defined to be the number of elements inZ∗

n, namely|Z∗
n|. It

follows from the definition of the Euler phi function that|Z∗
n| = ϕ(n). If an

elementα ∈ Z∗
n is of orderϕ(n), thenα is a generator or aprimitive element primitive element

of Z∗
n. If Z∗

n has a generator, thenZ∗
n is cyclic. Generally ifZ∗

n is cyclic, then
the number of generators ofZ∗

n is ϕ(ϕ(n)). As an example we consider the
multiplicative groupZ∗

5. We will determine the order of each element ofZ∗
5,

42 2 Mathematical Background

therefore, we compute the power of each element ofZ∗
5 and list the results in

the following table:

δ 0 1 2 3 4

1δ mod 5 1 1 1 1 1

2δ mod 5 1 2 4 3 1

3δ mod 5 1 3 4 2 1

4δ mod 5 1 4 1 4 1

The table summarizes some properties of the elements of the groupZ∗
5:

a. The order of the elements 1, 2, 3 and 4 resp. is 1, 4, 4, and 2.

b. 〈2〉 and〈3〉 are identical toZ∗
5, i.e. they are generators ofZ∗

5.

HenceZ∗
5 is cyclic.

c. Z∗
5 hasϕ(|Z∗

5|) = ϕ(4) = 2 generators which have the order|Z∗
5| = 4,

namely 2 and 3.

4. The tuple(Zn, +, ·) consisting of the setZn and the two binary operations
addition modulon (+) and multiplication modulon (·) forms a commutative
ring. But it does not form a field, since not all non-zero elements have multi-
plicative inverses. However,(Zn+, ·) is a field if and only ifn is prime.

2.4 Finite Fields and Polynomials

The topics that we consider in this section involve the concept of polynomialandpolynomial

that offinite fields over polynomials. We note that the most important application of

finite fields polynomials is the construction of finite fields which are calledGalois fields. These

Galois fields fields play a dominant role in some scientific areas such as cryptography, digital
communications, etc.

2.4.1 Polynomial over a Ring

Let (R, +, ·) be an arbitrary ring. A polynomial overIR is an expression of the form

f(x) = anxn + an−1x
n−1 + . . . + a1x + a0,

wheren is a non-negative integer and the elementsai ∈ R, i ∈ {0, . . . , n} are called
coefficientsof the polynomialf(x). The largest integerm for whicham 6= 0R (zero-coefficients

element of the ringR) is thedegreeof f and is denoted bydeg(f). am is also calleddegree of polynomials

the leading coefficient off . If f(x) = a0 and a0 6= 0R, then the polynomialf has
degree 0. The polynomial is said to bemonic if its leading coefficient is equal tomonic polynomial

1. The set of all polynomials over the ringIR in the indeterminentex is denoted by
R[x].

2.4 Finite Fields and Polynomials 43

Example 2.4-1:
The expressionf(x) = 4x4 + 2x2 + 1 is a polynomial over the ring(Z5, +, ·),
i.e f ∈ Z5 (the operation + and· are closed under the setZ5 and are performed
modulo 5). The degree off is 4, since 4 is the highest power ofx that occurs in
the expression off(x) with a non-zero coefficient.

Arithmetic operations and equality in R[x]:

Forf(x), g(x) ∈ R[x] with deg(f) = n, deg(g) = m, n ≥ m, let

f(x) = anxn + an−1x
n−1 + . . . + a1x + a0, and

g(x) = bmxm + bm−1x
m−1 + . . . + b1x + b0,

one gets:

1. The polynomialsf andg areequalif and only if their corresponding coeffi-
cients are equal, that isai = bi for i ≥ 0.

2. The addition off andg is defined as:

(f + g)(x) = (an + bn)xn + (an−1 + bn−1)x
n−1 + . . . + (a0 + b0).

3. The multiplication off andg is defined as:

(fg)(x) = cn+mxn+m + . . . + c0,

wherebyck =
∑k

i=0 aibk−i for 0 ≤ k ≤ n + m.

Theorem 2.4-1: (R[x], +, ·) with the above introduced operations+ and· forms
a commutative ring called the polynomial ring overR.

The only arithmetic operation inR[x], which we have not dealt with yet, is the
division of two polynomialsf andg, where each of them is inR[x]. This will be
shown in what follows.

Definition 2.4-1: If f, g ∈ R[x] with g(x) 6= 0, then ordinary polynomial division
of g byf yields polynomialsq andr ∈ R[x] so that

g(x) = q(x)f(x) + r(x), wheredeg(r) < deg(f).

Moreover, the polynomialsq andr are unique. The polynomialq is called thequoti-
ent, while the polynomialr is called theremainderand is denoted byr = g mod f .
For this notation, we sayr is equal tog modulof .

Example 2.4-2:
We consider two polynomialsg andf of Z5[x] with g(x) = 2x5 + x4 + 4x + 3

andf(x) = 3x2 + 1. The division ofg by f in Z5[x] yields the quotientq(x) =

4x3+2x2+2x+1 and the remainderr(x) = 2x+2. Note thatdeg(r) < deg(f).

44 2 Mathematical Background

2.4.2 Finite Fields

In this section we will briefly introduce the concept of finitefields. Thereafter, we
will describe their structure.

Definition 2.4-2: A finite fieldKq is a field with a finite number of elements. Thefinite field

order of the fieldKq is the numberq of its elements.

Now, we will describe the structure of finite fields. First we introduce the notion
of an irreducible polynomial, since irreducible polynomials are indispensible forirreducible polynomial

constructing finite fields. Moreover, each polynomial inKq[x] can be written as
product of irreducible polynomials in an essentially unique manner.

Definition 2.4-3: Let f ∈ Kq[x] with deg(f) ≥ 1. f is irreducible inKq[x] (or
prime inKq[x]), if it cannot be expressed as a product of two polynomials inKq[x],
each of positive degree.

Theorem 2.4-2: Any polynomialf ∈ Kq[x] of positive degree can be written as

f = cf e1
1 . . . f ek

k ,

where c ∈ Kq, f
e1
1 . . . f ek

k are distinct monic irreducible polynomials in
Kq[x], and e1, . . . , e1 are positive integers. Moreover, this factorization is uni-factorization of

polynomials que apart from the order in which the factors occur.

We remember from Definition 2.4-1 that by dividing the polynomial g ∈ Kq[x] by
f ∈ Kq[x], we obtain a unique quotientq and remainderr, where

g = qf + r anddeg(r) < deg(f).

This formula can also be expressed as:

g ≡ r mod f with deg(r) < deg(f),

and we say "g is congruent tor modulof ". Before we continue to discuss, what the
equation

g ≡ r mod f with deg(r) < deg(f)

means, we will see some properties of congruences.

Let g, h, g1, h1, s be elements ofKq[x]. The following properties hold:

1. g ≡ h mod f if and only if g and h result in the same remainder upon
division byf .

2. g ≡ g mod f , i.e. the relation congruence modulof ∈ Kq[x] is reflexive.

3. If g ≡ h mod f , thenh ≡ g mod f , i.e. the relation congruence modulo
f ∈ Kq[x] is symmetric.

2.4 Finite Fields and Polynomials 45

4. If g ≡ h mod f andh ≡ s mod f , theng ≡ s mod f , i.e. the relation
congruence modulof ∈ Kq[x] is transitiv.

5. If g ≡ g1 mod fandh ≡ h1 mod f , theng + g1 ≡ h + h1 mod f and
g · g1 ≡ h · h1 mod f .

From items 2, 3, and 4, we conclude that the relation congruence modulof ∈ Kq[x]

is an equivalence relation.

Any polynomial inKq[x] is congruent modulof to a unique polynomial of degree
at mostdeg(f)−1, since the polynomialr (resp.q) is unique anddeg(r) < deg(f).
Moreover, the equivalence class ofr ∈ Kq[x] is defined as the set of all polynomials
g which are congruent tor modulof ∈ Kq[x], i.e the equivalence class ofr ∈ Kq[x]

consists of all polynomialsg ∈ Kq[x] so that

g ≡ r mod f.

We now consider a case of great interest for cryptographic applications where
Kq[x] = Zp[x] andf is an irreducible polynomial inZp[x]. Note that the setZp

consists of the elements0, 1, . . . , p− 1, wherep is prime. Hence, we can define the
set of all equivalence classes modulof which will be denoted byZp[x]/f .

The setZp[x]/f closed under addition and multiplication modulof forms a field
with the orderpn, wheredeg(f) = n. The fact thatf ∈ Zp[x] is an irreducible
polynomial guarantees that all elements of the setZp[x]/f will be invertible.

Furthermore, all fields over various irreducible polynomials with a fixed degreen
have the same structure and various representations of their field elements. One says
that all those fields are isomorphic.

For this reason the notation of the above defined field will only refer to the primep
and the degreen. This field can be denoted byGF (pn), because there is an irredu-
cible polynomial inZp[x] for each positive integern.

GF (pn) is called Galois field.p is thecharacteristic of the fieldandGF (p) is the Galois field

prime field.

Example 2.4-3:

1. f(x) = x3 +x+1 with deg(f) = 3 is an irreducible polynomial inZ2[x],
since it cannot be expressed as a product of two polynomials in Z2[x],
each of positive degree.

2. We construct the finite fieldGF (8):
For the construction ofGF (8) = GF (23) we use the above irreducible
polynomialf(x) = x3 +x+1. The elements ofGF (8) are the polynomi-
als:0, 1, x, x + 1, x2, x2 + 1, x2 + x, andx2 + x + 1, i.e GF (8) contains
all polynomials inZ2[x] of degree at most 2. The arithmetic inGF (8) is
performed modulof(x) = x3 + x + 1. To compute the product of two
elements inGF (8), we multiply the two polynomials and we divide by
f(x) = x3 +x+1 and then we get the remainder of this division as result.
The addition inGF (8) is the usual addition of polynomials inZ2[x].

46 2 Mathematical Background

For example, letf1(x) = x2 + 1 andf2(x) = x2 + x + 1 be two elements
of GF (8). We will compute the addition and the multiplication off1 and
f2:

a.

f1(x) + f2(x) = (x2 + 1) + (x2 + x + 1)

= (x2 + x2) + x + (1 + 1)

= 0 + x + 0

= x.

b. Now we will compute the product off1 andf2 in GF (8). First, we
calculatef1 · f2 = x4 +x3 +x+1 and thereafter divide it byf(x) =

x3 + x + 1. We obtain:

x4 + x3 + x + 1 = (x + 1)(x3 + x + 1) + x2 + x

≡ x2 + x mod x3 + x + 1

≡ x2 + x mod f.

The product off1 andf2 in GF (8) deliversx2 + x. The following
table summarizes all possible multiplications of the non-zero ele-
ments of the fieldGF (8). The notationa2a1a0 substitutes that of the
polynomiala2x

2 + a1x + a0.

.
001 010 011 100 101 110 111

001 001 010 011 100 101 110 111

010 010 100 110 011 001 111 101

011 011 110 101 111 100 001 010

100 100 011 111 110 010 101 001

101 101 001 100 010 111 011 110

110 110 111 001 101 011 010 100

111 111 101 010 001 110 100 011

From the table, it can be seen, that all results of the multiplication
are also elements ofGF (8).

2.4 Finite Fields and Polynomials 47

Another operation inGF (pn) which we have not dealt with yet is the computa-
tion of the multiplicative inverse of a polynomial modulof and the exponentiation
modulof . The reader is referred to [Menezes96].

We introduce the notion of aprimitive polynomial,since it may be preferable in primitive polynomial

some applications to use a primitive polynomial for defininga finite field.

Definition 2.4-4: Let f(x) be an irreducible polynomial inZp[x] of degreen and
p a prime.f(x) is a primitive polynomial ifx is a generator of the multiplicative
groupGF (pn)∗ (GF (pn)∗ = GF (pn)− {0}).

Example 2.4-4:
In Example 2.4-3 the polynomialf(x) = x3 + x + 1 is primitive, sincex is
a generator of the multiplicative group(GF (23))∗. All elements of(GF (23))∗

can be obtained as power ofx modulof(x). This is shown in the next table.

i xi mod x3 + x + 1

0 1

1 x

2 x2

3 x + 1

4 x2 + x

5 x2 + x + 1

6 x2 + 1

7 1

... ...

Besides the degree, there is another important integer, which specifies a non-zero
polynomial over a finite field, namely itsorder. The definition of the order of a order of the

polynomialpolynomial is based on the following claim.

Claim

Let f ∈ Zp[x] be a polynomial of degreem ≥ 1 with f(0) 6= 0, then there is a
positive integere ≤ pm − 1 so thatf(x) dividesxe − 1.

Since a non-zero constant polynomial dividesx−1, these polynomials can be inclu-
ded in the following definition.

Definition 2.4-5: Let f ∈ Zp[x] be a non-zero polynomial. Iff(0) 6= 0, then the
smallest positive integere for whichf(x) dividesxe−1 is called the order off and
is denoted byord(f) = ord(f(x)). If f(0) = 0, thenf(x) = xhg(x), whereh ∈ N

andg ∈ Zp[x] with g(0) 6= 0 are uniquely determined,ord(f) is defined to equal
ord(g).

48 2 Mathematical Background

The order of the polynomialf is sometimes called the period off or the exponent
of f . The order of an irreducible polynomialf can be characterized in the following
alternative fashion.

Corollar 2.4-1: If f ∈ Zp[x] is an irreducible polynomial overZp of degreem,
thenord(f) dividespm − 1.

As a method for determining the primitivity of a polynomial we can use the follo-
wing theorem.

Theorem 2.4-3: Let f(x) be an irreducible polynomial withf(x) ∈ Zp[x] of
degree n and p prime. We suppose that the factorization ofpn − 1 is known.
Let p1, p2, . . . , pt be the distinct prime factors ofpn − 1. f(x) is primitive if
and only if for eachk, 1 ≤ k ≤ t:

x(pn−1)/pk 6= 1 mod f(x).

2.5 Complexity Theory

Generally, the word security is utilized in three contexts:information theoretical
security, computational security and system theoretical security.

The information theoretical security, which is also called"unconditional security",
is a measure which regards the security of cryptosystems without placing a bound
on the amount of computation that an attacker can do. A cryptosystem is defined to
be unconditionally secure if it can not be broken, even with infinite computational
resources.

The computational security (security in sense of complexity theory) is a measure
which regards the computational effort required to break a cryptosystem. We might
define a cryptosystem to be computationally secure if the best algorithm for brea-
king it requires at leastN operations, whereN is some specified, very large num-
ber. Using this notion, many cryptosystems based on very difficult mathematical
problems have been constructed.

By developing a cryptosystem which is system-theoretically secure, the designer
tries to construct the system in a way that will resist all known cryptoanalytic
attacks. In other words, the designer must consider all state of the art technology
in the area of cryptoanalysis.

The Vernam cipher, called a one-time system or one-time pad,is a provable uncon-
ditionally secure cipher against a cipher-only attack3. However, this cipher has no
practical importance. The security of all other cryptosystems is based on the com-
putational effort required to break it. That is why the treatment of the complexity
theory is very important in cryptography. With complexity theoretical analysis we
can estimate the security of the cryptographical algorithm.

3 See [Menezes96] on page 192.

2.5 Complexity Theory 49

The main goal of complexity theory is to provide mechanisms for classifying com-
putational problems according to the resources needed to solve them. Generally,
the required resources aretime, storage space, random bits, number of processors,
etc., but the main focus is on time. By time we mean therunning timeexpressed in running time

number ofoperationsthat is needed for solving a problem. Here analgorithmcan operation

algorithmbe seen as a tool to solve a well-specified computational problem [Menezes96].

In the context of complexity theory, thecomputational securityof a cryptosystem
depends on the existence and exploitation of problems knownas hard computatio-
nal problems. But how can we characterise the computationaldifficulty of arbitrary
problems. In most cases an estimation of the running time of an algorithm that ena-
bles us to solve the required problem, is a criterion to measure the computational
difficulty of such a problem. However, an exact prediction ofthe running time of
an algorithm is impossible. Hence, only an approximation can be achieved. For this
purpose, we use the so calledasymptotic running timei.e. we analyze how the run- asymptotic running

timening time increases as thesizeof theinput increases without bound. In this approach
the input size of an algorithm means the total number of bits needed to represent
the input in ordinary binary notation using an appropriate encoding scheme [Mene-
zes96].

This section deals with theasymptotic notations, namely theO−, Ω−, Θ−, o−, and asymptotic notation

ω-notation. Thereafter, we introduce some complexity classes:P, NP andco−NP .

2.5.1 Asymptotic Notation

By means of asymptotic notations, we can describe the running time of an algo-
rithm. Before we give an abstract definition of the asymptotic notation, we will
look at a simple algorithm, namely the Eucledian algorithm and then estimate its
running time. Furthermore, we will see how the running time of the algorithm can
be expressed in some asymptotic notations.

First we start with the running time of some arithmetic operations, namely the addi-
tion and the division. In what followsa andb are two integers that can be written in
binary representation as:

a = (ak−1ak−2 . . . a1a0)2

b = (bl−1bl−2 . . . b1b0)2.

a is ak-bit integer andb is al-bit integer. We want to illustrate the addition ofa and
b in the following example.

50 2 Mathematical Background

Example 2.5-1:
If we choosea = 10010 andb = 110, then the bit addition ofa andb is computed
as follows

10010

+ 00110

carry 11

11000

Since(l = 3) < (k = 5) we need to add two 0 to the left ofb = 110 so thata
andb have the same bit length. The addition of two bits is called a bit operation.
The addition ofa andb requiredk = 5 bit operations.

Generally, the addition of ak-bit integera and al-bit integerb requiresmax(k, l)

bit operations. The running time for the addition ofa andb can be estimated by

Time(k-bit + l-bit) = max(k, l).

We informally introduce theO-notation and denote the time required to execute one
bit operation byO(1). Considering this we can describe the running time by

Time(k-bit + l-bit) = O(max(k, l)).

The division of two integersa andb is illustrated by the following example:

Example 2.5-2:
We choosea = 110101 andb = 101. The division ofa by b is performed as
follows

1 1 0 1 0 1 = 1 0 1 · 1 0 1 0 + 0 1 1

1 0 1
0 1 1

0 0 0
1 1 0

1 0 1

0 1 1
0 0 0

0 1 1.

To dividea by b we need 4 substractions of numbers having 3 bits each. Note
that the bit length of the obtained quotient is 4 and the bit length ofb is 3. That
is, we needO(4 · 3) to compute the division.

Generally, if the quotientq of the division ofa by b hasm bits, then the time required
to compute the division is at mostO(l ·m).

2.5 Complexity Theory 51

The estimated running time for all arithmetic operations issummarized in the fol-
lowing table [Buchmann99].

Operation Bit complexity

Addition a + b O(max(k, l))

Subtraction a− b O(max(k, l))

Multiplication a · b O(k · l)
Division a = qb + r O(l ·m)

The Euclidean algorithm is needed to compute the greatest common divisor of two
integersa andb with a > b > 0 (see Section 2.3.4). To estimate the running time of
the Euclidean algorithm, we proceed as follows.

We putr0 = a andr1 = b and compute the divisions:

r0 = q1r1 + r2 0 < r2 < r1,

r1 = q2r2 + r3 0 < r3 < r2,

r2 = q3r3 + r4 0 < r4 < r3,

...

ri0−2 = qi0−1ri0−1 + ri0 0 < ri0 < ri0−1,

ri0−1 = qi0ri0 .

As mentioned in Section 2.3.4 the greatest common divisor ofa andb is ri0(i0 is a
fixed indice for whichri0+1 = 0).

To estimate the running time of all steps of the algorithm, weconsider that the num-
ber of bit operations for the divisiona = q0b + r1 is at mostlength(b) · length(q0).
And so the time for the divisionri−1 = qiri + ri+1 is limited by length(ri) ·
length(qi) ≤ length(b) · length(qi). Thus, the total time for the algorithm can
be written as

O(length(b)(length(q1) + length(q1)) + . . . length(qi0)).

Note that

a = q1b + r2 ≥ q1b = q1(q2r2 + r3) ≥ q1 · q2 · r2 ≥ . . . ≥ (q1 · q2 · · · qi0).

Thus, the running time of the Euclidean algorithm to computethe greatest common
divisorgcd(a, b) is equal toO(k · l) althoughO(k · l) is an upper bound for the exact
running time. The fact that this is only an upper bound must beconsidered when
estimating the running time of an algorithm in the worst case.

Now we will introduce the asymptotic notation. The asymptotic notations are defi-
ned in terms of functionsf andg, wheref andg are two functions of the positive
integersn which take positive real valuesn.

52 2 Mathematical Background

2.5.2 O-notation

We denote byO(g(n)) the set of functions

f(n) ∈ O(g(n))

for which there is a positive constantc and a positive integern0 so that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0. 2.5-1

This means thatf(n) does not grow asymptotically faster thang(n) to a certain
constant multiple and thatf is bounded byg to the constant multiple. Instead of
f ∈ O(g(n)), one usually writes

f(n) = O(g(n)).

If f(n) is a sum of terms, then only the dominant term off is considered. The
dominant term is the term that grows the fastest asn gets larger. For example, if
f(n) = an3 + bn2 + c and a, b, c are positive integers, then only the terman3

determines the behaviour off(n) asn gets larger.

Using theO-notation, we can describe the running time of an algorithm.If T deno-
tes the time complexity of an algorithm andT = O(n), then doubling the size of
the inputn doubles the running time of an algorithm. IfT = O(2n) then adding 1
bit to the size of the input doubles the running time of the algorithm [Schneier96].

Hence, with theO-notation, we can classify algorithms according to theirtime or
space complexities. An algorithm isconstantif its complexity is independent of
n. An algorithm islinear if its time complexity isO(n). Algorithms can also be
quadratic, cubic,and so on. An algorithm is calledexponentialif its complexity is
O(tf(n)) with t constant andf(n) a polynomial. To see the difference between these
complexities we give the following example.

Example 2.5-3:
The following table [Schneier96] shows the running times for different classes
of algorithms withn = 106. We assume that the unit of time to compute an
operation is 1µs.

Class Complexity Time at 106 O/s

Constant 1 1µ s

Linear n 1 s

Quadratic n2 11.6 days

Cubic n3 32 years

Exponential 2n 10301.006 times the age of the universe

The computer can complete a constant algorithm in a microsecond, a linear algo-
rithm in a second and a quadratic algorithm in 11.6 days. It would take 32 years

2.5 Complexity Theory 53

to compute a cubic algorithm. This is not practical. Note that if the constantk in
O(nk) grows by 1 fromO(n2) to O(n3) the complexityO(nk) grows from 11.6
days to 32 years. Computing an exponential algorithm is hopeless [Schneier96].

2.5.3 Ω-Notation

In contrast to theO-notation, theΩ-notation provides a lower bound to the function
f . This can be seen in the definition ofΩ(g(n)).

f(n) ∈ Ω(g(n))

if there is a positive constantc and a positive integern0 so that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0.

This means thatf(n) grows at least as fast asymptotically asg(n) to a constant
multiple. TheΩ-notation is used to bound the best-case running time of an algo-
rithm, e.g. the shortest running time for an input sizen. Instead off ∈ Ω(g(n)),
one usually writes

f(n) = Ω(g(n)).

We remember that the running time of the Euclidean algorithmin the worst case
was expressed asO(k · l). Needless to say, the best running time of the algorithm
can be achieved if only one step to the greatest common divisor of a andb is needed.
In other words, under the consideration thata > b > 0, the greatest common divisor
of a andb will be b itself. In this case, withr0 = a andr1 = b (see the notation
introduced in Section 2.5.1) we have

r0 = q1r1 + 0.

That isgcd(a, b) = r1 = b.

Supposing thatq1 is am-bit integer the best running time of the Euclidean algorithm
can be expressed byΩ asΩ(l ·m), wherel is always the bit length ofb.

2.5.4 θ-notation

Theθ-notation is related to theO- andΩ-notations. The expressionf(n) = Θ(g(n))

means thatf(n) = O(g(n)) andf(n) = Ω(g(n)). The functionf also has an upper
and lower bound, i.e.

f(n) = θ(g(n))

if there are positive constantsc1, c2 and a positive integern0 so that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.

The definition ofθ(g(n)) implies that each element of the setθ(g(n)) is asymptoti-
cally non-negative, e.g.f(n) is non-negative whenevern is sufficiently large.

54 2 Mathematical Background

Related to the Euclidean algorithm, the running time expressed byθ shall describe
the running time in theaverage caseof the algorithm. That is the average run-
ning time over all inputs of a fixed size, expressed as a function of the input size
[Menezes96]. The average running time of the Euclidean algorithm is also bounded
between the lower boundΩ(l ·m) and the upper boundO(k ·m). It can be expressed
by θ(k

2
·m).

2.5.5 o-notation

The case whereg(n) is an upper bound forf(n) that is not asymptotically tight is
described by theo-notation. We formally define

f(n) ∈ o(g(n))

if for any positive constantc > 0 there is a constantn0 > 0 so that

0 ≤ f(n) < cg(n) for all n ≥ n0.

Regarding the definition ofO(g(n)) and o(g(n)) we conclude that the equation
0 ≤ f(n) ≤ cg(n) is the same for the two notations. The relationf(n) = o(g(n))

implies that

lim
n→∞

f(n)

g(n)
= 0.

The expressiono(1) is often used to denote a functionf(n) whose limit is 0 asn
approaches∞.

2.5.6 ω-notation

We use the notationf(n) = ω(g(n)) if g(n) is a lower bound forf(n) that is not
asymptotically tight. We write

f(n) ∈ ω(g(n))

if for any positive constantc > 0, there is a constantn0 > 0 so that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0.

The relationship between theO-notation and theo-notation is similar to that of
theΩ-notation and theω-notation considering the constantc. The relationf(n) =

ω(g(n)) implies

lim
n→∞

f(n)

g(n)
=∞.

2.5 Complexity Theory 55

2.5.7 Properties of the Complexity Notations

For any functionsf(n), g(n), h(n) andl(n) the following relations are true [Mene-
zes96][Cormen89]:

1. f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

2. f(n) = θ(g(n)) if and only if f(n) = O(g(n)) andf(n) = Ω(g(n)).

3. Reflexivity:

f(n) = θ(f(n))

f(n) = O(f(n))

f(n) = Ω(f(n)).

4. Symmetry:
f(n) = θ(g(n)) if and only if g(n) = θ(f(n)).

5. Transitivity:
If f(n) = O(g(n)) andg(n) = O(h(n)), thenf(n) = O(h(n)).

6. If f(n) = O(h(n)) andg(n) = O(h(n)), then(f + g)(n) = O(h(n)).

7. If f(n) = O(h(n)) andg(n) = O(l(n)), then(f · g)(n) = O(h(n)l(n)).

2.5.8 Complexity classes

We define apolynomial time algorithmas an algorithm having the complexitypolynomial time
algorithmO(nk), wherek is a constant. Algorithms whose complexities areO(tf(n)), with

t a constant andf(n) a polynomial ofn are calledexponential time algorithms.A exponential time
algorithmsubexponential time algorithmis an algorithm with the complexityeo(n).
subexponential time
algorithmThere is a given way to classify the running time of algorithms between polynomial

time and exponential time. For this purpose, we give the following definition.

Definition 2.5-1: Letn be a positive integer. Letu be a real number between 0 and
1 and letv > 0 be a constant. Then

Ln[u, v] = O(ev(ln(n))u(lnln(n))1−u

).

In particular

Ln[1, v] = O(ev(ln(n))) = O(nv) and

Ln[0, v] = O(elnln(n)) = O((ln(n))v).

An L[u]-algorithm is an algorithm that, when applied to the integern, has a running
time of the formLn[u, v] for some constantv. In particular, a polynomial time algo-
rithm is anL[0]-algorithm and the exponential time algorithm is anL[1]-algorithm.
By a subexponential time algorithm we mean anL[u]-algorithm for someu < 1.

56 2 Mathematical Background

As mentioned above, for a fixed input an algorithm with complexity O(nk) has
generally a polynomial running time. That is, the algorithmis practically efficientif
the constant multiplec (we mean the constantc introduced in the definition of the
O-notation) and the numberk are small. The algorithm with the complexityO(2n)

is absolutely not efficient.

We remember that a principal task of complexity theory is to classify problems into
complexity classeswhich characterize something of their intrinsic computationalcomplexity classes

properties. Problems that can be solved with polynomial time algorithms are called
tractable. In contrast, problems that cannot be solved within polynomial time are
calledintractable.

Using the concept of polynomial and exponential time algorithms, we can specify
some complexity classes such asP, NP , andco−NP . We notice that the problems
considered by the theory of computational complexity aredecision problems, i.e.decision problems

problems which have YES or NO as an answer. Not all problems are decision pro-
blems, as shown by the following problem:

Input: Given a graphG with m nodes andm edges. Letv0 be a node ofG.

Question: Find the shortest path that start fromv0, passes through all other nodes of
G and returns toG.

Clearly, this is not a decision problem. There may be more than one answer to this
problem, since many different paths, starting fromv0 and returning tov0, can be
given.

2.5.9 Complexity classP

Thecomplexity classP is the set of all decision problems that are solvable in poly-complexity classP

nomial time. In this approach, we remember that the polynomial time algorithm
with complexityO(nk) is considered as practically efficient only if theO-constants4

and the numberk are small. In other words the classP contains all problems whose
solutions are feasible with regard to the computational resources. For example, pro-
blems as addition, multiplication and exponentiation of real numbers belong to the
classP .

2.5.10 Complexity classNP

Thecomplexity classNP is the set of all decision problems for which a YES answerclassNP

can be verified in polynomial time given some extra information, called acertificatecertificate

[Menezes96].

We can imagine that a decision problem is inNP if a person with unlimited compu-
ting power can give a positive answer to the question and prove this so that another

4 That are the constantsc in equation (Eq. 2.5-1).

2.5 Complexity Theory 57

person can verify that the answer is correct in polynomial time. His proof that a
YES answer is correct is called a certificate.

Example 2.5-4:

1. We consider the following decision problem:

Input: Positive integersN andb.

Question: DoesN have a factor in the interval[2, b]?

This problem is generally not in the classP , since it is known as a hard
problem and cannot be solved in polynomial time5.

If the person with unlimited computing power asserted that the answer is
YES, e.g. he can solve this problem which is unsolvable for us, then he
must deliver a certificate for his answer, e.g. he must give anintegerb′ so
that2 ≤ b′ ≤ k andb′ | N . If suchb′ is given, we can verify thatb′ | N
(the YES answer) in polynomial time, that is, this problem isin NP .

2. With regard to cryptography, if a person looks at a ciphertext c and can
guess a plaintextm and a keyk, then he can verify in polynomial time
whether the ciphertextc corresponds to a plaintextm encrypted with the
keyk. We notice that this attempt is not available in all classes of ciphers,
i.e. one-time pads. This problem also belongs to the classNP .

2.5.11 Complexity classco−NP

Thecomplexity classco−NP is the class of all decision problems for which a NOclassco−NP

answer can be verified in polynomial time using an appropriate certificate [Mene-
zes96]. The definition of the classco − NP is similar to the one of the classNP ,
but for co−NP a certificate must be given with respect to the NO answer.

Example 2.5-5:
We treat the same problem of Example 2.5-4 item 1.

Supposing that a person with unlimited computing power gives NO as answer
and gives as certificate the complete prime factorization ofN , we can see in
polynomial time one of the factors in the interval[2, b], simply by dividing each
number of the complete prime factorization ofN by N . The division can be
done in polynomial time. That is, the NO answer can be verifiedin polynomial
time. Thus, this problem belongs theco−NP class.

5 This is known as the factorization problem, see the next section.

58 2 Mathematical Background

2.5.12 Complexity classNPC

There are specific problems inNP which are at least as difficult to solve as any
other problem inNP . Such problems are denoted asNP -completeproblems. InNP -complete

other words, if one would have a polynomial time algorithm for anNP -complete
problem, then one would also have polynomial time algorithms for all otherNP

problems. The class ofNP -complete problems belongs to a class which is denoted
by NPC.

Fig. 2.5-1 illustrates the relationship between the complexity classesP, NP, co −
NP , andNPC. We can see thatP ⊆ NP andP ⊆ co−NP , since each problem
solvable in polynomial time can be verified in polynomial time.NPC ⊂ NP since
NPC is defined as the hardest problems inNP .

NPCco-NPco-NP

NP

NP

P

Fig. 2.5-1: Relationship between complexity classes.

2.6 Hard Problems in Number Theory

In this section we will consider some algorithms that solve two basic problems in
number theory, namely:

1. The factorization problem:

Given a compositen, factorize it into its prime powers, i.e. find the primespi

and the exponentsei(1 ≤ i < j ≤ k andpi 6= pj) so that

n =

k
∏

i=1

pei

i .

2. The discrete logarithm problem:

Given a cyclic groupG with generatorγ and an elementα, find an integerx
so that:

α = γx.

The integerx is called the discrete logarithm ofα to baseγ.

2.6 Hard Problems in Number Theory 59

These two problems are the basis of many cryptographic protocols and algorithms
and enable to achieve the main cryptographic goals such as confidentiality, data
integrity and authentication.

The factorization problem can be splitted into two parts: Firstly we must find out
whether the integern is prime or composite, this is calledprimality test. Secondly primality test

if the integern is composite we try to find the factors.

2.6.1 Primality Tests

We mainly consider probabilistic primality tests with the following property: Ifn
successes to pass a primality test, then it may be prime. If itpasses a whole lot
of primality tests, then it is very likely to be prime. Ifn fails one primality test, it
is definitively composite. In the following we introduce some primality test algo-
rithms.

Trial Division

First we introduce the following theorem.

Theorem 2.6-1: If n ∈ N is composite, thenn is divisible by one of the prime
numbers≤ √n.

By the trial division, if we want to test the primality of a number n, we divide it
by each prime≤ √n. If n is divisible by one of these primes, thenn is composite,
otherwisen is prime.

Example 2.6-1:
Let n = 1153. The trial division ofn by the primes≤

√
1153 = 33, namely 2,

3, 5, 7, 11, 13, 17, 19, 23, 29 and 31 do not deliver any prime divisor. Therefore
1153 is prime.

Of course, for a large odd integern, this method is an extremely time-consuming
one. Other primality tests introduced in this section are faster.

Fermat’s test

The basis of many efficient primality tests is Euler’s theorem and Fermat’s little
theorem that will be introduced next:

Theorem 2.6-2: (Euler’s theorem)

If a ∈ Z∗
n, thenaϕ(n) ≡ 1 mod n.

Example 2.6-2:
If n = 6 anda = 5 ∈ Z∗

6, we verify that5ϕ(6) = 52 = 25 = 1 + (6 · 4) ≡ 1

mod 6.

60 2 Mathematical Background

Theorem 2.6-3: (Fermat’s little theorem)

Letn be a prime. Ifgcd(a, n) = 1 thenan−1 ≡ 1 mod n.

Example 2.6-3:
Let n = 7 anda = 2, 7 is prime andgcd(7, 2) = 1, we verify that

27−1 = 64 = 1 + (7 · 9) ≡ 1 mod 7.

Fermat’s theorem implies that ifan−1 6≡ 1 mod n, thenn is composite. In other
words, if the integern does not pass Fermat’s test, thenn is definitively composite.
However,an−1 ≡ 1 mod n does not automatically imply the primality ofn. In this
case,n can be prime or composite. This is illustrated by the following example.

Example 2.6-4:
Despite the fact that the numbern = 341 satisfies the congruence

2341−1 ≡ 1 mod 341 with gcd(2, 341) = 1,

341 is not prime, since341 = 11 · 31. We say that 341 is apseudoprimeto base
2. The same number, namely 341, is not pseudoprime to base 3, since

3341−1 ≡ 56 mod 341 with gcd(3, 341) = 1,

6≡ 1 mod 341.

There are numbersn that are composite, even though they satisfy the equation

an−1 ≡ 1 mod n, 2.6-1

for everya with gcd(n, a) = 1. These numbersn are calledCarmichael numbers.Carmichael number

Definition 2.6-1: A Carmichael number is a composite integern satisfying

an−1 ≡ 1 mod n

for everya with gcd(n, a) = 1.

Example 2.6-5:
561 = 3× 11× 17 is the smallest Carmichael number, i.e. we get

a561−1 ≡ 1 mod 561

for every integera satisfyinggcd(561, a) = 1.

2.6 Hard Problems in Number Theory 61

Using Fermat’s test we cannot verify if an integern is prime. But if (Eq. 2.6-1) holds
for many numbersa, we conclude thatn is probably prime, since pseudoprimes for
a given basea are known to be rare. Hence Fermat’s test is a probabilistic method.

Miller-Rabin Test

The Miller-Rabin test is more effective than the Fermat’s test. For example: With
the Fermat’s test we cannot determine whether 561 is prime ornot. We will see that
using Miller-Rabin test, we get the information that 561 is not prime.

In order to explain the Miller-Rabin test, we define numberss andd as follows:

s = max{r ∈ N : 2r dividesn− 1}

with n an odd natural number. We put:

d =
(n− 1)

2s
.

With respect to the notation given above we introduce the following theorem:

Theorem 2.6-4: If n is a prime andgcd(a, n) = 1 with a ≥ 2, then either

ad ≡ 1 mod n

or there is anr ∈ {0, 1, . . . , s− 1} so that

a2rd ≡ −1 mod n.

The Miller-Rabin test is based on the previous theorem and enables us to find out
whether an integern is prime or not.

Example: [Buchmann99]
Let n = 561. The Fermat’s test cannot determine whether 561 is prime or not,
since 561 is a Carmichael number.

Using the Miller-Rabin test we obtain:

n− 1 = 560 ands = 4 is the maximal number so that2s | 560.

d =
(n− 1)

2s
=

560

24
= 35.

Let a = 2 andgcd(2, 561) = 1.

We have

235 ≡ 263 mod 561

22·35 ≡ 166 mod 561

24·35 ≡ 67 mod 561

28·35 ≡ 1 mod 561.

62 2 Mathematical Background

Thus, 561 is not prime, since neither

235 ≡ 1 mod 561

nor

22r ·35 ≡ −1 mod 561 for r ∈ {0, 1, 2, 3}.

2.6.2 Factorization

The security of some cryptographic systems relies on the difficulty of the factoriza-
tion problem. In fact, it is difficult to decompose a large oddintegern into its prime
powerspei

i , that is to writen as:

n =
k

∏

i=1

pei

i

with pi 6= pj for 1 ≤ i < j ≤ k.

This section deals with algorithms for the factorization problem, we introduce trial
division and Pollard’s rho algorithm.

Trial division

We want to find the prime powers of a composite numbern. First we determine all
primesp below a fixed boundB. Generally, a typical bound is106. Having a list of
primesp smaller thanB we determine the largest integere(p) so that

pe(p) | n.

Example 2.6-6:
We want to determine the prime powers which are factors of 525825. LetB =

50. The list of primes below 50 is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,31, 37, 41,
43, 47.

We start with computing the prime powerspe(p) so thatpe(p) | 525825:

2 ∤ 525825, that ise(2) = 0

525825

3
= 175275,

175275

3
= 58425,

58425

3
= 19475 but 3 ∤ 19475.

2.6 Hard Problems in Number Theory 63

Thus,

e(3) = 3 and
525825

33
= 19475.

We now go to the next prime, namely 5:

19475

5
= 3895,

3895

5
= 779 and

5 ∤ 779.

Soe(5) = 2. We get

525825 = 33 · 52 · 779.

If we continue this way, we obtaine(19) = 1 ande(41) = 1 and then

525825 = 33 · 52 · 19 · 41.

Note that the trial division is inefficient for large values of n. For example, the
utilized inputn in RSA is in the order of 700 bits (lg(n) = 700 bits, i.e.n ≈ 2700).
We must perform

√
n = 2350 divisions in the worst case to find a factor ofn.

Assuming that our computer executes 35 million operations in one second, we need
approximately10101 years to find a factor ofn. Generally, the trial division is of no
significance for cryptographic applications.

Pollard’s rho method

Pollard’s rho algorithm is a factoring algorithm for findingsmall factors of a com-
posite integer. In the Pollard’s rho method, we choose a function f from Z/Zn into
itself, for example a polynomial function such asf(x) = x2 + 1. Let x0 be a ran-
domly chosen element. We define the sequencex0, x1, x2, . . . so that

xi+1 = f(xi), for i = 1, 2, 3 . . .

We hope to find two elementsxi and xk which are in different residue classes
modulo n, but in the same residue class modulo a divisor of n. In other words,
we suppose

xi ≡ xk mod p, wherep is a prime.

In this case,p | xi − xk. But p is unknown. Therefore we proceed as follows:

We search for the termsxi and xk modulo n, we first verify whethergcd(xi −
xk, n) > 1. If this occurs and ifgcd(xi − xk, n) < n thengcd(xi − xk, n) is a
non-trivial factor ofn.

64 2 Mathematical Background

Example 2.6-7:
Let n = 91. We would like to factorizen. By choosingf(x) = x2 + 1 and
x0 = 1 we get:

x1 = 12 + 1 = 2

x2 = x2
1 + 1

= 22 + 1

= 5

x3 = x2
2 + 1

= 52 + 1

= 26

...

We havegcd(x1 − x0, 91) = gcd(x2 − x1, 91) = gcd(x3 − x1, 91) = 1 and

gcd(x3 − x2, 91) = gcd(26− 5, 91)

= gcd(21, 91)

= 7 < 91.

Hence, the numberp = 7 is a divisor of 91. Note that91 = 7 · 13 and

x3 ≡ x2 mod 7

26 ≡ 5 mod 7.

Assuming that the functionf(x) = x2+1 modp behaves like a random function, the
expected time for Pollard’s rho algorithm to find a factorp of n is O(

√
p) modular

multiplications. This implies that the expected time to finda non-trivial factor ofn
is O(n1/4) modular multiplications [Menezes96].

We needO(
√

p) pairs (xi, xk) to find a collision inp elementsxi (Birthday paradox).
Sincep can be found inO(

√
n) divisions (trial division), Pollard’s rho algorithm has

the complexityO(
√√

n) = O(n1/4).

In our example of the previous section, the factorization ofn = 2700 with Pollard’s
rho algorithm would need1044 years to find a factor ofn.

2.6.3 Discrete logarithm

The security of many cryptographic techniques such as ElGamal encryption, ElGa-
mal signature and the Diffie-Hellman key agreement depend upon the difficulty of
the discrete logarithm problem. The description of this problem is given in the fol-

2.6 Hard Problems in Number Theory 65

lowing: Let G be a cyclic group of ordern. Let γ be a generator ofG andα be an
element of the groupG. We want to determine the unique smallest integerx so that:

α ≡ γx 2.6-2

x = logγ α is called the discrete logarithm ofα to baseγ.

We keep the notations forα, γ, x, n, and their corresponding meanings throughout
the next sections.

NOTE:

1. From the mathematical point of view,G does not have to be cyclic. In
cryptographic applications it is preferable to chooseG as a cyclic group
andγ as a generator ofG. This ensures the existence ofx.

2. Generally, logarithm problems are not easily solvable. Otherwise cryp-
tographic systems which are based on the difficulty of the DL problems
would be considered insecure.

In this section we describe some algorithms for solving the DL problem in special
cases.

Exhaustive search

We determineγ0, γ1, γ2, . . . until the resultα is obtained.

Example 2.6-8:
The solution of8 ≡ 26x mod 131 with exhaustive search delivers

260 ≡ 1 mod 131

261 ≡ 26 mod 131

262 ≡ 21 mod 131

263 ≡ 22 mod 131

264 ≡ 46 mod 131

265 ≡ 69 mod 131

266 ≡ 91 mod 131

267 ≡ 8 mod 131.

Hencex = 7.

Exhaustive search is impractical for a large value ofn. In cryptographic applications
the order of group is≥ 2160. That is we need2160 − 1 group operations to find the
discrete logarithm. The time needed to find discrete logarithm forn = 2160 is in the
order of1033 years.

66 2 Mathematical Background

Baby Step Giant Step Algorithm

The baby step giant step method permits to solve the DL problem. It is faster than
the exhaustive search but it consumes more storage space.

In the baby step giant step method, we proceed as follows:

Let m = ⌈√n⌉, where

⌈√n⌉ = min{α ∈ Z; α ≥ √n}.

Any numberx can be expressed as follows (see Theorem 2.3-1):

x = qm + r, with 0 ≤ r < m.

Eq. 2.6-2 can be written as:

γx = γqm+r = α,

hence

(γm)q = αγ−r.

We compute the setB called the "baby step" that is defined as:

B = {(αγ−r, r) : 0 ≤ r < m}.

If the pair (1, r0) is contained in the setB for some integerr0, thenx = r0. In this
case, the discrete logarithmx has been found.

Otherwise we compute the elements(γm)q for q = 1, 2, . . . until we find an element
(γm)q that is equal to a first component in the baby step set. Letq0 be such an
element. Then we get

(γm)q0 = αγ−r0.

This equation can be written as:

γmq0+r0 = α.

Thus, the discrete logarithmx has been determined:

x = q0m + r0.

The computation of the elements(γm)q is called "giant step".

Example 2.6-9: [Buchmann99]
We want to solve the DL problem:

5x = 3

in the groupZ∗
2017.

2.6 Hard Problems in Number Theory 67

The order of the group isn = 2017−1 = 2016. We determinem = ⌈
√

2016⌉ =

45.

The baby step is

B = {(3 · 5−r, r); 0 ≤ r < 45}.

For r = 0 we obtain the pair (3,0).

For r = 1 the first component of the pair is3 · 5−1 mod 2017. First we must
determine the inverse of 5 inZ∗

2017. We get5−1 mod 2017 = 807. Then

3 · 5−1 mod 2017 ≡ 3 · 807 mod 2017 ≡ 404.

For r = 2 we get

3 · 5−2 mod 2017 ≡ 3 · 25−1 mod 2017

≡ 3 · 1775 mod 2017

≡ 1291.

And so the computation of all pairs ofB delivers

B ={(3, 0), (404, 1), (1291, 2), (1065, 3),

(213, 4), (446, 5), (896, 6), (986, 7),

(1004, 8), (1411, 9), (1089, 10), (1428, 11),

(689, 12), (1348, 13), (673, 14), (538, 15)

(511, 16), (909, 17), (1392, 18), (1892, 19),

(1992, 20), (2012, 21), (2016, 22), (1210, 23),

(242, 24), (1662, 25), (1946, 26), (1196, 27),

(1046, 28), (1016, 29), (1010, 30), (202, 31),

(1654, 32), (1541, 33), (1115, 34), (223, 35),

(448, 36), (493, 37), (502, 38), (1714, 39),

(1553, 40), (714, 41), (1353, 42),

(674, 43), (1345, 44)}.

The computation of the elements(545)q mod 2017 for q = 1, 2, . . . gives

45, 8, 360, 64, 863, 512, 853, 512, 853, 62, 773, 496, 133, 1951

1064, 1489, 444, 1827, 1535, 497, 178, 1959, 1424, 1553.

68 2 Mathematical Background

The calculation is stopped whenq = q0 = 22, since 1553 is contained as first
component in the pair (1553,40) of the baby step set. We getr0 = 40 and sub-
sequently

x = q0m + r0

= (22 · 45) + 40

= 1030

≡ 1030 mod 2017.

Thus,51030 = 3 mod 2017.

We needO(
√

n) modular multiplications to determineB, since0 < r ≤ √n. To
determine the giant step we needO(

√
n), sinceq can be equal to

√
n in the worst

case.O(
√

n lg n) is needed to make comparison between the elements ofB and
that of the set of giant step. Under the assumption that the group multiplications
need more time thanlg n, the running time of baby step giant step algorithm is
O(
√

n). The algorithm requires storage forO(
√

n) group elements [Menezes96],
these group elements are the (m =

√
n) elements of the baby step.

69

3 Stream Ciphers

In Chapter 1 it was already explained that encryption systems can be subdivided in
symmetric and asymmetric systems as well as in block and stream ciphers. In this
chapter stream ciphers, which belong to the symmetric encryption techniques, are
presented in more details. Design and analysis of stream cipher systems as well as
the most well-kown encryption systems are introduced.

When a block cipher is used, a long messagem is divided into blocksm =

m0, m1, . . . , mN−1 of the same length. Here the blocks have usually a length of
n = 64, 128 or 256 bits, depending on the processing lengthn of the block cipher.
When stream ciphers are used, the message to be encryptedm is also divided into
blocks. Here, however, only short blocks of lengthn occur. In this case we do not
speak of a division into blocks, but into symbols. Usually,n = 1 or n = 8 bit. The
encryption of the single symbolsmt is carried out through a state dependent unit.

3.1 Classification of Stream Ciphers

In the literature, the symmetric stream encryption systemsare classified in

1. synchronous stream ciphers and

2. self-synchronizing stream ciphers.

In the following sections the two classes are introduced in more detail.

3.1.1 Synchronous Stream Ciphers

Fig. 3.1-1 depicts a symmetric, synchronous stream encryption system. The sender
can be found on the left and the receiver on the right side. When a synchronous
stream cipheris used, the sender and the receiver of an encrypted message have synchronous stream

ciphersto compute the keystreamzt synchronously at any timet ≥ 0 for encryption and
decryption.

unsecure channel

secure channel

tmh 1-h

g g

f fk k

tctc

ts

tm

ts

Fig. 3.1-1: Synchronous, symmetric stream cipher.

70 3 Stream Ciphers

The keystreamzt is generated independently from the plaintext message and the
ciphertext. The encryption of the message symbolsmt, t ≥ 0, can be described by
the following equations:

σt+1 =f(σt, k),

zt =g(σt, k),

ct =h(zt, mt),

wheret ≥ 0 is valid. The system has a state variableσt whose initial stateσ0 can
either be known publicly or be determined from the secret keyk. In order to be able
to carry out the encryption, theencryption functionh must clearly be invertible. Theencryption function

functionf is called thenext state functionandg is called theoutput function. Thenext state function
output function functionsf, g andh are known publicly.

When the receiver of the ciphertext sequencect, t ≥ 0, knows the secret keyk and
the initial stateσ0, he can decrypt the ciphertextct as follows:

σt+1 = f(σt, k),

zt = g(σt, k),

mt = h−1(zt, ct).

When the values ofk andσt of sender and receiver correspond at any timet ≥ 0 on
both sides, the same keystreamzt is generated.

The functional unit which consists of the stateσt and the functionsf andg is called
keystream generator. Its task is to generate the keystream sequencezt, which iskeystream generator

similar to a random sequence, from the keyk and the initial stateσ0. In Section 3.2
we will introduce various methods for designing keystream generators.

A special type of synchronous stream ciphers is thebinary additive stream cipher.binary additive stream
cipher Here the symbols aremt, ct, zt ∈ GF(2) and the functionh corresponds to the

binary XOR operation.

We would like to mention here that each block cipher in the OFBmode (output
feedback mode) can be used as a synchronous stream cipher. A summary of the
single operation modes for block ciphers is given in Chapter4.

A ciphertext symbolct that is modified does not cause error propagation, but it leads
to a wrong decryption of the symbolct. Consequently, an attacker is able to make
changes to symbols at selected positionst in the plaintext and see what this change
causes in the ciphertext. Thus, it is absolutely necessary that additional mechanisms
are employed in order to provide data origin authenticationand data integrity.

However, when a symbol is inserted or deleted in the ciphertext sequence, the syn-
chronization between sender and receiver is disturbed and the symbols of the cipher-
text that follow can not be decrypted correctly. Thus, it is reasonable to use mecha-
nisms such as inserting synchronization marks or a frequentreinitialization of the
generator.

3.1 Classification of Stream Ciphers 71

3.1.2 Self-synchronizing Stream Ciphers

Besides synchronous stream ciphers, there are alsoself-synchronizing stream self-synchronizing
stream ciphersciphers, but they are hardly used in information and communication systems. In

this case the keystreamzt depends on the keyk and a fixed numberl of previously
generated ciphertext symbols.

Theencryptionof a sequence of plaintext symbolsmt, t ≥ 0, can be described by encryption

the following equations:

σt = (ct−l, ct−l+1, . . . , ct−1),

zt = g(σt, k),

ct = h(zt, mt).

unsecure channel

secure channel
k k

g g

h 1-h
tm

tmtctc

()1..., --= tltt ccs

tz tz

()1..., --= tltt ccs

Fig. 3.1-2: Self-synchronizing, symmetric stream cipher.

The state of the encryption system is formed by thel previous ciphertext symbols
and is described asσt. The functionh has to be invertible so that the decryption
process can be carried out correctly.

Thedecryptionof a ciphertext sequencect, t ≥ 0, can be carried out by using thedecryption

following operations:

σt = (ct−l, ct−l+1, . . . , ct−1),

zt = g(σt, k),

mt = h−1(zt, ct).

Encryption and decryption are depicted in Fig. 3.1-2.

When a symbol of the ciphertext sequencect is inserted or deleted, self-
synchronizing stream ciphers are, unlike synchronous stream ciphers, capable of
re-establishing proper decryption upon receivingl ciphertext symbols correctly.
However, if a ciphertext symbol is modified, then decryptionof up to l subsequent
symbols may be incorrect and there is an error propagation.

It is hard to assess the cryptographic security of self-synchronizing stream ciphers
because the keystreamzt depends on the ciphertext as well as on the plaintext. That
is why they are hardly used in modern communication systems.

72 3 Stream Ciphers

It has to be mentioned that every block cipher in the CFB mode (cipher feedback
mode) can be operated as a self-synchronizing stream cipher.

3.2 Design of Keystream Generators

This section about stream ciphers continues describing themethods of designing
keystream generators. Keystream generators are a major building block of synchro-
nous stream encryption systems. A keystream generator computes the keystream
sequencez = z0, z1, . . . from the keyk. The sequencez is a pseudorandom
sequence and it should be statistically similar to a random and uniformly distributed
sequence. In the special case that keystream sequence symbols are from GF(2), a
random sequence is characterized by the following properties:properties of random

sequences
• Balanceness of the single sequence elements:P (zt = 0) = P (zt = 1) = 0.5 for

all t ≥ 0.

• Statistical independence of the single sequence elements:P (zt|z0, z1, . . . , zt−1) =

P (zt).

The only stream encryption system which produces such a keystream is theone-
time pad. Let m = m0, m1, . . . , mN−1 be the message sequence consisting ofNone-time pad

sequence elementsmt of GF(2), which is to be encrypted and transmitted. Then a
random keystreamz = z0, z1, . . . , zN−1 which must have at least the same length
N as the message sequence is necessary. The sequencez has to be available for
both sender and receiver and it must not be accessible to unauthorized persons. The
encryption is then carried out with

ct = mt + zt

and the decryption with

mt = ct + zt

for t ≥ 0. In practice the disadvantage of the one-time pad is that thesender and the
receiver must have the same keystreamz which has to be transmitted via a secure
channel. Here it has to be considered that the keystreamz has to be just as long as
the messagem which is to be encrypted. C. Shannon could show that the one-time
pad, from an information theoretical point of view, is to be regarded as perfectly
secure.

When aninformation theoretical approachfor assessing and designing an encryp-information theoretical
approach tion system is used, it is assumed that the attacker has unlimited memory location

and computing power for the attack. Although only ciphertext-only attacks are con-
sidered, it is allowed that the attacker knows a finite subsequence of the plaintext.
An attack is assessed as successful when the plaintext or thesecret key can be given
with the probability of 1 after having observed the ciphertext c. Thus, an encryption
system is regarded as perfectly secure when the attacker does not obtain informa-
tion (transinformationI(m, c) = 0) about the plaintextm and the keyk although
he observed the ciphertextc.

3.2 Design of Keystream Generators 73

As it turns out, this information theoretical approach is not practical. Therefore,
it is attempted not to use a truly random keystreamz for encryption. Instead,
a deterministic algorithm is used for generating the keystreamz. A pseudoran-
dom bit generator(PRBG) generates a pseudo random keystream sequencez = PRBG

(z0, . . . , zN−1) ∈ GF(2)N of length N from a short keyk = (k0, . . . , kl−1) ∈
GF(2)l of lengthl:

PRBG: GF(2)l → GF(2)N , (k0, . . . , kl−1)→ (z0, . . . , zN−1).

The number of possible output sequences is at most a small fraction, namely2l/2N ,
of all possible sequences of lengthN. The intention is to take a small random
sequence in form of the keyk and to expand it with PRBG to a sequence of much
larger length, in such a way that an attacker cannot efficiently distinguish between
output sequences of the PRBG and truly random sequences.

The basic requirements on a PRBG can be checked bystatistical tests, for example: statistical tests

1. Frequency test (frequency of "0’s" and "1’s"),

2. Serial test (frequency of tuples),

3. Poker test (frequency of non-overlapping blocks of length i),

4. Runs test (frequency of runs),

5. Autocorrelation test (autocorrelation of output sequences are measured).

When a PRBG passes certain selected tests, its cryptographic suitability is still not
shown. The output sequences of a linear feedback shift register (LSFR) with a pri-
mitive feedback polynomial of degreel pass several statistical tests, but when2l

output symbolszt are observed, the initialization of the linear feedback shift regis-
ter and hence the remaining sequence elements are predictable.

A basic requirement for using a PRBG in cryptography is that the keyk is suffi-
ciently long so that an attacker cannot perform an exhaustive search via all possible
initial states. In applications with real time requirements and high throughput rates
it is necessary that a keystream bitzt can be generated in polynomial time or even
in linear time.

In 1984 Blum and Micali ([Blum84]) defined acryptographic secure pseudo ran-CSPRBG

dom bit generator(CSPRBG) as an algorithm which has additionally the following
property:

• There is no polynomial time algorithm which can determine the next bit with
a probability significantly greater than 0.5 from observingthe subsequence
z0, . . . , zt without knowing the key.

This definition for a CSPRBG is equivalent to a characterization of Yao from 1982
([Yao82]):

• There is no polynomial time algorithm which can distinguishbetween the output
of the generator and a truly random bit sequence with a probability significantly
greater than 0.5 without knowing the key.

74 3 Stream Ciphers

In [Blum84] examples for generators are given, whose security can be proven
under the assumption that efficient algorithms of a well-known number theore-
tic problem (determination of the discrete logarithm) doesnot exist. This desi-
gning method which leads to a CSPRBG is also described as complexity-theoretical
design method.

However, these examples do not have a practical meaning as itwould require too
much memory and computing time to generate the sequences, although it is poly-
nomially restricted. Yao’s results have made it possible togive the desired crypto-
graphic security on the basis of all statistical tests for binary sequences which can
be carried out in polynomial time.

As an example of a CSPRBG we would like to introduce theBlum-Blum-Shub
generator. It is based on the assumption that integer factorization cannot be carriedBlum-Blum-Shup

generator out in polynomial time. The method of generating the keystreamz = z0, . . . , zN−1

from the secret keyk works as follows:

1. Setup:

Determine two random and distinct primesp andq with a bit length of about
l/2 and each congruent to3 mod 4.

Let n = pq.

2. Initialization:

Map the keyk on the integers. It is demanded that1 ≤ s ≤ n − 1 and
gcd(s, n) = 1 is valid.

Computex0 = s2 mod n.

3. Generation of the keystream sequencez = z0, . . . , zN−1:

Carry out the following steps for0 ≤ t ≤ N − 1:

a. xt+1 = x2
t mod n.

b. zt = least significant bit ofxt+1.

Example 3.2-1: Blum-Blum-Shup CSPRBG [Stinson95]

1. Setup:

Supposep = 383 andq = 503. p andq are primes andp ≡ q ≡ 3 mod 4,
since

p = 383 = 3 + (95 · 4), and

q = 503 = 3 + (125 · 4).

We computen = p · q = 192649.

3.2 Design of Keystream Generators 75

2. Initialization:

Let s = 101355. We have1 ≤ (s = 101355) ≤ n − 1 = 192648 and
gcd(101355, 192649) = 1. We compute

x0 ≡ s2 mod n

≡ 1013552 mod 192649

≡ 20749.

3. Generation of the keystream sequencez = z0, . . . , zN−1 with N = 20:

The least significant bitszt of eachxt+1(xt+1 = x2
t mod n), which cor-

respond to the output of the Blum-Blum-Shup generator, are given in the
following table:

Tab. 3.2-1: Bits produced by the Blum-Blum-Shup
generator

t xt Binary representation of xt zt−1

0 20749

1 143135 100010111100011111 1

2 177671 101011011000000111 1

3 97048 10111101100011000 0

4 89992 10101111110001000 0

5 174051 101010011111100011 1

6 80649 10011101100001001 1

7 45663 1011001001011111 1

8 69442 10000111101000010 0

9 186894 101101101000001110 0

10 177046 101011001110010110 0

11 137922 100001101011000010 0

12 123175 11110000100100111 1

13 8630 10000110110110 0

14 114386 11011111011010010 0

15 14863 11101000001111 1

16 133015 100000011110010111 1

17 106065 11001111001010001 1

18 45870 1011001100101110 0

19 137171 100001011111010011 1

20 48060 1011101110111100 0

When, in practice, PRBG generators are designed for cryptographic applications
the so-calledsystem-theoretical approachis mostly used. Here, one tries to designsystem-theoretical

approacha generator consisting of components with statistical properties which can be mathe-
matically controlled. Basic components are, for example, linear or non-linear feed-

76 3 Stream Ciphers

back shift registers with regular or irregular clock control. One attempts to fulfill
certain design objectives and requirements of keystream sequences and, at the samefundamental attacks

time, to design a generator which is resistant to all known attacks.Fundamental
attacksare:

1. Exhaustive search through the entire key space

2. Linear substitutions

3. Divide-and-conquer attack

4. Statistical defects

5. Unconditional correlations

6. Conditional correlations.

In the next section we shall discuss the mathematical description of binary
sequences and their generation by means of linear feedback shift registers. An
important property of sequences is the linear complexity which can be effectively
computed with the Berlekamp-Massey algorithm.

3.3 Binary Sequences and Linear Feedback Shift
Registers

Many generators proposed in the literature have a shift register withlinear feedbackLFSR

(LFSR) as a basic component. Such an LFSR of lengthl consists ofl stages which
store at timet l elements

st, st+1, . . . , st+l−1

of the finite field GF(2), which consists of the elements{0, 1}. Thel elements from
the state of the LFSR at timet are summarized to a state vector

st = (st, st+1, . . . , st+l−1)
T .

When the stept to t + 1 is carried out the elements of the stages are shifted one
position to the left. Here the sequence elementst+l−1 is output and the sequence
element which is stored on the left side of the stage is determined by the linear
feedback of the storage elements of the LFSR as follows: Letc0, c1, . . . , cl−1 ∈
GF(2) be the feedback coefficients, then the sequence elementst+l is determined as

st+l =
l−1
∑

j=0

cjst+j

by thel stored sequence elements of the linear feedback shift register. Consequently,
a binary sequence

s = s0, s1, s2, . . .

can be generated with a given initialization of the stages with s0, s1, . . . , sl−1 and
l feedback coefficients. The binary sequence is described aslinear shift register

3.3 Binary Sequences and Linear Feedback Shift Registers 77

sequence. The feedback coefficients of the LFSR are summarized to the so-called LSFR sequence

feedback polynomialc ∈ GF(2)[x] feedback polynomial

c(x) = xl −
l−1
∑

j=0

cjx
j .

The theory of LFSRs is mathematically completely developed. Unfortunately, this
does not apply to shift registers with non-linear feedback so that LFSRs serve as
major building blocks of keystream generators.

Now we want to explain the terms period and pre-period of a binary sequences =

s0, s1, Every finite and autonomous state machine with output, for example an
LSFR, generates an output sequences which starts with apre-periodof length
t0 ≥ 0 and is then followed by theperiodicpart with a cycle length ofp, namely

st+p = st

for t ≥ t0. Such a sequence is calledultimately periodicand whent0 = 0 is valid it ultimatively periodic
sequenceis calledperiodic. The period of the sequences is defined as the smallest cycle of
period of a sequencelengthp for which

st+p = st

is still valid for t ≥ t0.

A finite and autonomous state machine whose state is stored ina binary memory of
lengthl can produce an output sequence with a maximum possible period 2l. When
we just consider a state machine with a linear next-state function, for example an
LFSR, an output sequence with a maximum period2l − 1 can be produced due to
the fact that the zero state is mapped onto itself.

The existence of pre-periods witht0 > 0 can easily be shown for an LFSR. When
c0 = 0 is valid, thent0 > 0, and forc0 = 1, t0 = 0 is valid. In the later case all
output sequences of the LFSR are periodic.

The valuep of the period of the output sequences of an LFSR of lengthl can easily
be expressed by the valuee, the exponent of the feedback polynomialc(x) of the
LFSR. The exponente of a polynomialc is the smallest integer for which

c(x)|xe − 1

is valid. The maximum value of the exponente to a polynomial of degreel is 2l−1.
Such a polynomial is also denoted as primitive.

Theorem 3.3-1: Let the feedback polynomialc(x) ∈ GF(2)[x] belonging to the
LFSR be irreducible ande is the exponent ofc(x). Then every sequence pro-
duced by this LFSR, except for the zero sequence, has the periode.

The definition mentioned above can be generalized for any polynomials (see
[Lidl94]).

If p is the period of a sequences, then this sequence can be produced by an LFSR
with the feedback polynomialc(x) = xp − 1.

78 3 Stream Ciphers

Example 3.3-1: Computing of the exponent
We will write a program for the Crypto-Interpreter, which determines the
exponents of all polynomials of degree 4. In addition, it should indicate whe-
ther the poloynomial is irreducible and/or primitive.

The Crypto-Interpreter programme:

PROCESS compute_exponent;

DCL c,expo integer;

DCL prim,irr boolean;

START;
TASK c:=16;

MACRO while (c<32);
TASK expo:=poly_order(c);

TASK irr:=is_irreducible(c);
TASK prim:=is_primitive(c);

CALL writeln(’c=’,c);
CALL writeln(’Exponent=’,expo);

CALL writeln(’is_irreducible’,irr);

CALL writeln(’is_primitive’,prim);
TASK c := c+1;

MACRO wend(loop1);

STOP;

ENDPROCESS;

The result of the calculations are summarized in Tab. 3.3-1.

3.3 Binary Sequences and Linear Feedback Shift Registers 79

Tab. 3.3-1: Determination of the exponent, irreducibility and
primitivity of all polynomials of degree 4

c exponent irreducible primitive

x4 1 no no

x4 + 1 4 no no

x4 + x 3 no no

x4 + x + 1 15 yes yes

x4 + x2 2 no no

x4 + x2 + 1 6 no no

x4 + x2 + x 7 no no

x4 + x2 + x + 1 7 no no

x4 + x3 1 no no

x4 + x3 + 1 15 yes yes

x4 + x3 + x 7 no no

x4 + x3 + x + 1 6 no no

x4 + x3 + x2 3 no no

x4 + x3 + x2 + 1 7 no no

x4 + x3 + x2 + x 4 no no

x4 + x3 + x2 + x + 1 5 yes no

Example 3.3-2: Period of the output sequences of an LFSR
We consider the LFSR with the irreducible feedback polynomial

c(x) = x4 + x3 + x2 + x + 1,

which has the exponent5. This is valid, asc(x) divides the polynomialx5−1 and
notx4−1. Thus, the LFSR only produces, besides the zero sequence, sequences
of period5. The output sequences of the LFSR of period5 can be subdivided
into three categories, with each of them having five sequences:

1. (1, 0, 0, 0, 1, 1, . . .), (0, 0, 0, 1, 1, 0, . . .), (0, 0, 1, 1, 0, 0, . . .),

(0, 1, 1, 0, 0, 0, . . .), (1, 1, 0, 0, 0, 1, . . .)

2. (0, 1, 0, 0, 1, 0, . . .), (1, 0, 0, 1, 0, 1, . . .), (0, 0, 1, 0, 1, 0, . . .),

(0, 1, 0, 1, 0, 0, . . .), (1, 0, 1, 0, 0, 1, . . .)

3. (1, 0, 1, 1, 1, 1, . . .), (0, 1, 1, 1, 1, 0, . . .), (1, 1, 1, 1, 0, 1, . . .),

(1, 1, 1, 0, 1, 1, . . .), (1, 1, 0, 1, 1, 1, . . .).

Theorem 3.3-2: The period of a sequence of an LFSR with irreducible feed-
back polynomialc(x) of degreel is a divisor of2l − 1. The sequence has the
maximum period2l − 1 exactly, whenc(x) is primitive.

80 3 Stream Ciphers

Example 3.3-3: Determination of the state and the output of an LFSR
We want to determine the state and the output of an LFSR by using the Crypto-
Interpreter. We use an LFSR with the feedback polynomial

c(x) = x4 + x3 + x2 + x + 1,

and the initial states0 = s = (1, 0, 0, 0)T . The Crypto-Interpreter programme is
as follows:

PROCESS lfsr_output;

DCL t integer;

DCL c,state_t, lfsr, out_t integer;

DCL state_s charstring;

START;

TASK c := 31;

TASK state_t := 1;

CALL lfsr_init(lfsr,c,state_t);

TASK t:=0;

MACRO while (t<11);

TASK state_t := lfsr_state(lfsr);
TASK state_s := bin(state_t);

CALL writeln(’State of the LFSR: ’,state_s);
TASK out_t := lfsr_run(lfsr,1);

CALL writeln(’Output of the LFSR: ’,out_t);

TASK t := t+1;
MACRO wend(loop1);

CALL lfsr_exit(lfsr);

STOP;

ENDPROCESS;

The output of the program is summarized in Table 3.3-2.

3.3 Binary Sequences and Linear Feedback Shift Registers 81

Tab. 3.3-2: Determination of
output and state
of an LFSR

t State Output

0 (1,0,0,0) 1

1 (0,0,0,1) 0

2 (0,0,1,1) 0

3 (0,1,1,0) 0

4 (1,1,0,0) 1

5 (1,0,0,0) 1

6 (0,0,0,1) 0

7 (0,0,1,1) 0

8 (0,1,1,0) 0

9 (1,1,0,0) 1

10 (1,0,0,0) 1

Sequences generated by an LFSR with a primitive feedback polynomial are often
referred to as maximum sequences orm-sequences. Maximum sequences are of
special importance in cryptographic applications due to their large periods. The
existence of primitive polynomials for any degreel is secure. The number of primi-
tive polynomials of degreel over the field GF(2) is

λ(l) =
ϕ(2l − 1)

l
,

whereasϕ depicts the Euler function.

Moreover, it has to be mentioned that them-sequences fulfillGolomb’s randomness
postulates. These criteria were established by S.W. Golomb in 1967 for characteri- Golomb’s randomness

postulateszing the suitability of a sequences as a pseudorandom sequence. A subsequence of
consecutive, identical symbols of maximum length are described as arun. A run of
"0’s" is called a gap, while a run of "1’s" is called a block. Golomb’s randomness
postulates for a sequences of periodp are as follows:

G1: In each period of a sequences, the number of "1’s" differs from the number
of "0’s" by at most 1.

G2: In each period of a sequences, 1/2i of all runs have lengthi. For each of
these lengths, there are equally many gaps and blocks. The application of G2
only makes sense fori where the sequence has2i+1 runs of any length.

G3: The autocorrelation functionC(τ) of the sequences is constant for1 ≤ τ ≤
p− 1. C(0) = C(p) = 1 is valid.

The autocorrelation functionC(τ) is defined as

C(τ) =
A(τ)−D(τ)

p
,

82 3 Stream Ciphers

whereA(τ) is the number of similar sequence elements between the sequences and
a shift ofs by τ positions. The value ofD(τ) is determined asD(τ) = n−A(τ).

Example 3.3-4: Golomb’s randomness postulates
Now we would like to check if the sequence

s = 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, . . .

of period 15 fulfills Golomb’s randomness postulates. The sequences has eight
1’s and seven 0’s, hence it fulfills G1. The sequence has 8 runs. Four of length 1
and two of length 2, with which criterion G2 is fulfilled. AsC(τ) = −1/15 for
1 ≤ τ ≤ 14 is valid for the autocorrelation function, G3 is also fulfilled.

In the previous sectionsm-sequences have been introduced as pseudorandom
sequences due to their large period and as they fulfilled Golomb’s randomness pos-
tulates. However, we will see that LFSR sequences andm-sequences are easily
predictable. First we want to show that you can set up a clearly solvable system of
linear equations for determining thel feedback coefficients by using only2l conse-
cutive sequence elements. As a result we can identify the sequence elements of the
entire period of the sequences.

Let s be an LFSR sequence which was generated by an LSFR with an unknown
feedback polynomial of degreel. Furthermore, the sequence elements are determi-
ned by:

st+l =

l−1
∑

j=0

cjst+j

st+1+l =

l−1
∑

j=0

cjst+1+j

...
...

st+2l−1 =
l−1
∑

j=0

cjst+l−1+j .

We thus obtain a system of linear equations for thel unknownsc0, . . . , cl−1:











st st+1 . . . st+l−1

st+1 st+2 . . . st+l

...
...

...
st+l−1 st+l . . . st+2l−2











·











c0

c1

...
cl−1











=











st+l

st+l+1

...
st+2l−1











.

After these explanations it is clear that LFSRs cannot be considered for cryptogra-
phically relevant pseudorandom sequence generators. However, they are important
building blocks for constructing suitable generators.

As a further quality criterion for cryptographically suitable sequences we can con-
sider thelinear complexityL(s) of a sequences. L(s) denotes the length of thelinear complexity

3.3 Binary Sequences and Linear Feedback Shift Registers 83

smallest LFSR, with which the sequences can be generated. A designer should
be able to give the exact value or the lower bound for the linear complexity of
the output sequences of its generator. The linear complexity of a given sequence
s can effectively be determined by using the Berlekamp-Massey algorithm. This
technique was established in 1969 ([Massey69]) and was originally used for deco-
ding BCH Codes. A comprehensive description of this technique can be found in
[Fumy94].

In the last section we found out that linear feedback shift registers used as keystream
generators are not sufficiently secure. More secure generators based on linear shift
registers can be designed by adding the output sequences of the shift registers to
high nonlinear combinations. Furthermore, additional stages can be added or irre-
gular clocking can be introduced. There are many suggestions in the literature, but
here we would like to concentrate on three generators because their properties, such
as period or linear complexity of the output sequence, can beanalyzed easily: the
nonlinear filter generator, the combiner generator and the combiner generator with
memory.

3.3.1 Nonlinear Filter Generator (NLFG)

This generator (see Fig. 3.3-1) consists of an LFSR with a feedback polynomialc ∈
GF(2)[x], of whichn stage positions (also called taps or phases)Γ = (γ1, . . . , γn),
with 0 ≤ γ1 < γ2 < . . . < γn ≤ l − 1, are added to a Boolean functionf :

GF(2)n → GF(2) and the output

zt = f(st+γ1 , . . . , st+γn
)

for t ≥ 0 is formed, wheres = s0, s1, . . . is the output sequence of the LFSR. The
combining functionf is referred to as filtering function.

c

s
ss

z
f

g1 gn

Fig. 3.3-1: A nonlinear filter generator.

84 3 Stream Ciphers

3.3.2 Combiner Generator Without Memory

In the case of the combiner generator without memory (see Fig. 3.3-2) the sequences
sj = sj,0, sj,1, . . ., are generated by LFSRs with feedback polynomialscj of degree
lj , 1 ≤ j ≤ n, and combined with a Boolean functionf : GF(2)n → GF(2) in
order to obtain the keystream sequence.

The keystream sequencezt of the combiner generator is determined by

zt = f(s1,t, . . . , sn,t)

for t ≥ 0. In this case the functionf is called a combining function.

c1

cn

s1

sn

z
f

Fig. 3.3-2: A combiner generator without memory.

In order to avoid correlation and divide-and-conquer attacks on a combiner genera-
tor without memory, the functionf should be balanced, should have a high degree
of correlation immunity, should have a high algebraic degree and should have a high
nonlinearity. Unfortunately, there is a tradeoff between ahigh order of correlation
immunity and a high algebraic degree of nonlinearity in Boolean functions. This
disadvantage can be overcome by using combiner generators with memory.

3.4 Software-based Keystream Generators 85

3.3.3 Combiner Generator With Memory

In contrast to a combiner generator without memory, the combiner generator with
memory (see Fig. 3.3-3) hasM bit memory. The state of the combining unit at
time t is described asvt ∈ GF(2)M andn input sequencessj = sj,0, sj,1, . . . , 1 ≤
j ≤ n, are added to it. The sequencesj is generated by an LFSR with feedback
polynomialcj of degreelj , 1 ≤ j ≤ n. The keystream sequencez is computed with
the combining functiong : GF(2)n×GF(2)M → GF(2), and the state at timet+1

is formed with the next state functionF : GF(2)n×GF(2)M → GF(2)M . The next
state transformation and the generation of the output are described by the following
equations:

vt+1 = F (s1,t, . . . , sn,t, vt),

zt = g(s1,t, . . . , sn,t, vt).

c1

cn

vt

s1

sn

z
g

F

Fig. 3.3-3: A combiner generator with memory.

Examples of combiner generators with memory are the summation generator of
Massey and Rueppel ([Rueppel86]) and theE0-generator which is used as a
keystream generator in the Bluetooth transmission technology where packet data
are stream encrypted at the air interface.

86 3 Stream Ciphers

3.4 Software-based Keystream Generators

Besides shift register-based keystream generators, a great number of software-based
stream encryption systems can be found in the literature. The generators are called
software-based because they can be implemented effectively with the instructions
of common microprocessors or high level programming languages, such as C, C++
and Pascal. RC4 is probably the best-known software-based keystream generator.
We would like to describe this software in more detail.

RC4(Rivest Cipher Nr. 4) is a software-based stream cipher which was designed inRC4

1987 by Ron Rivest for the company RSA Data Security ([Rivest92]). This method
works with a variable key length ofl bytes,0 < l ≤ 256, and outputs 1 byte per
operation step. The sequence of these bytes can be used as a keystream to encrypt
the plaintext.

The name RC4 is copyrighted by the company RSA Data Security.The algorithm
could be kept secret until 1994, when the method was published in the Internet
via an anonymous electronic mailing list and the Usenet News-Group sci.crypt.
Currently, it is suggested to publish the algorithm under the name of Arcfour as
a Request for Comments at the Internet Engineering Task Force (IETF) ([Kauko-
nen99]), so that the use of the RC4 algorithm is not impeded bytrademark rights or
licences.

RC4 is implemented in various commercial products, such as Lotus Notes, Apple
Computers’s AOCE and Oracle Secure SQL. The algorithm is also used in nume-
rous security layers of network protocols for link or session connections. Examples
of this are the link encryption of the packet service in the cellular and digital Ame-
rican mobile communication standard, in the SSL-Protocol (Secure Socket Layer)
and the successor of the TLS-Protocol (Transport Layer Secure) used for encryp-
ting message packets. It is also used to encrypt the transport protocol of the Internet
application SSH (Secure Shell) and in the IPSec Internet Standard (Security Archi-
tecture for the Internet Protocol).

We would now like to describe RC4 in a more general version anddescribe it as
RC4-(n, l), wheren indicates the bit length of the memory words and variables
and l the number of words ofn bit length of the secret keyk. The parameterl is
in the range of0 < l ≤ 2n. Hence, the key has a length ofn · l bit. The form of
the RC4, described in [Rivest92] and [Kaukonen99], then corresponds to the RC-
(8, l) algorithm. It is remarkable that instead of 8 bit, the general version generates
in paralleln bit as a keystream sequence in one operation step, and the required
memory location for the table takes a value ofn2n bit.

In its initialization phase the RC4-(n, l) algorithm puts up a tableS by using the
secret keyk = (k0, ..., kl−1), 0 ≤ ki ≤ 2n−1 and0 ≤ i ≤ l−1. In the second phase
the tableS is modified in each time stept and the keystream wordzt, 0 ≤ zt ≤ 2n−1

andt ≥ 0, is generated from a certain table entry. The tableS = (s0, . . . , s2n−1)

consists of2n word entriessi, with 0 ≤ si ≤ 2n − 1 and0 ≤ i ≤ 2n − 1.

3.4 Software-based Keystream Generators 87

1. Initialization phase:

The tableS = (s0, . . . , s2n−1) is initialized with the keyk = (k0, ..., kl−1) as
follows:

a. Allocate the memory for tableS and initialize it withsi := i for 0 ≤
i ≤ 2n − 1.

b. The tableS is now modified in a loop having the counteri, 0 ≤ i ≤
2n − 1 with the help of keyk. At the beginning of the loop the variable
j is set to zero.

j := (j + si + ki mod l) mod 2n

exchange the contents ofsi andsj .

c. Due to security reasons, the keyk should now be set to zero, i.e. be
removed from the memory. In the second phase the keyk is no longer
required.

d. Initialize the variablesi, j andt : i := 0; j := 0; t := 0.

2. Keystream generation phase:

A keystream wordzt, t ≥ 0, is generated with the help of the tableS and the
countersi andj:

i := (i + 1) mod 2n

j := (j + si) mod 2n.

Exchange the contents ofsi andsj

h := (si + sj) mod 2n

zt := sh

t := t + 1.

Despite the attacks ([Knudsen98], [Mister98]) on weakenedor modified ver-
sions of the RC4-(n, l) which can be found in the literature, the RC4-(8, 16)

technique is regarded as very secure when a secret key with a length of 128
Byte is used. One disadvantage is the table size of 256 bit andthe time needed
to initialize the table.

Example 3.4-1:
To demonstrate the RC4 algorithm we will choosen = 4 andl = 2 (needless
to say, these parameters are too small to be secure, but the demonstration of the
algorithm is simpler). Furthermore, we suppose that the secret keyk is set to
k = (k0, k1) = (3, 11).

1. In the initialization phase of RC-(4, 2), we start with

S = (0, 1, 2, . . . , 15)

88 3 Stream Ciphers

and obtain the Table 3.4-1.

Tab. 3.4-1: Initialization phase of RC-(4, 2) with k = (k0, k1) =
(3, 11).

i j (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 s11, s12, s13, s14, s15)

0 3 (3, 1, 2, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

1 15 (3, 15, 2, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1)

2 4 (3, 15, 4, 0, 2, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 1)

3 15 (3, 15, 4, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0)

4 4 (3, 15, 4, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0)

5 4 (3, 15, 4, 1, 5, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0)

6 13 (3, 15, 4, 1, 5, 2, 13, 7, 8, 9, 10, 11, 12, 6, 14, 0)

7 15 (3, 15, 4, 1, 5, 2, 13, 0, 8, 9, 10, 11, 12, 6, 14, 7)

8 10 (3, 15, 4, 1, 5, 2, 13, 0, 10, 9, 8, 11, 12, 6, 14, 7)

9 14 (3, 15, 4, 1, 5, 2, 13, 0, 10, 14, 8, 11, 12, 6, 9, 7)

10 9 (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 11, 12, 6, 9, 7)

11 15 (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 12, 6, 9, 11)

12 14 (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9, 6, 12, 11)

13 15 (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9, 11, 12, 6)

14 14 (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9, 11, 12, 6)

15 15 (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9, 11, 12, 6)

2. Keystream generation phase:

As yet the tableS has the value (3, 15, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9,
11, 12, 6). In Table 3.4-2, we give the iteration steps for generating the
keystreamzt.

3.4 Software-based Keystream Generators 89

Tab. 3.4-2: Keystream generation phase using RC-(4, 2) with k =
(k0, k1) = (3, 11)

t i j h (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, s13, s14, s15)

zt

0 1 15 5 (3, 6, 4, 1, 5, 2, 13, 0, 10, 8, 14, 7, 9, 11, 12, 15) 2

1 2 3 5 (3, 6, 1, 4, 5, 2, 13, 0, 10, 8, 14, 7, 9, 11, 12, 15) 2

2 3 7 4 (3, 6, 1, 0, 5, 2, 13, 4, 10, 8, 14, 7, 9, 11, 12, 15) 5

3 4 12 14 (3, 6, 1, 0, 9, 2, 13, 4, 10, 8, 14, 7, 5, 11, 12, 15) 12

4 5 14 14 (3, 6, 1, 0, 9, 12, 13, 4, 10, 8, 14, 7, 5, 11, 2, 15) 2

5 6 11 4 (3, 6, 1, 0, 9, 12, 7, 4, 10, 8, 14, 13, 5, 11, 2, 15) 9

6 7 15 3 (3, 6, 1, 0, 9, 12, 7, 15, 10, 8, 14, 13, 5, 11, 2, 4) 0

7 8 9 2 (3, 6, 1, 0, 9, 12, 7, 15, 8, 10, 14, 13, 5, 11, 2, 4) 1

8 9 3 10 (3, 6, 1, 10, 9, 12, 7, 15, 8, 0, 14, 13, 5, 11, 2, 4) 14

9 10 1 4 (3, 14, 1, 10, 9, 12, 7, 15, 8, 0, 6, 13, 5, 11, 2, 4) 9

10 11 14 15 (3, 14, 1, 10, 9, 12, 7, 15, 8, 0, 6, 2, 5, 11, 13, 4) 4

11 12 3 15 (3, 14, 1, 5, 9, 12, 7, 15, 8, 0, 6, 2, 10, 11, 13, 4) 4

12 13 14 8 (3, 14, 1, 5, 9, 12, 7, 15, 8, 0, 6, 2, 10, 13, 11, 4) 8

13 14 9 11 (3, 14, 1, 5, 9, 12, 7, 15, 8, 11, 6, 2, 10, 13, 0, 4) 2

14 15 13 1 (3, 14, 1, 5, 9, 12, 7, 15, 8, 11, 6, 2, 10, 4, 0, 13) 14

15 0 0 6 (3, 14, 1, 5, 9, 12, 7, 15, 8, 11, 6, 2, 10, 4, 0, 13) 7

16 1 14 14 (3, 0, 1, 5, 9, 12, 7, 15, 8, 11, 6, 2, 10, 4, 14, 13) 14

17 2 15 14 (3, 0, 13, 5, 9, 12, 7, 15, 8, 11, 6, 2, 10, 4, 14, 1) 14

18 3 4 14 (3, 0, 13, 9, 5, 12, 7, 15, 8, 11, 6, 2, 10, 4, 14, 1) 14

19 4 9 0 (3, 0, 13, 9, 11, 12, 7, 15, 8, 5, 6, 2, 10, 4, 14, 1) 3

20 5 5 8 (3, 0, 13, 9, 11, 12, 7, 15, 8, 5, 6, 2, 10, 4, 14, 1) 8

21 6 12 1 (3, 0, 13, 9, 11, 12, 10, 15, 8, 5, 6, 2, 7, 4, 14, 1) 0

22 7 11 1 (3, 0, 13, 9, 11, 12, 10, 2, 8, 5, 6, 15, 7, 4, 14, 1) 0

23 8 3 1 (3, 0, 13, 8, 11, 12, 10, 2, 9, 5, 6, 15, 7, 4, 14, 1) 0

24 9 8 14 (3, 0, 13, 8, 11, 12, 10, 2, 5, 9, 6, 15, 7, 4, 14, 1) 14

25 10 14 4 (3, 0, 13, 8, 11, 12, 10, 2, 5, 9, 14, 15, 7, 4, 6, 1) 11

26 11 13 3 (3, 0, 13, 8, 11, 12, 10, 2, 5, 9, 14, 4, 7, 15, 6, 1) 8

27 12 4 2 (3, 0, 13, 8, 7, 12, 10, 2, 5, 9, 14, 4, 11, 15, 6, 1) 13

28 13 3 7 (3, 0, 13, 15, 7, 12, 10, 2, 5, 9, 14, 4, 11, 8, 6, 1) 2

29 14 9 15 (3, 0, 13, 15, 7, 12, 10, 2, 5, 6, 14, 4, 11, 8, 9, 1) 1
...

...
...

...
...

...

90 4 Block Ciphers

4 Block Ciphers

In chapter 1 it was already explained that encryption systems can be subdivided
in symmetric and asymmetric systems as well as in block and stream ciphers.
When block ciphers are used, a long messagem is divided into blocksm =

m0, m1, . . . , mN−1 of the same length. Here the blocks have usually a length of
n = 64, 128 or 256 bits, depending on the processing lengthn of the block cipher.
Padding mechanisms are used to fill the last block when the messagem is not long
enough so that the last blockmN−1 is also ann-bit block. Then the single blocks
mt, 0 ≤ t ≤ N − 1 are assigned to a time-invariant encryption functionf in order
to obtain ciphertextct = Ek(mt), wherek is the secret, symmetric key.

We speak of block ciphers when each of the message blocksmt of the message
m = m0, m1, . . . , mN−1 is encrypted independently. The bit size of the message
blocksmt, t ≥ 1, is calledn. As a fundamental building block, the versatility of
the block ciphers allows construction of stream ciphers (see modes of operation
in Section 4.2), pseudorandom number generators, message authentification codes
(MACs) and cryptographic hash functions6.

In this chapter techniques and design principles for block ciphers are introduced.
Depending on the application, different requirements on the design of block ciphers
are made. Therefore, we try to depict basic design steps for secure and practical
block ciphers. After that, the most important modi of operation are explained, and
some important block cipher algorithms (DES, IDEA, AES) arepresented in detail.

4.1 Design Principles

In order to decrypt the ciphertextsc = Ek(m) of a block cipher, the encryption
function E for a fixed keyk has to be an injection. Whenm andc are blocks of
lengthn bit, thenE for a fixed key has to be a bijection, namely a permutation of
n-bit vectors. Ideally, each keyk should have a different permutation. If a block
cipher implements each possible permutation, the keyk has to have a length of

log2(2
n!) ≈ (n− 1.44)2n bit

to represent all2n! permutations of ann-bit vector. Thus, this enormous key length
makes true random block ciphers impractical, even for smalln. A block length
which is too small may be vulnarable to code book attacks or correlation attacks.
Nonetheless, one should consider the design objective thata randomly chosen keyk
yields a permutation chosen as randomly as possible. Consequently, for largen it is
necessary to find an implementation, which at least ensures acertain pseudorandom
selection of permutations.

6 Message authentification codes (MACs) and cryptographic hash functions are dealt with in
chapter 7.

4.1 Design Principles 91

The parameters block lengthn and key lengthl should be chosen at least so large
that a data complexity of2n as well as a processing complexity of2l is large enough
not to allow an attacker to carry out an exhaustive key searchin 10 or 20 years.
Today, a block length ofn = 64, 128 and256 bits and an equally sized key length
are used.

The iteratedFeistel cipherhas established itself as a common design principle forFeistel cipher

block ciphers. Here the basic components usually consist ofa network of substi-
tution boxes (S-boxes) and permutations of bit positions, which are referred to as
product cipers. It is attempted to obtain a sufficiently complex encryption function
through an iterated application of these components. Fig. 4.1-1 illustrates the prin-
ciple of a product cipher consisting of various stages of S-boxes and permutations.

Now, let a(g, h)-bit S-boxbe a mapping ofg-bit vectors onh-bit vectors and ag- S-boxes

bit permutation carries out exclusively a bijection on bit positions. Consequently,
an S-box can be realized by usingh Boolean functions withg inputs. Formally
a (g, h) S-Box is defined by a Boolean mappingF : GF(2)g → GF(2)h, with
F = (f1, . . . , fh) andfi : GF(2)g → GF(2) for 1 ≤ i ≤ l.

Gordon and Retkin[Gordon82] formulated the followingdesign criteriafor crypto- design criteria for
S-boxesgraphically suitable S-boxes:

1. Each output bit should be truely independent from each input bit, that means
that in the minimized Boolean expression, which denotes an output bit as a
function of the input bits, all input variables should occur. A Boolean function
with this property is calledcomplete.

2. When an input bit is modified, it should, on average, changehalf of all output
bits. This property of an S-box is calledAvalanche effect.

3. There should be no linear dependency between an output bitand an input bit.

4. One should have no information about the output bits, as long as the input
bits are unknown. This criterion is fulfilled when each of thepossible output
vectors is equally distributed in the set of all output vectors. In a bijective
substitution this is always valid, as in this case each output vector exactly
occurs one time.

In the meantime modified and increased requirements for the design of S-boxes
have been developed in response of the new attack methods. The question about the
existence of linear factors in the S-boxes, which can be, among other things, used for
cryptoanalysis, plays a further important role. The S-boxes and permutations serve
as an inner structure of encryption functions. Block ciphers are usually composed of
the applications of S-boxes and permutations of various rounds after the so-called
scheme of a Feistel cipher, which we would like to explain here in more detail.

92 4 Block Ciphers

R
m = = c

X+G

L R

k

Fig. 4.1-1: Encryption principle of a Feistel cipher with one round.

X
c = = m

R

+GR L

k
Fig. 4.1-2: Decryption principle of a Feistel cipher with one round.

The Feistel cipher is based on the idea of using the same function

G : GF(2)l ×GF(2)n/2 → GF(2)n/2

for encryption as well as for decryption. The functionG, for example, consists of
a product cipher. Here we assume thatn is even andl is the length of the keyk
or a subkey derived from it. The plaintext blockm of lengthn bit is split into two
equally sized blocksL andR, each having a length ofn/2 bit: m = (L, R). Then
the ciphertext blockc is, as shown in Fig. 4.1-1, put together from the blockR and
the bitwise XOR operation of blockL with the function valueG(k, R):

c = (R, L + G(k, R)) = (R, X) .

As the plaintext blockR occurs unencrypted in the resulting ciphertext blockc, the
plaintext blockm can be reconstructed out ofc, as shown in Fig. 4.1-2, and the key
k:

m = (G(k, R) + X, R) = (G(k, R) + L + G(k, R), R) = (L, R) .

It should be taken into consideration that no special requirements on the function
G have been made and that the encryption scheme has been en- anddecrypted with
the same function.

This principle does guarantee the bijectivity of the resulting encryption function and
the fixed keyk, but it obviously represents a rather weak cipher as one halfof each
plaintext block remains completely unencrypted. A higher cryptographic security
can be achieved by repeated iteration of this scheme. Here different functionsGi

and subkeyski can be used in different encryption roundsEi.

4.1 Design Principles 93

R X

k1 k2 k3

m = = c

Y Z+ + +G1 G2 G3

L R X Y

Fig. 4.1-3: Encryption principle of a Feistel cipher with three rounds.

Z Y X

c = = m

R

+ + +G3 G2 G1Y X R L

k3 k2 k1

Fig. 4.1-4: Decryption principle of a Feistel cipher with three rounds.

Such anencryption roundEi with subkeyki is then structured as follows: encryption and
decryption rounds

Ei(Li−1, Ri−1) = (Ri−1, Li−1 + Gi(ki, Ri−1)) = (Li, Ri),

whereinLi andRi are blocks of lengthn/2 bit. An encryption stepEi is selfinverse.
When

V (L, R) = (R, L),

is defined, we obtain

V ◦ Ei ◦ V ◦ Ei(Li−1, Ri−1) =

= V ◦ Ei(Li−1 + Gi(ki, Ri−1), Ri−1)

= V (Ri−1, Li−1 + Gi(ki, Ri−1) + Gi(ki, Ri−1))

= (Li−1, Ri−1).

That means that the inverseD consisting of anr round cipherE

E = V ◦ Er ◦Er−1 ◦ . . . ◦ E2 ◦ E1

is the mapping

D = V ◦ E1 ◦ E2 ◦ . . . ◦ Er−1 ◦ Er.

Ciphers which have this property are called Feistel ciphers. In Fig. 4.1-3 encryption
and in Fig. 4.1-4 decryption of a Feistel cipher with three rounds are illustrated.

94 4 Block Ciphers

4.2 Modes of Operation

A block cipher usually encrypts a plaintextmt having a fixed length ofn bits.
Longer messages are divided into blocks with a fixed block length of n bit:
m0, m1, . . . , mN−1. The simplest approach is to encrypt each block separately by
using the same keyk. This mode of operation of a block cipher, also referred to
as ECB mode, has various disadvantages so that other modes ofoperation have
been developed and standardized for encrypting long messages. In what follows,
we assume thatE denotes the encryption function andD the decryption function
of a symmetric block cipher which is able to processn-bit message blocksmt. The
symmetric, secret key isk. Here we describe the modes of operation as they are
standardized in [ISO91].

You can test the modes of operation with several ciphers withthe java-applet given
as additional multimedia material on the book home page.

4.2.1 ECB mode

The Electronic Codebook Mode(ECB) of operation encrypts the message blocksencryption and
decryption in ECB mt, 0 ≤ t ≤ N − 1 by using

ct = Ek(mt),

and decrypts the ciphertext blocksct by using

mt = Dk(ct) .

The encryption and decryption process is illustrated in Fig. 4.2-1.

E D

k k

mt ct
ct

unsecure channel

secure channel

mtn n n n

Fig. 4.2-1: ECB mode of operation for ann-bit block cipher.

The ECB mode of operation has the following properties:properties of the ECB
mode 1. Identical plaintext blocks are encrypted to identical ciphertext blocks under

the same keyk.

2. Message blocks are encrypted independently of each other. Re-ordering
ciphertext blocks results in correspondingly re-ordered plaintext blocks. The-
reby, an attacker can re-order or substitute message blocks.

4.2 Modes of Operation 95

3. Error propagation: One or more bit errors in a single ciphertext block affect
the decryption of that block only.

For this reasons the ECB mode is not recommendable.

4.2.2 CBC mode

The Cipher Block Chaining(CBC) mode of operation carries out theencryption encryption and
decryption in CBCwith the following step:

ct = Ek(ct−1 + mt),

wherec−1 is initialized byIV (initial vector) and the addition ofct−1 andmt corre-
sponds to the bitwise addition. Decryption is carried out by:

mt = ct−1 + Dk(ct)

with c−1 = IV. Encryption and decryption in CBC mode are illustrated in
Fig. 4.2-2.

ct ctct-1 ct-1

E D

k k

mt

ct
ct

unsecure channel
+

+

secure channel

mtn nn

n

Fig. 4.2-2: CBC mode of operation for ann-bit block cipher.

The CBC mode of operation has the followingproperties: properties of CBC
mode1. Identical plaintext and an identical value of theIV result in identical cipher-

text. Changing theIV or m0 results in different ciphertext.

2. Re-arranging the order of ciphertext blocks affects decryption directly.

3. Error propagation: A bit error inct affects the decryption ofct andct+1, whe-
reas the recovered plaintextm′

t+1 has bit errors precisely wherect did. Thus,
an attacker can directly affect the decryption of messagect+1. Whenct+1 and
ct+2 have been transmitted without errors, thenct+2 is decrypted correctly.

4. The value ofIV does not have to be secret. Nonetheless, integrity and authen-
tication ofIV should be checked by the receiver.

96 4 Block Ciphers

4.2.3 OFB mode

Each symmetric block cipher can be operated in theOutput Feedback Mode(OFB)
of operation as a synchronous, additive stream cipher (see Fig. 4.2-3). In this case,
instead ofn-bit blocks,r ≤ n-bit blocks are encrypted:encryption and

decryption in OFB

Ot = Ek(It),

zt = Left(Ot, r),

ct = mt + zt,

It+1 = Ot,

wheret ≥ 0, It andOt aren-bit blocks and the functionLeft selects ther leftmost
bits of then-bit blockOt.

The decryption of ther-bit ciphertext blocksct, t ≥ 0, under the secret keyk, is
carried out as follows:

Ot = Ek(It),

zt = Left(Ot, r),

mt = ct + zt,

It+1 = Ot.

Ot Ot

Ot-1 Ot-1

It It

E E

k k

mt ct

ztzt

ct
unsecure channel

+ +

secure channel

mtr r

r r

n nn n

Fig. 4.2-3: OFB mode of operation for ann-bit block cipher with anr-bit keystreamzt.

The OFB mode of operation has the following properties:properties of OFB
mode 1. Changing theI0 results in the same plaintext being encrypted to a different

output.

2. The keystreamzt is not dependent on the plaintext.

3. Error propagation: a bit error in the ciphertextct exclusively affects the cor-
responding bit in the plaintextmt.

4.2 Modes of Operation 97

4. For r < n the throughput of a block cipher in the OFB mode of operation
is decreased by the factorr/n, while the keystreamzt may be pre-computed,
since the keystream is independent of the plaintextmt.

5. The initialization vectorI0 does not need to be secret, but it should be changed
when the keyk is used again.

This version of the OFB mode of operation is described in [ISO91]. In [Fips81] you
can also find an OFB mode of operation but it has a lower security level. Since in
the OFB mode of operation the functionE is used for encryption and decryption,
it can not be used whenE is an asymmetric cipher. The same applies to the CFB
mode of operation which is introduced in the next section.

4.2.4 CFB mode

Each symmetric block cipher can be operated in the so-calledCipher Feedback
Mode(CFB) of operation as a self-synchronizing stream cipher (see Fig. 4.2-4).

Ot Ot

ct-1
ct-1

It It

E E

k k

mt ct

ztzt

ct
unsecure channel

+ +

secure channel

mtr r

r r

r rn

n

n

n

Fig. 4.2-4: CFB mode of operation for ann-bit block cipher withr-bit keystreamzt.

The encryptionof r-bit plaintext blocksmt, t ≥ 0, under the secret keyk, can be encryption and
decryption in CFBdescribed as follows:

Ot = Ek(It)

zt = Left(Ot, r),

ct = mt + zt,

It+1 = ShiftLeft(It, r) + ct,

while t ≥ 0, It andOt aren-bit blocks and the functionShiftLeft(It, r) shifts the
n-bit block It to the left byr positions (this corresponds to a multiplication with
2r), and in this process it removes all bits which are shifted over then boundary.

98 4 Block Ciphers

The decryption ofr-bit ciphertext blocksct, t ≥ 0, under the secret keyk, works as
follows:

Ot = Ek(It),

zt = Left(Ot, r),

mt = ct + zt,

It+1 = ShiftLeft(It, r) + ct.

The CFB mode of operation has the followingproperties:properties of CFB
mode 1. Different values ofI0 result in the same plaintext input being encrypted to

a different output. The value ofI0 does not have to be secret. However, the
receiver should be able to check its integrity and authentication.

2. Re-ordering ciphertext blocks affects the decryption.

3. Error propagation: Changing one bit inct affects the decryption of the next
⌈n/r⌉ ciphertext blocks. Proper decryption ofct requires the preceding⌈n/r⌉
blocks to be transmitted correctly. Consequently, the CFB mode of operation
is self-synchronizing.

4. As far as the encryption functionE is concerned, throughput is decreased by
the factorr/n.

4.3 Data Encryption Standard (DES)

The Data Encryption Standard(DES) was standardized in 1977 by the AmericanData Encryption
Standard National Bureau of Standards(NBS), which is today calledNational Institute of

Standards and Technology NIST, in the form of aFederal Information Processing
Standard(FIPS) and was published in the FIPS Publication 46 ([Fips81]). Now, this
technique has been adopted by other institutions as a standard, too.

The DES has always been criticized for the following reasons:

1. The short key length of56 bits.

2. The secret design principles, especially the S-boxes used in the round func-
tion.

Nonetheless, DES was very common in many encryption products up until the mid
90s.

DES is aFeistel cipherwhich processes plaintext blocks ofn = 64 bit, using aDES as a Feistel cipher

keyk with an effective length ofl = 56 bits. The Feistel cipher consists ofr = 16

rounds. The DES gets a keyk′ of length 64 bits, of which8 bits (8, 16, 24, . . . , 64)
are used as parity bits and the remaining 56 bits are summed upto the actual key.

From the keyk, 16 subkeyski, 1 ≤ i ≤ 16, each having48 bits are generated for
each round of the Feistel cipher. In the following, the plaintext block is calledm =

(m1, . . . , m64) ∈ GF(2)64 and the ciphertext blockc = (c1, . . . , c64) ∈ GF(2)64.

4.3 Data Encryption Standard (DES) 99

First of all the plaintextm undergoes an initial bit permutationIP and is divided
into 32 bit halvesL0 andR0. The blocks are assigned to a Feistel cipher ofr = 16

rounds:

Li = Ri−1,

Ri = Li−1 + G(ki, Ri−1)

for 1 ≤ i ≤ 16. In each of the 16 rounds the same functionG is used. The blocks
L16 and R16 are finally exchanged and undergo a bit permutationIP−1 in order
to obtain the ciphertext blockc = (c1, . . . , c64). The internal round functionG is
composed of the following steps in roundi, 1 ≤ i ≤ 16:

• Expanding the 32 bit-blockRi−1 to 48 bits:E : GF(2)32 → GF(2)48, T =

E(Ri−1).

• Bitwise XOR operation ofT and the subkeyki : T ′ = T + ki.

• T ′ is divided into 8 blocksB1, . . . , B8 with each having 6 bits:T ′ =

(B1, . . . , B8).

• Block Bj , 1 ≤ j ≤ 8, undergoes a substitutionSj which transforms a 6-bit input
to a 4-bit output:Sj : GF(2)6 → GF(2)4, B′

j = Sj(Bj). The eight substitutions
are summed up to functionS.

• The 4-bit blocksB′
j , 1 ≤ j ≤ 8, are summed up to a blockT ′′ of length 32 bits:

T ′′ = (B′
1, . . . , B

′
8) = (S1(B1), . . . , S8(B8)) .

• T ′′ is bit-permuted byP : T ′′′ = P (T ′′).

To sum up, the functionG for roundi can be described as follows:

T ′′′ = G(ki, Ri−1)

= P (S(E(Ri−1) + ki))

= P (S(T ′))

= P ((S1(B1), . . . , S8(B8)))

= P (T ′′) .

100 4 Block Ciphers

Ri-1

32 48

32

48

32

48

6

4

E

P

S1 S2 S3 S4 S5 S6 S7 S8

B1T' =

T'' =

T'''

B2 B3 B4 B5 B6 B7 B8

+

ki

B'1 B'2 B’3 B'4 B'5 B’6
B’7 B'8

Fig. 4.3-1: DES inner round functionG.

The inner round functionG is illustrated in Fig. 4.3-1. A precise description of the
initial bit permutationIP, the expansion functionE, the substitutionsSj , the bit
permutationP and how the single subkeyski are computed can be found in [Mene-
zes96], [Schneier96] or [Fumy94]. A related animation can be found on [Kad97].

4.4 International Data Encryption Algorithm
(IDEA)

IDEA (International Data Encryption Algorithm) is an encryption algorithm deve-
loped at ETH in Zurich, Switzerland. A preliminary draft of IDEA was published
by Lai and Massey under the name PES (Proposal Encryption Standard) in 1990
[Lai91]. In 1991, after the publishing of the differential attack by Biham and Sha-
mir[Biham93], Lai and Massey modified their block cipher in order to be resistent
against this attack and named it IPES (Improved Proposal Encryption Standard). In
1992, the name IPES was changed in IDEA[Lai92].

IDEA is a 64-bit block cipher with a 128-bit key, and is generally considered to be
very secure. It is considered among the best publicly known algorithms. IDEA is
patented in the United States and in most of the European countries. The patent is
held by the Swiss company Ascom-Tech.

4.4 International Data Encryption Algorithm (IDEA) 101

4.4.1 Design concept of IDEA

The design concept of IDEA is based on mixing operations fromthree different
algebraic groups. Supposing thatmi andmj are two subblocks with 16 bit length,
these three operations are:

• Bitwise XOR of two 16-bit subblocksmi and mj , denoted bymi ⊕ mj in
(GF(2))16. For example:

1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1

⊕ 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0

1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1

• Addition modulo216 in Z16
2 denoted bymi ⊞ mj . This is an addition of 16-bit

numbers ignoring any overflow. For example:

1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1

⊞ 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0

1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1

• Multiplication modulo216 + 1 in Z∗
216+1 denoted bymi

⊙

mj , where0 ∈ Z16
2

is associated with216 ∈ Z∗
216+1. With this supposition, 0 is equivalent to−1

mod 216 + 1 and the multiplicative inverse modulo216 + 1 of 0 is 0. Actually,
⊙

is multiplication of 16-bit numbers ignoring overflow. For example:

1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1
⊙

1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 0

1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1

The mixing of three different group operations in IDEA enables confusion and dif-
fusion of the input bits. The confusion obscures the relationship between the plain-
text and the ciphertext. With the diffusion, the redundancyof the plaintext will be
spreaded over the ciphertext. An attacker looking for theseredundancies will have
a hard job to find them.

4.4.2 IDEA Encryption

The plaintext block in IDEA is divided into four message blocksm0m1m2m3 (N =

4). Each message blockmt, with 0 ≤ t < N − 1, has the bit sizen = 16.

102 4 Block Ciphers

16

Cipher key k

Key schedule

128 bit

k 1

(1)

k

(1)
k

6

(2)
k
(2)
1 6

k

1

(8)
k 1

(8)
6

k
(9)

k
(9)
4

1th. round

2th. round

8th. round

Output
operation

Input

16

64 bit

F

F

F

Output operation

Output

16

Fig. 4.4-1: The computational procedure of IDEA.

IDEA uses 52 subkeys, each of 16 bit length. Using IDEA, the encryption (resp. the
decryption) of the plaintext (resp. the ciphertext) is performed in eight rounds (see
Fig. 4.4-1) followed with an output transformation. Each ofthe 8 rounds requires 6
subkeys and in the output transformation only 4 subkeys are needed. So, altogether
52 subkeys are needed.

In the following we describe in detail the most important building blocks of IDEA:
the key schedule algorithm, the round transformationF and the output transforma-
tion.

The IDEA Key Schedule Algorithm

The IDEA key schedule algorithm derives 52 16-bit subkeys from the 128-bit secret
key k. First the 128-bit secret keyk is divided into eight 16-bit subkeys. These are
the six subkeys for the first round and the first two subkeys forthe second round.
Then the keyk is rotated 25 bits to the left (that is, the operationShiftLeft(k, 25)

is performed) and again divided into eight subkeys. The firstfour are used in round
two; the last four are used as the first four subkeys of round three, and so on until
all 52 subkeys are generated.

Now we adopt the following notation: For each roundr (1 ≤ r ≤ 8), the four
message blocks input to the roundr are denotedmr

0 mr
1 mr

2 mr
3 and the 6 subkeys

used in this round are denotedkr
0k

r
1k

r
2k

r
3k

r
4k

r
5. Hence, 48 subkeys are used in eight

4.4 International Data Encryption Algorithm (IDEA) 103

rounds. The remaining 4 subkeys from the 52 subkeys, which are used in the output
transformation, are denotedko

0k
o
1 ko

2k
o
3.

Round Transformation

As mentioned earlier, the IDEA algorithm consists of 8 roundtransformations and
an output transformation. The round transformationF indexed byi takes four 16-
bit subblocks and performs the group operations according to Fig. 4.4-2 with the
use of 6 subkeysk(i)

j , 1 ≤ j ≤ 6 to output four 16-bit subblocks.

16

k
(i)

k
(i)

k
(i)

k
(i)

k
(i)

k
(i)

1 2 3 4

5

6

16

16

Fig. 4.4-2: The round transformationF .

In each roundr, the sequence of events is as follows (see Fig. 4.4-2) [Schneier96]:

1. Multiply mr
0 and the first subkeykr

0.

2. Addmr
1 and the second subkeykr

1.

3. Addmr
2 and the third subkeykr

2.

4. Multiply mr
3 and the fourth subkeykr

3.

5. XOR the results of steps 1 and 3.

6. XOR the results of steps 2 and 4.

7. Multiply the results of step 5 with the fifth subkeykr
4.

104 4 Block Ciphers

8. Add the results of steps 6 and 7.

9. Multiply the results of step 8 with the sixth subkeykr
5.

10. Add the results of steps 7 and 9.

11. XOR the results of steps 1 and 9.

12. XOR the results of steps 3 and 9.

13. XOR the results of steps 2 and 10.

14. XOR the results of steps 4 and 10.

Between each round the second and third output message blocks are swapped. The
output of the round is the four message blocks that are the results of steps 11, 13,
12, and 14. After swapping the inner blocks, the input to the next will then be the
message blocks resulting from steps 11, 12, 13, and 14 successively. We further
denote byc8

0 c8
1c

8
2c

8
3 the output of the eight round (see Fig. 4.4-2).

IDEA Output Transformation

After performing the 8 round transformation of IDEA, an output transformation is
performed. It is shown in Fig. 4.4-3. It takes the output of the eight round transfor-
mation as input and gives four 16-bit subblocks as output, which are attached and
in this way form the ciphertext block.

k
(8)

k
(8)

k
(8)

k
(8)k

(8)
1 2 3 4

5

k
(8)
6

k
(9)

k
(9)

k
(9) k

(9)
1 2 3 4

16

16

16

16

16

After the 8th. round

Fig. 4.4-3: The output transformation of IDEA.

4.4 International Data Encryption Algorithm (IDEA) 105

The output transformation consists of the following operations:

1. Multiply c8
0 andko

0.

2. Addc8
1 andko

2.

3. Addc8
2 andko

1.

4. Multiply c8
3 andko

3.

5. Finally, the four message blocksc0, c1, c2, and c3 are attached to form the
ciphertext.

4.4.3 IDEA Decryption

The IDEA decryption algorithm is the same as the encryption algorithm except for
the used subkeys.

So the subkeys used for decryption are computed from those used for encryption
according to Table 4.4-1 [Schneier96], where the notation(kj

i)
−1

and−kj
i denote

the multiplicative inverse modulo216 + 1 and the additive inverse modulo216 of kj
i

respectively,0 ≤ i ≤ 5 and1 ≤ j ≤ 8 or j = o:

Tab. 4.4-1: Derivation of the decryption subkeys from the encryption
subkeys.

Round Encryption subkeys Decryption subkeys

1 k1
0k

1
1k

1
2k1

3k
1
4k

1
5 (ko

0)
−1 − ko

1 − ko
2(k

o
3)

−1
k8
4k

8
5

2 k2
0k

2
1k

2
2k2

3k
2
4k

2
5 (k8

0)
−1 − k8

1 − k8
2(k

8
3)

−1
k7
4k

7
5

3 k3
0k

3
1k

3
2k3

3k
3
4k

3
5 (k7

0)
−1 − k7

1 − k7
2(k

7
3)

−1
k6
4k

6
5

4 k4
0k

4
1k

4
2k4

3k
4
4k

4
5 (k6

0)
−1 − k6

1 − k6
2(k

6
3)

−1
k5
4k

5
5

5 k5
0k

5
1k

5
2k5

3k
5
4k

5
5 (k5

0)
−1 − k5

1 − k5
2(k

5
3)

−1
k4
4k

4
5

6 k6
0k

6
1k

6
2k6

3k
6
4k

6
5 (k4

0)
−1 − k4

1 − k4
2(k

4
3)

−1
k3
4k

3
5

7 k7
0k

7
1k

7
2k7

3k
7
4k

7
5 (k3

0)
−1 − k3

1 − k3
2(k

3
3)

−1
k2
4k

2
5

8 k8
0k

8
1k

8
2k8

3k
8
4k

8
5 (k2

0)
−1 − k2

1 − k2
2(k

2
3)

−1
k1
4k

1
5

Output
transformation

ko
0k

o
1k

o
2k

o
3 (k1

0)
−1 − k1

1 − k1
2(k

1
3)

−1

The inverse round transformation used in the IDEA decryption algorithm is equiva-
lent to the round transformationF , but it is used now with the appropriate decryp-
tion subkeys (Fig. 4.4-4).

106 4 Block Ciphers

k
(i)
1 k

(i)
2 k

(i)
3

k
(i)
5

k
(i)
6

-1

-- k
(i)
4

-1

The input transformation of the function F

MA

Fig. 4.4-4: The inverse transformation ofF .

4.4.4 Security and Implementation Issues

From a security point of view, IDEA appears to be secure against known attacks
except attacks related to the so called weak keys [Daemen94]. These keys are weak
in the sense that their use can be detected only with a very small amount of effort.
To avoid this attack, Daemon [Daemen94] proposes a slight modification to the key
schedule algorithm. On the other hand, the key bit length of 128 strengthens the
IDEA block cipher against an exhaustive search attack.

IDEA can work within any cipher mode of operation described in Section 4.2 (a
related java applet can be found on the book homepage). From the efficiency point
of view, IDEA is fast in software and in hardware implementation. The Swiss com-
pany Ascom-Tech has implemented IDEA on a chip and has reached an encryption
rate of 177 Mbit/s.

4.5 Advanced Encryption Standard (AES)

The National Institute of Standards and Technology (NIST) has worked together
with the industry and the cryptographic community to develop an Advanced
Encryption Standard (AES). The AES will replace the former FIPS7 Standard
DES, which is vulnerable to many known attacks such as differential cryptana-
lysis [Biham93], linear cryptanalysis [Matsui94] and exhaustive search. The new

7 Federal Information Processing Standard.

4.5 Advanced Encryption Standard (AES) 107

developed standard must specify an encryption algorithm(s) capable of protecting
sensitive government information well into the next decades. The algorithm(s) will
be used by the U.S. Government and other private sectors.

4.5.1 Selection of Algorithms for AES

On January 2, 1997, NIST announced the initiation of the AES development effort
and made a formal call for algorithms on September 12, 1997. The call described
the requirements for candidate algorithm submission packages and the minimum
requirements for acceptance that must be satisfied by the AEScandidate, as well as
the evaluation criteria to be used to appraise the candidatealgorithms. The evalua-
tion criteria belonged into three categories:

• Security: includes resistance of the algorithm to cryptanalysis, reliability of its
mathematical basis, randomness of the algorithm output, etc.

• Cost: encompasses computational efficiency (speed) on various platforms, and
memory requirements.

• Algorithm and implementation characteristics such as flexibility (ability of an
algorithm to be implemented as a stream cipher or hash algorithm, for example),
hardware and software suitability, etc.

Furthermore, the call declared, among other things, that the algorithm(s) must
implement symmetric key cryptography as a block cipher and (at a minimum) sup-
port block sizes of 128-bits and key sizes of 128, 192, and 256bits.

On August 20, 1998, fifteen AES candidate algorithms were established at the First
AES Candidate Conference (AES1). These algorithms were subject to further study
and research by the cryptographic community from around theworld. Based on
analysis and comments on the fifteen algorithms, NIST selected five algorithms
from the fifteen at the Second AES Candidate Conference (AES2). The AES finalist
candidate algorithms were MARS, RC6, Rijndael, Serpent, and Twofish.

These finalist algorithms received a second, more in-depth analysis on any aspect of
the candidate algorithms, including the following topics:cryptanalysis, intellectual
property, crosscutting analysis of all of the AES finalists,overall recommendations
and implementation issues. On April, 2000, at the Third AES Candidate Confe-
rence (AES3), submitters of the AES finalists were invited todiscuss comments on
their algorithms. When the selection process finished, NISTstudied all available
information in order to make a selection for the AES. On October 2, 2000, NIST
announced that it has selected the Rijndael algorithm to propose for the AES.

4.5.2 The Rijndael Algorithm: Some Notions

The winner of the AES selection process, the Rijndael algorithm, is a block cipher,
designed by Joan Daemen and Vincent Rijmen at the KatholiekeUniversity Leuven
in Belgium. This cipher has a variable block and key length. The Rijndael algorithm
uses keys with a length of 128, 192, or 256 bits to encrypt blocks with a length of

108 4 Block Ciphers

128, 192 or 256 bits. All nine combinations of key length and block length are
possible. Because of its importance, we will describe this algorithm in some detail.

Before we give a description of the AES standard, we introduce the notion ofstate

state[Fips01]. A state consists of four rows of bytes, each containing Nb bytes,
whereNb is the block length divided by 32, that isNb = 4.8 In the state array
denoted by the symbols, each individual byte has two indices: its row number
r, 0 ≤ r < 4 and its column numberc, 0 ≤ c < 4. This allows an individual byte
of the state to be referred to as eithersr,c or s[r, c].

In the AES algorithm, the basic processing unit is the byte. In what follows, a byte
will be treated as a single entity and will be written in hexadecimal representation.
For example, the byte 01100011 is written as(63)16. For simplicity, we will drop
off the index 16 and write the byte as two characters.

At the start of the cipher operation and inverse cipher operation described later,
the input – an array of bytesin0, in1, . . . in15 – is copied into thestate arrayasstate array

illustrated in Fig. 4.5-1. The cipher or inverse cipher operations are then conducted
on this state array, after which its final value is copied to the output – the array of
bytesout0, out1, . . . out15.

input bytes State array output bytes

in0

in1

in3

in2

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

s0,0 s0,1 s0,2 s0,3

s1,0

s2,0

s3,0

s1,1 s1,2 s1,3

s2,1
s2,2 s2,3

s3,1 s3,2 s3,3

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

out10

out11

out12

out13

out14

out15

Fig. 4.5-1: State array input and output [Fips01].

Hence, at the beginning of the cipher or inverse cipher, the input array, denoted by
in, is copied to the state array according to the scheme:

s[r, c] = in[r + 4c] for 0 ≤ r < 4 and 0 ≤ c < 4, 4.5-1

and at the end of the cipher and inverse cipher, the state is copied to the output array,
denoted byout, as follows:

out[r + 4c] = s[r, c] for 0 ≤ r < 4 and 0 ≤ c < 4. 4.5-2

8 For 192-bits and 256-bits data blocks – as in original Rijndael algorithm –Nb will be 6 and
8 respectively.

4.5 Advanced Encryption Standard (AES) 109

Example 4.5-1:
We consider the input arrayin00112233445566778899aabbccddeeff,
that is:

in0 = 00, in1 = 11, . . . , in14 = ee, in15 = ff.

According to Eq. 4.5-1, the input array is copied to the states as follows:

s[0, 0] = in[0] =
00

s[0, 1] = in[4] =
44

s[0, 2] = in[8] =
88}

s[0, 3] =
in[12] = cc

s[1, 0] = in[1] =
11

s[1, 1] = in[5] =
55

s[1, 2] = in[9] =
99

s[1, 3] =
in[13] = dd

s[2, 0] = in[2] =
22

s[2, 1] = in[6] =
66

s[2, 2] =
in[10] = aa

s[2, 3] =
in[14] = ee

s[3, 0] = in[3] =
33

s[3, 1] = in[7] =
77

s[3, 2] =
in[11] = bb

s[3, 3] =
in[15] = ff

4.5.3 AES Encryption

AES uses different structure than DES. It is not a Feistel cipher. In brief, it consists
of subsequent similar rounds. The plaintext comes in as 16 bytes at the very top. The
first operation is to XOR the plaintext with 16 bytes (128 bits) of round key. Each
of the 16 bytes is then used as an index into an S-box table thatmaps 8-bit inputs
into 8-bit outputs. The S-boxes are all identical. The bytesare then rearranged in
a specific order that looks a bit complicated but has a simple structure. Finally, the
bytes are mixed into groups of four using a linear mixing function. The term linear
just means that each output bit of the mixing function is the XOR of several of the
input bits. This completes a single round. As mentioned in the previous section, a
full encryption consists of 10-14 rounds, depending on the size of the key. Like in
DES and IDEA, there is a key schedule that generates the roundkeys.

Let us now have a detailed look at the algorithm (see the pseudo code given in
Listing 4.5-1). The encryption consists of the following steps:

• An initial round key addition that is the XOR addition of the first round key and
the input state written as in Eq. 4.5-1.

• Nr − 1 rounds: The resulting state array is transformed by implementing
a round function 10, 12, or 14 times (depending on the key length). The
round transformation is obtained by subsequently applyingthe transformations
SubBytes(), ShiftRows(), MixColumns(), andAddRoundKey().

• A final round which is different to the "normal" round by removing the
MixColumns() transformation.

The final state is then copied to the output as described in Eq.4.5-2. The round
function is parameterized using the AES key schedule.

110 4 Block Ciphers

Listing 4.5-1: Ciphering with the use of AES.

Cipher(byte in[16], byte out[16], word w[4·(Nr + 1)])
begin

byte state[4,4]
state = in

AddRoundKey(state, w[0, 3])

for round = 1 step 1 to Nr-1
SubBytes(state)

ShiftRows(state)
MixColumns(state)

AddRoundKey(state, w[round.4,(round+1).3])
end for

SubBytes(state)

ShiftRows(state)
AddRoundKey(state, w[Nr · 4,(Nr + 1)·3])
out = state

end

For the AES algorithm, the length of the cipher keyk can be 128, 192, or 256 bits.
The key length is represented byNk = 4, 6, or 8, which reflects the number of
32-bit words (number of columns) in the cipher key. The number of rounds to be
performed during the execution of the AES algorithm dependson the key size. The
number of rounds is represented byNr, whereNr = 10 whenNk = 4, Nr = 12

when Nk = 6, andNr = 14 when Nk = 8. Table 4.5-1 summarizes the only
key-block-round combinations conform to the standard.

Tab. 4.5-1: Key-block-round combinations.

Key length
(Nk words)

Block size
(Nb words)

Number of
rounds

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Why is the number of roundsNr equal to 10 for a block length of 128 bits and a key
length of 128 bits (Nk = 4)? Note first that no attacks, other than the exhaustive key
search, have been found against the Rijndael algorithm withmore than 6 rounds
[Daemen99]. The answer of the former question is based on twosecurity issues
regarding the Rijndael algorithm.

• Two rounds of Rijndael providefull diffusion as introduced by Daemen and
Rijmen, since every state bit depends on all state bits two rounds ago9. As men-
tioned above more than 6 rounds of the Rijndael algorithm aresecure against
all known attacks for a block length of 128 bits and a key length of 128 bits. To
the 6 rounds Daemen and Rijmen added 4 rounds as a security margin or more
precisely as adding a full diffusion at the beginning and at the end of the cipher.

9 Recall that a diffusion refers to rearranging or spreadingout the bits in the message so that
any redundancy in the plaintext is spread out over the ciphertext.

4.5 Advanced Encryption Standard (AES) 111

• Many cryptographic attacks against block cipher such as differential cryptana-
lysis or linear cryptanalysis exploit the propagation of input messages throughn
rounds in order to attackn+1 or n+2 rounds of the cipher. Thus, 4-round pro-
pagation structure can be used to attack 6 rounds of Rijndael. With 10 rounds,
the number of rounds through which a propagation (of the input messages) has
to be found will double.

For other key lengths, the number of rounds augments by one for every 32 bits of
the cipher key. That is for 192-bits and 256-bits key lengthsthe number of rounds
is 12 and 14 respectively (see Table 4.5-1). On the other hand, many attacks can be
mounted against block ciphers by exploiting the knowledge of cipher key bits or the
ability to use different cipher keys. Hence an increase of the key length leads to an
increase of the range of possibilities available to the cryptanalyst. This facility can
be compensated by increasing the number of rounds of the cipher.

The Key Expansion Algorithm

Using the cipher keyk, the key expansion routine generates a key schedule with
a total of4 · (Nr + 1) words. In this context, the word is a group of 32 bits. The
resulting key schedule is a linear array of words denoted[wi] or w[i], with i in the
range of0 ≤ i < 4 · (Nr + 1).

The key expansion routine is shown in the Listing 4.5-2.

Listing 4.5-2: The pseudo code for key expansion.

KeyExpansion(byte key[4· Nk], word w[4·(Nr + 1)], Nk)
begin

word temp

i = 0
while (i < Nk)

w[i] = word(key[4·i], key[4·i+1], key[4·i+2], key[4·i+3])
i = i+1

end while

i = Nk

while (i < 4·(Nr+1))

temp = w[i-1]
if (i mod Nk = 0)

temp = SubWord(RotWord(temp)) XOR Rcon[i/Nk]

else if (Nk > 6 and i mod Nk=4)
temp = SubWord(temp)

end if
w[i] = w[i-Nk] XOR temp

i = i + 1
end while

end

Here, theSubWord() function is a function that takes a four-byte input. It uses
the S-box (see Tab. 4.5-2) to substitute each of the four bytes. The function
RotWord() performs a cyclic permutation over the input word[a0, a1, a2, a3]

and returns the output word[a1, a2, a3, a0]. The functionRcon[i] outputs the

112 4 Block Ciphers

four-byte word[xi−1, 00, 00, 00], with xi−1 being powers ofx in the field GF(28)

with the irreducible polynomialx8 + x4 + x3 + x + 1.

The round keys are taken from the words generated by the key expansion routine
as follows: the first round key consists of the first four words, the second of the
following four words, and so on. From the pseudo code given inListing 4.5-2, it
can be seen that the firstNk words of the expanded key contain the cipher keyk.
Every following word,w[i], is equal to the XOR of the previous word,w[i−1], and
the wordNk positions earlier,w[i−Nk]. For words in positions that are a multiple
of Nk, a transformation is applied tow[i−1] prior to the XOR, followed by an XOR
with a round constant,Rcon[i]. This transformation consists of a cyclic shift of
the bytes in a wordSubWord(), followed by the application of a table lookup to
all four bytes of the wordSubWord()[Daemen99].

The key expansion routine for cipher key with 256 bits length(Nk = 8) is slightly
different from those for 128-bit key (Nk = 4) or 192-bit key (Nk = 6). If Nk = 8

andi − 4 is a multiple ofNk, thenSubWord() is applied tow[i − 1] prior to the
XOR [Fips01].

Example 4.5-2:
The functionRcon[10] with i = 10 outputs the word[x9, 00, 00, 00]. x9 in
GF(28) is set to the valuex9 modx8 +x4 +x3 +x+1, that gives the polynomial
x5 + x4 + x2 + x. The later can be written as36. Thus,Rcon[10] = [36,

00, 00, 00].

Example 4.5-3: [Fips01]
Let the cipher key be set to000102030405060708090a0b0c0d0e0f.
Regarding the pseudo code of the key expansion routine, we have w[0] =

00010203, w[1] = 04050607, w[2] = 08090a0b, w[3] = 0c0d0e0f, w[4] =

d6aa74fd. The first round key contains the cipher key.

The AES key expansion has been chosen for many reasons [Daemen99]. It ensures
the diffusion of the cipher key into the round keys. It provides enough non-linearity
by using the S-box substitution and prohibits therewith thedetermination of round
key differences from cipher key differences only. One important feature of the key
expansion is that a knowledge of anyNk consecutive words of the expanded key
shall allow to regenerate the whole round keys. This is useful for applications which
require key regeneration mechanisms. Other design criteria of the key expansion can
be found in [Daemen99].

4.5 Advanced Encryption Standard (AES) 113

Round Transformation

The round transformation in AES consists of four different transformations:
SubBytes(), ShiftRows(),MixColumns(), andAddRoundKey(). Each
of them takes an input state of 128 bits and outputs a state of 128 bits. We now
describe these transformations.

SubBytes(state) Transformation

TheSubBytes() is a non-linear byte function and replaces each byte of the input
state by another byte with the use of a substitution table called S-Box. It operates
independently on each byte of the state and is formally composed of two byte-
operations:

1. Take the multiplicative inverse in the finite field GF(28) with the irreduci-
ble polynomialx8 + x4 + x3 + x + 1. 10 The element00 is mapped onto
itself. The mappingx −→ x−1 in GF(28) is chosen as an operation of the
SubBytes() transformation, because it enables to protect the AES cipher
against differential and linear cryptanalysis and to guarantee the invertibility
of the cipher.

2. Apply the following affine transformation over GF(2):

b
′

i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci

for 0 ≤ i < 8, wherebi is the ith bit of the byteb, andci is the ith bit of a bytec
with the value63.⊕ denotes the exclusive-or operation. This invertible affine
transformation is applied after the mappingx −→ x−1 over GF(28) in order
to avoid attacks such as the interpolation attack [Jakobsen97] that exploits
mapping with very simple algebraic expression11.

Based on these two operations, the S-box used in theSubBytes(state) trans-
formation can be given as shown in Tab. 4.5-2.

10 See Section 2.4 in Chapter 2 to understand the arithmetic in GF(28).

11 Like the mappingx −→ x−1 in GF(28).

114 4 Block Ciphers

Ta
b

.4
.5

-2
:

S
-b

ox
:

su
bs

tit
ut

io
n

va
lu

es
fo

r
th

e
by

te
x
y

(in
he

xa
de

ci
m

al
fo

r-
m

at
).

0
1

2
3

4
5

6
7

8
9

a
b

c
d

e
f

0
6
3

7
c

7
7

7
b

f
2

6
b

6
f

c
5

3
0

0
1

6
7

2
b

f
e

d
7

a
b

7
6

1
c
a

8
2

c
9

7
d

f
a

5
9

4
7

f
0

a
d

d
4

a
2

a
f

9
c

a
4

7
2

c
0

2
b
7

f
d

9
3

2
6

3
6

3
f

f
7

c
c

3
4

a
5

e
5

f
1

7
1

d
8

3
1

1
5

3
0
4

c
7

2
3

c
3

1
8

9
6

0
5

9
a

0
7

1
2

8
0

e
2

e
b

2
7

b
2

7
5

4
0
9

8
3

2
c

1
a

1
b

6
e

5
a

a
0

5
2

3
b

d
6

b
3

2
9

e
3

2
f

8
4

5
5
3

d
1

0
0

e
d

2
0

f
c

b
1

5
b

6
a

c
b

b
e

3
9

4
a

4
c

5
8

c
f

6
d
0

e
f

a
a

f
b

4
3

4
d

3
3

8
5

4
5

f
9

0
2

7
f

5
0

3
c

9
f

a
8

7
5
1

a
3

4
0

8
f

9
2

9
d

3
8

f
5

b
c

b
6

d
a

2
1

1
0

f
f

f
3

d
2

8
c
d

0
c

1
3

e
c

5
f

9
7

4
4

1
7

c
4

a
7

7
e

3
d

6
4

5
d

1
9

7
3

9
6
0

8
1

4
f

d
c

2
2

2
a

9
0

8
8

4
6

e
e

b
8

1
4

d
e

5
e

0
b

d
b

a
e
0

3
2

3
a

0
a

4
9

0
6

2
4

5
c

c
2

d
3

a
c

6
2

9
1

9
5

e
4

7
9

b
e
7

c
8

3
7

6
d

8
d

d
5

4
e

a
9

6
c

5
6

f
4

e
a

6
5

7
a

a
e

0
8

c
b
a

7
8

2
5

2
e

1
c

a
6

b
4

c
6

e
8

d
d

7
4

1
f

4
b

b
d

8
b

8
a

d
7
0

3
e

b
5

6
6

4
8

0
3

f
6

0
e

6
1

3
5

5
7

b
9

8
6

c
1

1
d

9
e

e
e
1

f
8

9
8

1
1

6
9

d
9

8
e

9
4

9
b

1
e

8
7

e
9

c
e

5
5

2
8

d
f

f
8
c

a
1

8
9

0
d

b
f

e
6

4
2

6
8

4
1

9
9

2
d

0
f

b
0

5
4

b
b

1
6

4.5 Advanced Encryption Standard (AES) 115

For example, ifs1,1 =53, then the substitution value is determined by the intersec-
tion of the row with index ‘5’ and the column with index ‘3’ in the S-box table. This
results ins

′

1,1 having a value ofed.

ShiftRows() Transformation

In theShiftRows(), the rows of the input state are cyclically shifted over diffe-
rent number of bytes. The first row,r = 0, is not shifted. The other rows are shifted
according to Fig. 4.5-2.

s0, 0 s0, 1 s0, 2 s0, 3

s1, 0

s2, 0

s3, 0

s1, 1 s1, 2 s1, 3

s2, 1 s2, 2
s2, 3

s3, 1 s3, 2 s3, 3

Input state s

shiftRows()

s0, 0 s0, 1
s0, 2 s0, 3

s1, 0

s2, 0

s1, 1 s1, 2 s1, 3

s2, 1s2, 2 s2, 3

s3, 1 s3, 2s3, 3 s3, 0

Output state s’

Fig. 4.5-2: TheShiftRows() transformation [Fips01].

Formally, theShiftRows() transformation proceeds as follows:

s
′

r,c = sr,(c+shift(r,4)) mod 4 for 0 ≤ r < 4 and0 ≤ c < 4, 4.5-3

where the shift valueshift(r, 4) depends on the row numberr as follows:
shift(1, 4) = 1; shift(2, 4) = 2; shift(3, 4) = 3.

Example 4.5-4:
After the use of theShiftRows() transformation, the states will be changed
to the states′ both with values illustrated in the following table:

s 63cab7040953d051cd60e0e7ba70e18c

s′ 6353e08c0960e104cd70b751bacad0e7

For example,s
′

0,0 = s0,0 = 63, s
′

0,3 = s0,3 = ba,

s
′

1,3 =s1,(3+shift(1,4)) mod 4

=s1,(3+1) mod 4

=s1,0

=ca.

116 4 Block Ciphers

TheShiftRows() transformation is a substitution operation of each byte of the
rows (r = 1, 2, or 3) by another byte of the same row. It enables the resistance of
the AES cipher against the square attack [Daemen97] and attacks using truncated
differentials. The latter attack is a variant of the differential attack [Knudsen95].

MixColumns() Transformation

Whereas theShiftRows() transformation affects the rows of the input state, the
MixColumns() transformation operates on the state column-by-column. Each
column of the state is considered as a polynomial over GF(8) and multiplied modulo
x4 + 1 with a fixed polynomialc(x), given by

c(x) = 03x3 + 01x2 + 01x + 02. 4.5-4

Treating each column of the input states as a four-term polynomial, the
MixColumns() transformation outputs the states′ verifying the following equa-
tions:

s
′

0,c = (02 • s0,c)⊕ (03 • s1,c)⊕ s2,c ⊕ s3,c

s
′

1,c = s0,c ⊕ (02 • s1,c)⊕ (03 • s2,c)⊕ s3,c 4.5-5

s
′

2,c = s0,c ⊕ s1,c ⊕ (02 • s2,c)⊕ (03 • s3,c)

s
′

3,c = (03 • s0,c)⊕ s1,c ⊕ s2,c ⊕ (02 • s3,c),

where• denotes the multiplication in the finite field GF(28) with the irreducible
polynomialx8 + x4 + x3 + x + 1 and0 ≤ c < (Nb = 4).

The same equations can be written in a matrix notation as follows:










s
′

0,c

s
′

1,c

s
′

2,c

s
′

3,c











=











02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02





















s0,c

s1,c

s2,c

s3,c











0 ≤ c < (Nb = 4).

Example 4.5-5:
After the use of theMixColumns() transformation, the states will be changed
to the states′ both with values illustrated in Table 4.5-3.

Tab. 4.5-3: An example of using the
MixColumns()transformation.

s 6353e08c0960e104cd70b751bacad0e7

s′ 5f72641557f5bc92f7be3b291db9f91a

4.5 Advanced Encryption Standard (AES) 117

Example 4.5-6:
We now look at how the values

′

1,2 is obtained. From Eq.4.5-5, we have

s
′

1,2 = s0,2 ⊕ (02 • s1,2)⊕ (03 • s2,2)⊕ s3,2.

= cd⊕ (02 • 70)⊕ (03 • b7)⊕ 51.

Recall that• is the multiplication in GF(28) with the irreducible polynomial
x8 + x4 + x3 + x + 1. We calculate the value03 • b7 in GF(28). We write03
andb7 in binary representation, and we get the values 00000011 and10110111
respectively. These two values can be written as polynomialsx+1 for 00000011
andx7 + x5 + x4 + x2 + x + 1 for 10110111. Hence,

03 • b7 ≡ ((x + 1) · (x7 + x5 + x4 + x2 + x + 1))

mod x8 + x4 + x3 + x + 1

≡ x8 + x7 + x6 + x4 + x3 + 1 mod x8 + x4 + x3 + x + 1

≡ x7 + x6 + x.

Using the same procedure, we get

02 • 70 = x7 + x6 + x5.

With the use of the binary representation, we have

s
′

1,2 = 11001101⊕ 11100000⊕ 11000010⊕ 01010001

= 10111110

= be.

TheMixColumns() transformation has the property that if the input state is app-
lied with a single non-zero byte, the output state can have atmost 4 non-zero bytes.
This occurs becauseMixColumns() permutes the bytes of a column to all diffe-
rent columns. Hence theMixColumns() transformation provides a diffusion of
the input bytes. In addition,MixColumns() transformation is invertible, because
the polynomialc(x) given in Eq. 4.5-4 is chosen in such a way that

gcd(c(x), x4 + 1) = 1,

enabling therewith the existence of the inverse12 of c(x) modulox4 + 1.

AddRoundKey() Transformation

The AddRoundKey() transformation is a simple bitwise XOR operation of a
round key and the states to output the new states′. As previously mentioned the

12 The reader is referred to [Menezes96] to understand the multiplicative inverse of polynomials
in Galois fields.

118 4 Block Ciphers

round key consists of 4 words and is generated from the key expansion algorithm.
The states′ is obtained according to the following equation:

[s
′

0,c, s
′

1,c, s
′

2,c, s
′

3,c] = [s0,c, s1,c, s2,c, s3,c]⊕ [w(round·4)+c],

where0 ≤ c ≤ 4, 0 ≤ round ≤ Nr and[wi] are the key schedule words.

4.5.4 AES Decryption

The structure of the AES deciphering algorithm is the same asthe ciphering except
for the use of the inverse transformations and changing their order (pseudo code
in Listing 4.5-3). The key schedule remains the same as by ciphering. It is clear
that without the knowledge of the cipher keyk theAddRoundKey() cannot be
applied and hence the decryption of messages would not be possible. Note that here
the inverse lookup table of the S-box is needed.

Listing 4.5-3: Deciphering with AES.

InvCipher(byte in[16], byte out[16], word w[4·(Nr + 1)])

begin
byte state[4,4]

state = in

AddRoundKey(state, w[4, (Nr + 1)·3])
for round = Nr-1 step -1 downto 1

InvShiftRows(state)
InvSubBytes(state)

AddRoundKey(state, w[round.Nb,(round+1).Nb-1])
InvMixColumns(state)

end for

InvShiftRows(state)
InvSubBytes(state)

AddRoundKey(state, w[0, 3])
out = state

end

We now describe the inverse transformationsInvShiftRows(),
InvSubBytes(), InvMixColumns(state), and AddRoundKey(). The
AddRoundKey() is its own inverse. We still use the symbolss for the input state
to the corresponding transformation, ands′ for the output state.

InvShiftRows() Transformation

The InvShiftRows() transformation is the inverse of theShiftRows()
transformation. The first row of the input state ,r = 0, is not shifted. The other rows
are shifted by(4− shift(r, 4)) (see Fig. 4.5-3). Formally, theInvShiftRows()
transformation proceeds as follows:

s
′

(r,c+shift(r,4)) mod 4 = sr,c for 0 ≤ r < 4 and0 ≤ c < 4.

4.5 Advanced Encryption Standard (AES) 119

s0, 0 s0, 1 s0, 2 s0, 3

s1, 0

s2, 0

s3, 0

s1, 1 s1, 2 s1, 3

s2, 1 s2, 2
s2, 3

s3, 1 s3, 2 s3, 3

Input state s

InvShiftRows()

s0, 0 s0, 1
s0, 2 s0, 3

s1, 0

s2, 0

s1, 1 s1, 2

s2, 1s2, 2 s2, 3

s3, 1 s3, 2 s3, 3 s3, 0

Output state s’

s1, 3

Fig. 4.5-3: TheInvShiftRows() transformation [Fips01].

InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation
SubBytes(). Each byte of the input state is substituted according to theinverse
S-box table presented in Tab. 4.5-4.

120 4 Block Ciphers

Ta
b

.4
.5

-4
:

In
ve

rs
e

S
-b

ox
:

su
bs

tit
ut

io
n

va
lu

es
fo

r
th

e
by

te
x
y

(in
he

xa
de

ci
m

al
fo

r-
m

at
).

0
1

2
3

4
5

6
7

8
9

a
b

c
d

e
f

0
5
2

0
9

6
a

d
5

3
0

3
6

a
5

3
8

b
f

4
0

a
3

9
e

8
1

f
3

d
7

f
b

1
7
c

e
3

3
9

8
2

9
b

2
f

f
f

8
7

3
4

8
e

4
3

4
4

c
4

d
e

e
9

c
b

2
5
4

7
b

9
4

3
2

a
6

c
2

2
3

3
d

e
e

4
c

9
5

0
b

4
2

f
a

c
3

4
e

3
0
8

2
e

a
1

6
6

2
8

d
9

2
4

b
2

7
6

5
b

a
2

4
9

6
d

8
b

d
1

2
5

4
7
2

f
8

f
6

6
4

8
6

6
8

9
8

1
6

d
4

a
4

5
c

c
c

5
d

6
5

b
6

9
2

5
6
c

7
0

4
8

5
0

f
d

e
d

b
9

d
a

5
e

1
5

4
6

5
7

a
7

8
d

9
d

8
4

6
9
0

d
8

a
b

0
0

8
c

b
c

d
3

0
a

f
7

e
4

5
8

0
5

b
8

b
3

4
5

0
6

7
d
0

2
c

1
e

8
f

c
a

3
f

0
f

0
2

c
1

a
f

b
d

0
3

0
1

1
3

8
a

6
b

8
3
a

9
1

1
1

4
1

4
f

6
7

d
c

e
a

9
7

f
2

c
f

c
e

f
0

b
4

e
6

7
3

9
9
6

a
c

7
4

2
2

e
7

a
d

3
5

8
5

e
2

f
9

3
7

e
8

1
c

7
5

d
f

6
e

a
4
7

f
1

1
a

7
1

1
d

2
9

c
5

8
9

6
f

b
7

6
2

0
e

a
a

1
8

b
e

1
b

b
f
c

5
6

3
e

4
b

c
6

d
2

7
9

2
0

9
a

d
b

c
0

f
e

7
8

c
d

5
a

f
4

c
1
f

d
d

a
8

3
3

8
8

0
7

c
7

3
1

b
1

1
2

1
0

5
9

2
7

8
0

e
c

5
f

d
6
0

5
1

7
f

a
9

1
9

b
5

4
a

0
d

2
d

e
5

7
a

9
f

9
3

c
9

9
c

e
f

e
a
0

e
0

3
b

4
d

a
e

2
a

f
5

b
0

c
8

e
b

b
b

3
c

8
3

5
3

9
9

6
1

f
1
7

2
b

0
4

7
e

b
a

7
7

d
6

2
6

e
1

6
9

1
4

6
3

5
5

2
1

0
c

7
d

4.5 Advanced Encryption Standard (AES) 121

InvMixColumns() Transformation

The InvMixColumns() transformation is the inverse of theMixColumns()
transformation. It operates on the state column-by-column. Each column of the state
is considered as a polynomial over GF(8) and multiplied modulox4 +1 with a fixed
polynomialc−1(x), given by

c−1(x) = 0bx3 + 0dx2 + 09x + 0e. 4.5-6

Treating each column of the input states as a four-term polynomial, the
MixColumns() transformation outputs the states′ verifying the following equa-
tions:

s
′

0,c = (0e • s0,c)⊕ (0b • s1,c)⊕ (0d • s2,c)⊕ (09 • s3,c)

s
′

1,c = (09 • s0,c)⊕ (0e • s1,c)⊕ (0b • s2,c)⊕ (0d • s3,c)

s
′

2,c = (0d • s0,c)⊕ (09 • s1,c)⊕ (0e • s2,c)⊕ (0b • s3,c)

s
′

3,c = (0b • s0,c)⊕ (0d • s1,c)⊕ (09 • s2,c)⊕ (0e • s3,c)

with 0 ≤ c < 4.

The same equations can be written in a matrix notation as follows:










s
′

0,c

s
′

1,c

s
′

2,c

s
′

3,c











=











0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e





















s0,c

s1,c

s2,c

s3,c











0 ≤ c < (Nb = 4).

4.5.5 Security and Implementation Issues

In AES, we can recognize some of the same functional blocks asin DES. The XORs
add key material to the data, the S-boxes provide nonlinearity, and the byte shuffle
and mixing functions provide diffusion. AES is a very clean design with clearly
separated tasks for each part of the cipher. It was designed to be resistant against all
known attacks, especially the differential attacks [Biham93] and its variants (hig-
her order differential [Knudsen95], truncated differential [Knudsen95]), the linear
attack [Matsui94] and the square attack [Daemen97]. It is also proven that the AES
has no security weakness to attacks related to the cipher key(related-key attacks
[Biham93a], weak key attack [Daemen94]). Furthermore, AEShas a mathematical
basis (it is mainly based on operations over the Galois FieldGF(8)), and thus its
security can be analyzed using mathematical analysis.

From the efficiency point of view, the AES cipher is very fast –if efficiently imple-
mented – on 8-bit processors (typical for smart cards) and on32-bit-processors
(typical for PCs) [Daemen99]. It is also fast on dedicated hardware. However,
some limitations concern the implementation of the AES deciphering algorithm.
For example, the deciphering algorithm is less suited for implementation on smart
cards then the ciphering. The AES cipher can be used in many cryptographic appli-
cations. It can be used as a building block for MAC algorithmsand hash functions,
as a synchronous stream cipher, or as a pseudorandom number generator.

122 5 Public-Key Encryption

5 Public-Key Encryption

After conventional encryption, the other major form of encryption is public-key
encryption, which has revolutionized communications security. The development of
public-key cryptography is the greatest and perhaps the only true revolution in therevolution in the

development of
cryptology

entire history of cryptography. From its earliest beginnings right down to modern
times, all cryptosystems have been based on the elementary tools of substitution
and permutation. Public-key cryptography provides a radical departure from all that
has been done before - public-key algorithms are based on mathematical functions
rather than on substitutions and permutations. But more importantly, public-key
cryptography isasymmetric, involving the use of two separate keys, in contrast to
the conventional symmetric encryption, which uses only onekey. The use of two
keys has profound consequences not only in the area of confidentiality, but also in
the techniques for key distribution and authentication.

This chapter introduces public-key encryption and concentrates on its use to provide
confidentiality. Some important algorithms (RSA, ElGamal,ECC) are examined
in detail. Many public-key schemes are based on number theory and finite field
arithmetic, which have been introduced in Chapter 2.

5.1 Principles of Public-Key Cryptography

Interestingly, the concept for this technique was developed and published before
it was shown to be practical to adopt it. The concept of public-key cryptography
evolved from an attempt to attack two of the most difficult problems associated
with conventional encryption: the problems of key distribution and digital signa-
tures. Diffie and Hellman achieved a breakthrough in 1976 by coming up with aDiffie/Hellman’s idea

method that addressed both problems and that was radically different from all pre-
vious approaches. Their paper ”New Directions in Cryptography” ([Diffie76]) is a
milestone in modern cryptology.

In a public-key cryptosystem enciphering and deciphering are governed by distinct
keyske andkd, so that computingkd from ke is computationally infeasible (e.g.
requiring100100 instructions). The enciphering keyke can thus be publicly disclo-
sed without compromising the deciphering keykd. Each user of the network can,
therefore, place his enciphering key in a public directory.That is why this key is
also calledpublic key. A messagem enciphered with the user’s public key, can onlypublic and private key

be decrypted with hisprivate keykd, which is kept secret (we will not refer to this
key as ”secret key” in order to clearly differentiate it fromthe symmetric encryp-
tion key). This enables any user of the system to send a message to any other user
enciphered in such a way that only the intended receiver is able to decipher it.A
private conversation can therefore be held between any two individuals regardless
of whether they have ever communicated before, which is not the case when using

5.1 Principles of Public-Key Cryptography 123

a symmetric enciphering technique. Each one sends messages to the other enciphe-
red in the receiver’s public enciphering key and deciphers the messages he receives
using his own secret deciphering key.

Formally, apublic-key cryptosystemis a pair of families{Eke
}ke∈K and{Dkd

}kd∈K definition of public-key
cryptosystemof algorithms representing invertible transformationsEke

: {M} → {M} andDkd
:

{M} → {M} on a finite message space{M}, so that:

1. For everyke, kd ∈ {K}, the encryptionEke
is the inverse operation

of the decryptionDkd
. That means that for every messagem ∈ {M},

Dkd
{Eke

(m)} = m.

2. For everyke, kd ∈ {K} andm ∈ {M} the algorithmsEke
andDke

are easy
to compute.

3. For almost everyke ∈ {K}, it is computationally infeasible to derivekd from
ke.

4. For everyke, kd ∈ {K}, it is feasible to compute inverse pairs(ke, kd) from
K.

Because of the third property, a user’s enciphering keyke can be made public
without compromising the security of his secret deciphering keykd. The cryptogra-
phic system is therefore split into two parts, a family of enciphering transformations
and a family of deciphering transformations, in such a way that, given a member of
one family, it is infeasible to find the corresponding memberof the other.

The fourth property guarantees that there is a feasible way of computing correspon-
ding pairs of inverse transformations when no constraint isplaced on what either
the enciphering or deciphering information is to be. In practice, the crypto equip-
ment must contain a true random number generator for generating the key spaceK,
together with an algorithm for generating the(ke, kd) pairs from its output.

Given a system of this kind, the problem of key distribution is vastly simplified. generation and
distribution of keysEach userI generates locally a pair of inverse transformationske,I andkd,I on his

terminal. The deciphering keykd,I must be kept secret, but need never be transmitted
on any channel. The enciphering keyke,I can be made public by placing it in a
public directory along with the user’s name and address. Anyone can then encrypt
the messages and send them to the user, but no one else can decipher messages
intended for him. Public-key cryptosystems can thus be regarded as multiple access
ciphers.

124 5 Public-Key Encryption

Each user generates locally a key pair:

..........

Alice:

Bob:

Carol:

Dean:

),(,, AdAe kk

),(,, CdCe kk

),(,, BdBe kk

),(,, DdDe kk
..........

Public directory:

Alice:

Bob:

Carol:

Dean:

Aek ,

Dek ,

Cek ,

Bek ,
Publish the
encryption key

Step 1:

Step 2:

ciphertext

message destinationmessage source

Bob

)(
,

cDm
Bdk=

decryption:

m
plaintext

Alice

)(
,

mEc
Bek=

encryption:

m
plaintext c

insecure channel

Bek ,

Fig. 5.1-1: Public-key encryption.

This process is illustrated in Fig. 5.1-1. When Alice wants to send an encryptedencryption and
decryption message to Bob (they have never exchanged a message before; actually, they do

not know each other), she takes his public keyke,B from the public directory and
gets the ciphertextc by enciphering the plaintextm with this key. The enciphered
messagec is sent on the insecure channel, where an attacker can get it,but no one
else but Bob can decryptc, since only he knows the corresponding deciphering key
kd,B.

It is crucial that the public file of enciphering keys be protected from unauthorizedprotection of the public
directory modification. This task is made easier by the public nature ofthe file. Read pro-

tection is unnecessary, but if an attackerX can replace Bob’s public keyke,B with
his public keyke,X secretly (no one notices this), then he can read all encrypted
messages sent to Bob (actually, Alice now encrypts the message for Bob withke,X

instead of withke,B, andX has the deciphering keykd,X).

In the example above, we have an application of a public-key cryptosystem in whichuse of PKCs

the sender Alice uses the receiver’s public key. But depending on the application,
Alice can use either her private key or receiver’s public key, or both, to perform
some type of cryptographic function. Thus, the public-key cryptosystems (PKCs)
can be classified in three categories:

• Encryption/decryption: The sender encrypts a message withthe recipient’s
public key.

• Digital signatures: The sender signs a message with its private key, i.e. the sender
applies some crpyptographic algorithm on the message in order to assure that the
message can not be altered by an attacker (see chapter 6).

5.2 RSA Encryption Scheme 125

• Key exchange: Two sides co-operate to exchange a session key. Several different
approaches are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications (e.g. RSA, ElGamal), whe-
reas others can be used for only one or two of these applications (e.g. Diffie-Hellman
algorithm only for key exchange, or DSS only for signatures).

5.2 RSA Encryption Scheme

After Diffie and Hellman introduced the concept of public-key cryptography in their
pioneering work in 1976 [Diffie76], the cryptographers werechallenged to come up
with a cryptographic algorithm that met the requirements for public-key systems.
One of the first public-key algorithms was developed in 1977 by Ron Rivest, Adi
Shamir and Len Adleman at MIT in Boston and first published in 1978 [Rivest78]. work of Rivest, Shamir

and AdlemanThe Rivest-Shamir-Adleman (RSA) scheme is the first and still most important and
widely accepted and implemented encryption/decryption algorithm that has been
shown to be feasible for public-key encryption.

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers
between0 and n − 1 for somen. It is based on an amazingly simple number-
theoretical idea and yet it has been able to resist all cryptanalytic attacks. The idea
is the clever use of the fact that, while it is easy to multiplytwo large primes, it factorization problem

is extremely difficult to factorize their product. Thus, theproduct can be published
and used as encryption key. The primes themselves can not be recovered from the
product. On the other hand, the primes are needed for decryption. So, the security
of the RSA scheme is based on the problem of factorization of large numbers.

5.2.1 Description of the Algorithm

Let p andq be two distinct large random primes (typically, having about 100 digits
in their decimal representation). The product of this largeprimes is denoted asn, i.e.
n = pq. Because of primality ofp andq, the Euler function ofn can be computed
as product of the Euler functions ofp andq:

ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1). 5.2-1

The parametern is calledmodulusof the system. When a user Alice wants to
generate her key pair(ke,A, kd,A), she chooses a large random number1 < e < ϕ(n) RSA key generation

which is relativ prime toϕ(n), i.e. gcd(e, ϕ(n)) = 1, and computes the numberd

as multiplicative inverse ofe moduloϕ(n), i.e.d satisfies the congruence

ed ≡ 1 mod ϕ(n). 5.2-2

The public key of Aliceke,A is the pair(e, n) and thus,e is referred to asencryption
exponent. Her private key iskd,A = d andd is reffered to asdecryption exponent.

126 5 Public-Key Encryption

If Bob wants to send an encrypted message to Alice, he uses herpublic keyke,A =RSA encryption

(e, n). To encrypt, he raises the plaintextm to the powere and reduces modulon:

c = me mod n. 5.2-3

Alice decrypts the text with her private keykd,A = d: she raises the ciphertextc toRSA decryption

the powerd and reduces modulon:

e = cd mod n, 5.2-4

i.e. the encryption and decryption are performed as modularexponentiations
modulon. This is summarized in Fig. 5.2-1.

A B

Key Generation:

- Selects large primes p, q
- Calculates n = pq
- Calculates ϕ(n) = (p − 1)(q − 1)
- Selects integer e such that

gcd(ϕ(n), e) = 1 and 1 < e < ϕ(n)
- Calculates d = e−1 mod ϕ(n)

- Public key: ke,A = (e, n)
- Private key: kd,A = d

A’s public key
(e, n)

�
publishes ke,A

B sends a message to A

Encryption:

- Plaintext m, m < n
- Computes ciphertext c:

c = me mod n
- Sends ciphertext c�

sends c
Decryption:

- Receives ciphertext c
- Computes plaintext m:

m = cd mod n

Fig. 5.2-1: Key generation, encryption and decryption with RSA.

We now show that decryption works as intended.proof that the
decryption works

Sinceed ≡ 1 mod ϕ(n), there is an integerk such thated = 1 + k · ϕ(n). In the
proof we also make use of Euler’s theorem (see Theorem 2.6-2): If a ∈ Z∗

n, then
aϕ(n) ≡ 1 mod n. For the decryption we have:

cd mod n ≡ (me)d mod n ≡ med mod n 5.2-5

≡ m1+k·ϕ(n) mod n

≡ (mϕ(n))k ·m mod n

≡ (1)k ·m mod n = m mod n

≡ m (becausem < n).

We now illustrate how the RSA algorithm works using a simple example (see
Fig. 5.2-2).

5.2 RSA Encryption Scheme 127

Example 5.2-1:
We take all parameters artificially small (and thus insecure) in order to show
the operations comprehensibly. To generate a key pair, Alice first chooses two
primes, sayp = 13 andq = 29, which she keeps secret, and computes their
productn = pq = 377, which she puts in the public directory. Further, she
computesϕ(377) = (13 − 1)(29 − 1) = 336 and selects an integere so that
1 < e < ϕ(377) = 336 andgcd(ϕ(n), e) = gcd(336, e) = 1. Let e = 59,
and the pair(e, n) = (59, 377) is her public key. Since the public and the pri-
vate keys are related according to the equationde ≡ 1 mod ϕ(n), she uses the
Extended Euclidian algorithm to compute her private keyd from the public key
e : d = e−1 mod ϕ(n) = 59−1 mod 336 = 131. Notice that nobody but Alice
can compute her private keyd from the public keye, because nobody knows the
primesp andq which are needed to computeϕ(n) = (p−1)(q−1) and apply it
to computed from the equationde ≡ 1 mod ϕ(n) with the Extended Euclidian
algorithm (see Section 2.3.5). Althoughn is known, it can not be factorized to
determinep andq (for large integersn the factorization problem is very hard,
see Section 2.6.2).

ciphertext

message sourcemessage destination

Bob

48

377mod21159

=

=

c

c
encryption:

211=m

plaintext

Alice

211

377mod48131

=

=

m

m
decryption:

211=m

plaintext
48=c

insecure channel

)377,59(),(, == nek Ae

Private (secret) keys:

..........

Alice:

Bob:

Carol:

Dean:
..........

Public directory:

Alice:

Bob:

Carol:

Dean:

)377,59(, =Aek

)703,35(, =Dek

)403,7(, =Cek

)1189,17(, =Bek
Publish the
encryption key

131, =Aek

103, =Cek

593, =Bek

215, =Dek

Fig. 5.2-2: Example with the RSA algorithm.

Now Bob wants to send the messageM to Alice, which is encoded asm =

211. To encryptm he uses Alice’s public keyke,A = (e, n) = (59, 377) and
computesc = me mod n = 21159 mod 377 = 48. When Alice receives the
ciphertextc = 48, she uses her private keykd,A to recover the messagem as
m = cd mod n = 48131 mod 377 = 211. To exercise, you can try this algorithm
with much smaller numbers. For example, use the key pairke,A = (13, 33) and
kd,A = 17 to encrypt and decrypt the messagem = 2. Please use the Crypto-
Calculator on the book web page to try the algorithm with other (and larger)
numbers.

128 5 Public-Key Encryption

We assume that the plaintextM is encoded as a decimal numberm. Sincem shouldRSA as block cipher

be always smaller thann, in the case whenm ≥ n, the numberm is divided into
blocks of suitable size. A suitable size of the blocks is the unique integeri satisfying
the inequalities10i−1 < n < 10i. Then, the blocks are encrypted (and later decryp-
ted) separately, allowing RSA to work as a block cipher in ECBor CBC mode. In the
example aboven = 377 implies that the block size equals3. If we use, for exam-
ple, p = 3336670033, q = 9876543211, n = 32954765761773295963, ϕ(n) =

32954765748560082720, e = 1031, d = 31963885304131991, the plaintext blocks
will consist of 20 digits.

There are many aspects of the RSA cryptosystem to discuss, including the details
of setting up the cryptosystem, the efficiency of enciphering and deciphering and
the security issues. We now discuss some aspects of the cryptosystem design, thatcryptosystem design

is, how the different items required are generated. In general, when we say that
a random number is chosen, or that we select something randomly, then we are
using a random number generator13. To select two large random primesp andq, one
choses randomly an odd integerr of appropriate size (say 100 digits) and tests it for
primality14. If the answer is negative,r + 2 is repeatedly tested. Oncep andq have
been chosen, candidates ford are tested by the Euclidian algorithm. Whend satisfies
(d, ϕ(n)) = 1, the chain of equations obtained from the Euclidian algorithm gives
e immediately.

The operation needed for both encryption and decryption ismodular exponentia-
tion. Since the modulusn is very large, multiprecision arithmetic must be used to
perform computations inZn and the time required will depend on the number of bits
in the binary representation ofn. The operationab mod n can be done much faster
than by repeatedly multiplyinga by itself. Examples are the square-and-multiply
algorithm, the windowing algorithm, the Lim/Lee algorithmand others, which per-
form the exponentiation in polynomial time. Although all operations of RSA can be
carried out in polynomial time, these operations are still roughly 1000 times faster
in DES than in RSA.

5.2.2 Security of RSA

The problem of computing the RSA decryption exponentd from the public key
(e, n) and the problem of factoringn are computationally equivalent. So, onefactorization problem

obvious attack on the cryptosystem is for cryptanalyst to attempt to factorizen.
If this can be done, it is simple to computeϕ(n) = (p − 1)(q − 1) and then com-
pute the decryption exponentd from e. Hence, it is necessary thatn = pq must
be large enough, so that the factoring ofn will be computationally infeasible. The
primesp andq should haveapproximately the same bit size, but should not be close
to one another. Current factoring algorithms are able to factor numbers having up

13 We will not discuss any details concerning random number generators here.

14 Primality tests are described in Section 2.6.1.

5.2 RSA Encryption Scheme 129

to 130 decimal digits15. Hence, it is recommended that one should choosep and
q to have about100 decimal digits and their productn will have about200 digits.
Many RSA implementations use a512-bit modulus, which corresponds to about
512/ log2 10 ≈ 154 decimal digits, and hence they do not offer good long-term
security. For long-term security,1024-bit or larger moduli should be used.

Here we stress that there isno formal proofthat

• factorization is intractable or is intractable in the special case needed for RSA,
and

• factorization is needed for cryptanalysis of RSA.

The second item means that it is not proven, that there is no cryptanalytic method
avoiding factorization. In general, many other cryptanalytic attacks have been pro-
posed against RSA cryptosystems, but none of them has turnedout to be serious.
We now briefly discuss some typical ones and also mention a fewother aspects one
should be aware of, in order to prevent certain rather obvious attacks.

In order to improve the efficiency of encryption, it is desirable to select a small low exponent attack

encryption exponente (e.g.e = 3). But small encryption exponent should not be
used if the same message is sent to many entities. To avoid such an attack, a pseudo-
randomly generated bitstring of appropriate length (e.g. 64 bit) should be appended
to the plaintext message. This process is sometimes referred to assalting the mes-
sage. Also, if the message space is small or predictable, an attacker can decrypt a
ciphertextc by simply encrypting all possible plaintext messages untilc is obtained.
This attack can also be prevented by salting the message. Thedecryption exponent
d should be roughly the same size asn, because there is an efficient algorithm for
computingd from the public information(e, n) in the case whered has up to appro-
ximately one-quarter as many bits as the modulusn.

RSA has multiplicative property, which is sometimes referred to ashomomorphic multiplicative property

propertyof RSA. Letm1 andm2 be two plaintext messages, andc1 andc2 be their
RSA encryptions respectively. Then the following equationholds:

(m1m2)
e ≡ me

1m
e
2 ≡ c1c2 mod n. 5.2-6

In other words, the ciphertext corresponding to the plaintext m = m1m2 modn

is c = c1c2 mod n. This property leads to theadaptive chosen ciphertextattack
on RSA16. If one knows both ciphertextsc1 andc2, one knows the encryption of
m = m1m2. This attack can be prevented by imposing some structural constrains
on plaintext messages in the way that the product of two plaintexts can not result
in plaintext. For example, we can make the constraint that the first byte of each
plaintext is the same as the last byte (we can achieve this artificially). If m1 andm2

satisfy this condition, then it is very inprobable that their productm satisfies it also.

15 For more information on factoring, see [Menezes96].

16 For details see [Menezes96].

130 5 Public-Key Encryption

So, the receiver can reject any encrypted plaintext which does not have the specific
structure.

To avoid thecommon modulus attack, each user in the system should choose hiscommon modulus
attack own RSA modulusn. When the same modulusn is used, each user could subse-

quently determine the decryption exponents of all other network users. Also, if a
single message were encrypted and sent to two or more networkusers, then there is
a technique by which an eavesdropper could recover the message with high proba-
bility using only publicly available information.

Apart from the attacks on RSA mentioned above, which belong to the so called
mathematical attacks, another class of attacks are thetiming attacks, which aretiming attacks

based on the analysis of the running time of the decryption algorithm. These attacks
are applicable not only to RSA, but also to other public-key cryptosystems. They are
ciphertext-only attacks which are analogous to guessing the combination of a safe
by observing how long it takes for someone to turn the dial from number to number.
Although timing attacks are a serious threath, there are simple countermeasures that
can be used to avoid them (forcing constant exponentiation time, adding a random
delay, or blinding the ciphertext by a random number before performing exponen-
tiation).

Brute force attacks(trying all possible private keys) can also be performed, and thebrute force attacks

defense against them is the same for RSA as for other cryptosystems - namely, the
key space used must be large. But some compromise between thesecurity required
and the speed should be made, because too large keys mean veryslow systems (the
time for the calculations involved depends on the key size).

5.3 The Discrete Logarithm Problem 131

5.3 The Discrete Logarithm Problem

Many public-key cryptosystems based on discrete logarithms have been proposed.
When used as a basis for cryptosystems, the computation of discrete logarithms
is assumed to be intractable. If we consider the equationax = y for positive real
numbers, the difficulty of determining the logarithmx from a andy to prescribed
accuracy is approximately the same as determiningy from a andx. With regard
to discrete logarithms, the situation is entirely different. Modular exponentiation
ax = y mod p can be carried out resonably fast, but the inverse operation, taking
discrete logarithms, has much greater computational complexity.

5.3.1 The Problem of Discrete Logarithm inZ∗p

The general notion of discrete logarithms can be formulatedas follows. Letg be
an element of a finite groupG and lety be another element ofG. Then any integer
x with gx = y is called adiscrete logarithmof y to the baseg. Clearly, every discrete logarithm

elementy of G has a discrete logarithm to the baseg if and only if G is cyclic
with the generatorg. For instance, in the multiplicative group of positive integers
modulo 7 only the numbers 1, 2, and 4 have a discrete logarithmto the base 2,
whereas all numbers have a discrete logarithm to the base 3. Since the results of
the exponentiation of the base 3 are:31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, and
36 = 1, the discrete logarithms of all members of the cyclic group are: log3 1 =

6, log3 2 = 2, log3 3 = 1, log3 4 = 4, log3 5 = 5, andlog3 6 = 3.

Therefore, thediscrete logarithm problemin Zp can be formally defined as follows:discrete log problem

Given a triple(p, a, b), wherep is prime,a ∈ Zp is primitive element, andb ∈ Z∗
p
17,

find the unique integerx, 0 ≤ x ≤ p − 2, so thatax ≡ b mod p. This integerx is
denoted asx = loga b.

Of course, groups of small cardinality present no computational difficulties. There
are some efficient algorithms of computing discrete logarithms in some special
cases, but in general the known algorithms for computing discrete logs in group
of orderm are roughly of the same complexity in terms ofm as the algorithms for
factoringm.

132 5 Public-Key Encryption

5.3.2 Diffie-Hellman Key Exchange

Actually, the Diffie-Hellman algorithm was the first published public-key algorithm
which appeared in the seminal paper by Diffie and Hellman thatdefined public-
key cryptography [Diffie76]. The purpose of the algorithm isto enable two users topurpose of the

algorithm exchange a key securely over an insecure channel. The exchanged key can be used
for subsequent encryption of messages with any symmetric algorithm (e.g. with
DES). This technique makes use of the apparent difficulty of computing logarithms
over a finite field.

For this scheme (see Fig. 5.3-1) there are two publicly knownnumbers: a primeDiffie-Hellman
algorithm numberp and an integerg that is a primitive element (generator) ofZ∗

p with 2 ≤
g ≤ p − 2. Suppose the users Alice and Bob want to exchange a key. Aliceselects
a random integera, a < p and computes the exponentiation

A = ga mod p. 5.3-1

Similarly, Bob independently selects a random integerb, b < p and computes

B = gb mod p. 5.3-2

Global public elements:
- p, prime number
- g, g is a primitive element of Z∗

p and 2 ≤ g ≤ p− 2

A B

Key Generation: Key Generation:

- Selects random a
a ∈ {1, 2, ..., p− 2}

- Selects random b
b ∈ {1, 2, ..., p− 2}

- Computes A = ga mod p - Computes B = gb mod p
- Sends A - Sends B

(a is private, A is public) (b is private, B is public)

-
A

�
B

- Computes Ba mod p = - Computes Ab mod p =
= (gb)a mod p = gab mod p = (ga)b mod p = gab mod p

- Sets K = gab mod p - Sets K = gab mod p

Fig. 5.3-1: The Diffie-Hellman key exchange algorithm.

17 We have definiedZ∗

n = {a ∈ Zn | gcd(a, n) = 1}. Sincep is prime,Z∗

p = {a ∈ Z | 1 ≤
a ≤ n− 1} see Section 2.3.7.

5.4 ElGamal Encryption Scheme 133

Each side keeps the random chosen value (a or b) private and makes the computed
exponentiation value publicly available to the other side i.e. Alice receives the value
B and Bob receives the valueA. Alice computes the key as

Ka = Ba mod p. 5.3-3

Similarly, Bob computes the key as

Kb = Ab mod p. 5.3-4

It can be easily seen that these two calculations produce identical resultKa = Kb =

K, which is the shared common key:

Ka = Ba mod p = (gb)a mod p = gab mod p

Kb = Ab mod p = (ga)b mod p = gab mod p.

From this scheme it is obvious that if logarithmsmod p can easily be computed,
the system can be broken. An attacker knowsKa = Ba mod p andKb = Ab mod p.
SinceA andB are publicly exchanged, he tries to compute the exponents (discrete
logs)a andb from these equations. If he could compute them, he could easily reveal
the exchanged key asK = gab mod p and eavesdrop the communication that fol-
lows.

If the primep is slightly less than2l, then all quantities can be represented asl bit
numbers. Then exponentiation takes at most2l multiplicationsmod p while taking
logs requiresp1/2 ≈ 2l/2 operations. The cryptanalytic effort therefore grows expo- cryptanalytic effort

nentially relative to the legitime effort. Ifl = 200, then at most 400 operations are
required to computeA from a or K from A andb, yet taking logsmod p requires
2100 or approximately1030 operations.

5.4 ElGamal Encryption Scheme

In 1985 Taher ElGamal published a new public-key cryptosystem [Elgamal85],
whose security is based on the difficulty of calculating discrete logarithms in a finite
field. The ElGamal scheme can be used for both encryption and digital signatures.
We now describe the encryption scheme.

To generate a key pair, first choose a primep, so that the discrete logarithm problemkey generation

in Z∗
p is intractable and letg ∈ Z∗

p be a random primitive element. Choose a random
exponentx so thatx ∈ Z∗

p. Then calculate

y = gx mod p. 5.4-1

The public key is the triple(p, g, y). Bothg andp can be global public elements of
the system, i.e. can be shared among a group of users. The private key is the expo-
nentx. Because of the discrete logarithm problem it is computationally infeasible
to reveal the private keyx from the public key(y, g, p), i.e to resolvex from the
Eq. 5.4-1.

134 5 Public-Key Encryption

To encrypt a messagem, m ∈ 0, 1, ...p− 1, first choose a random numberk, so thatencryption

k ∈ {0, 1, ...p− 2} andk is relatively prime top− 1. Then compute

a = gk mod p 5.4-2

b = ykm mod p.

The pairc = (a, b) is the ciphertext. Actually, the plaintextm is ”masked” by
multiplying it with yk, yielding b. The valuegk is also transmitted as a part of the
ciphertext. Note that the ciphertext is twice the size of theplaintext.

To decrypt the ciphertextc = (a, b) computedecryption

m = b/ax mod p. 5.4-3

The receiver, who knows the secret exponentx, can computeyk from gk. Then, he
can ”remove the mask” by dividingb by ax to obtainm. We will now show that the
decryption works correctly:proof of the decryption

b/ax mod p ≡ (ykm)/(gk)x mod p

≡ ((gx)km)/gkx mod p

≡ (gxkm)/gkx mod p

≡ m mod p

= m.

The first transformation in this equation can be done only with the knowledge ofx,
and sincex is the private key of the receiver, only he is able to do this operation.
The ElGamal encryption scheme is summarized in Fig. 5.4-1.

A B

Key Generation:

- Selects large prime p
- Selects a random primitive

element g ∈ Z∗

p

- Chooses random exponent x, x ∈ Z∗

p

- Calculates y = gx mod p

- Public key: (p, g, y)
- Private key: x

A’s public key
(p, g, y)

-
publishes

B sends a message to A

Encryption:

- Plaintext m, m ∈ 0, 1, ..., p− 1
- Chooses randomizer k rel. prime

to p− 1, k ∈ 0, 1, ..., p− 2
- Computes ciphertext c = (a, b):

a = gk mod p
b = ykm mod p

- Sends ciphertext c = (a, b)
�

sends c = (a, b)
Decryption:

- Receives ciphertext c
- Computes plaintext m:

m = b/ax mod p

Fig. 5.4-1: Key generation, encryption and decryption with the ElGamal scheme.

5.4 ElGamal Encryption Scheme 135

Example 5.4-1:
In this example we will illustrate how the ElGamal scheme works. Suppose that
the groupZ∗

2579(p = 2579) and a random primitive elementg = 2 are chosen
and are shared among a group of users. The user Alice choses her private key
x = 765, x ∈ Z∗

2579. Then she computes her public key:

y = gx mod p = 2765 mod 2579 = 949

and publishes it. Suppose, Bob wants to send the confidentialmessagem =

1299 to Alice. Sayk = 853 is the random integer he chooses. Then he encrypts
the messagem = 1299 with the public keyy from Alice. He computes

a = gk mod p = 2853 mod 2579 = 435

b = ykm mod p = 949853 · 1299 mod 2579 = 2396

and sends the ciphertextc = (a, b) = (435, 2396) to Alice. Since she has the
corresponding private key ofy, she can decrypt the ciphertextc. She computes

m = b/ax mod p = 2396 · (435765)−1 mod 2579 = 1299

and gets the plaintextm = 1299.

If the plaintextm is larger than the system parameterp, then, similary as in
RSA, m can be divided into blocks of appropriate size and each blockwill be
encrypted and decrypted independently, working as block cipher in ECB or CBC
mode.

This system differs from the other known systems due to the randomization with
k in the enciphering operation. That means that the ElGamal cryptosystem is non-
deterministic, since the ciphertext depends on both the plaintextm and the random non-deterministic

propertyvaluek chosen by the sender. The ciphertext for a given messagem is not repeated,
i.e. if we encipher a given message twice, we will not get the same ciphertext, as
in the case of RSA encryption. The non-deterministic property of ElGamal scheme
prevents attacks like aprobable text attack, where if the intruder suspects that the
plaintext is, for examplem, then he tries to encipherm and finds out if it was really
m. This attack, and similar ones, will not succeed since the original sender chooses
a randomk for enciphering, and different values ofk will yield different values of
the ciphertextc. The ElGamal system is also not-multiplicative, because due to the
structure of the system, there is no obvious relation between the enciphering of the
messagesm1, m2, andm1m2 (as is the case in RSA scheme), or any other simple
function ofm1 andm2.

Suppose that the system parameterp is of about the same size as that required forefficiency of the system

modulusn in the case of RSA. Then the size of the ciphertext in the ElGamal
scheme is double the size of the corresponding RSA ciphertext (disadvantage). For
the enciphering operation, two exponentiations are required, which is equivalent to

136 5 Public-Key Encryption

about2 log p multiplications inZ∗
p. For the deciphering operation only one expo-

nentiation (plus one division) is needed.

5.5 Elliptic Curve Cryptography (ECC)

Elliptic curves have been studied by mathematicians for more than a century. An
extremely rich theory has been developed around them, and inturn they have been
the basis of numerous new developments in mathematics. As far as cryptography is
concerned, elliptic curves have been used for factoring andprimality proving. The
idea of using elliptic curves for public-key cryptosystemsis due to Victor Miller
[Miller85] and Neal Koblitz [Koblitz87] in the mid-eighties. As with all cryptosys-
tems, and especially with public-key cryptosystems, it takes years of public eva-
luation before a reasonable level of confidence in a new system is established. The
elliptic curve public-key cryptosystems (ECPKCs) seem to have reached that level
now. In the last couple of years, the first commercial applications have appeared
(email security, web security, smart cards, etc.). Before we look at how the ECPKCs
work, we will give a short introduction to elliptic curves.

5.5.1 Elliptic Curves Over Real Numbers

Elliptic curves are not ellipses. They are called this because they are described bydefinition of elliptic
curves cubic equations, similar to those used for calculating the circumference of an ellipse.

In general, an elliptic curve is the set of solutions of an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a5 5.5-1

where the coefficientsai are elements of some field (R, Z or Zp) which satisfy some
simple conditions in order to avoid singularities. Such an equation is said to be
cubic, or of degree 3, because the highest exponent it contains is 3. The Eq. 5.5-1 is
calledWeierstrass equation. Also included in the definition of any elliptic curve is
a single element denotedO and calledpoint of infinityor thezero point.

5.5 Elliptic Curve Cryptography (ECC) 137

−4 −3 −2 −1 1 2 3 4

−8

−6

−4

−2

2

4

6

8

x

y

y
2
= x

3
−7x + 9

−4 −3 −2 −1 1 2 3 4

−8

−6

−4

−2

2

4

6

8

x

y

y
2
= x

3
−6x + 4

Fig. 5.5-1: Elliptic curves over real numbers.

In order to illustrate the properties of elliptic curves, wewill now first examine the
elliptic curves over real numbers, i.e.ai ∈ R, also calledcontinuous elliptic curves.
We will further refer to the following simplified form of the Weierstrass equation as
elliptic curve equation: elliptic curve equation

E : y2 = x3 + ax + b 5.5-2

wherex, y, a, andb are real numbers. Each choice of the parametersa andb yields
a different elliptic curveE, also denoted asE(a, b). In Fig. 5.5-1 two curves are
shown. This graph can be obtained by filling the values forx, and solving the qua-
dratic equation iny. In particular cases the graph of the curve consists of two disjoint
parts. To understand more about the elliptic curve forms, vary the parametera and
b on a continuous elliptic curve in the java applet on the book home page.

It now turns out that the set of solutions of an elliptic curvehas some interesting
properties. In particular, agroup operationcan be embedded in this set. Given an
elliptic curveE and two pointsP andQ which lie on it, the operation regarded is
some form of ”addition” of these points resulting in a third point R which also lies
on the curve. The operation”addition of points” is denoted asR = P + Q and addition of points

is geometrically defined in Fig. 5.5-2, but the coordinates of the sum point can be
easily derived as a function of the coordinates ofQ andR. In the definition of this
operation, the following fact is used:If three points on an elliptic curve lie on a
straight line, their sum isO (point of infinity). Try to choose and add points on a
continuous elliptic curve in the java applet on the book homepage.

138 5 Public-Key Encryption

−4 −3 −2 −1 1 2 3 4

−8

−6

−4

−2

2

4

6

8

x

y

y
2
= x

3
−6x + 4

P

Q

R

−R

P(-2.5,-1.84)

Q(0.4,1.29)

R = P+Q =(3.26,-4.38)

- P (xp, yp) and Q(xq, yq) are two distinct points

and P is not −Q.

- To add P and Q, draw a straight line between

P and Q and find a unique point of intersection

with the curve I.

Because of P + Q + I = O, this point I is −R.

The point −R is reflected on the x-axis to the point R.

R(xr , yr) is the sum of P and Q, i.e. R = P + Q.

- If the line is a tangent to the curve at either

P or Q, we take R = P or R = Q respectively.

- The coordinates of R can be computed as:

xr = s2 − xp − xq

yr = −yp + s(xp − xr)
where s = (yp − yq)/(xp − xq) (slope of the line)

Fig. 5.5-2: Addition of distinct points on an elliptic curve.

It can be easily shown that the structure(E, +), where ”+” represents the operationgroup property of
(E, +) addition of points defined in Fig. 5.5-2 fulfills the requirements to be an abelian

group:

1. For every two elements (points)P, Q ∈ E, the resultP +Q is also an element
(point) ofE. That means that the addition is an internal (binary) operation in
the set of points on the curveE.

2. The operation addition of points is associative. That is,for all points
P, Q, R ∈ E we have(P + Q) + R = P + (Q + R).

3. For any pointP on the elliptic curveE, P +O = O+P = P andO = −O.
That means that the point of infinityO serves as an additive identity.

4. For each pointP ∈ E, if there is an inverse pointP−1 ∈ E, so that the result
of the addition of these two elements is the group identityO.

The inverse point is also denoted as−P . For a given pointP (xp, yp) ∈ E the
inverse is the point−P with coordinates(xp,−yp). A vertical line meets the
curve at two points,P1 = (xp, yp) andP2 = (xp,−yp). It also meets the curve
in the infinity pointO. Therefore,P1 + P2 +O = O andP1 = −P2.

5. The operation addition of points is commutative. That is,for all pointsP, Q ∈
E we haveP + Q = Q + P .

5.5 Elliptic Curve Cryptography (ECC) 139

Additional requirement for the elliptic curvey2 = x3 + ax + b to form a group is avoiding singularities

that the expressionx3 + ax + b should not have repeated factors, or equivalently,
the determinant of the curve

D = 4a3 + 27b2 5.5-3

should not be zero18. D 6= 0 ensures that the curve does not have singularities.

−4 −3 −2 −1 1 2 3 4

−8

−6

−4

−2

2

4

6

8

x

y

y
2
= x

3
−6x + 4

P

R

−R

P(-1,3)

R = 2P =(2.25,1.37)

- P (xp, yp) is a point on an elliptic curve E and yp is not 0.

To add a point P to itself, draw a tangent line to the curve

in the point P and find a unique point of intersection with

the curve E. This point is −R.

The point −R is reflected on the x-axis to the point R.

R(xr , yr) is double of P , i.e. R = P + P = 2P .

The coordinates of R can be computed as:

xr = s2 − 2xp

yr = −yp + s(xp − xr)
where s = (3xp

2 + a)/(2yp) (slope of the line)

- If yp = 0 (P is on the x-axes), the tangent line to the curve

at P is vertical and does not intersect the curve at any

other point. For such a point P , by definition, 2P = O.

Fig. 5.5-3: Doubling of pointP on an elliptic curve.

In the group of elliptic curves, the operation"doubling of a point"can also be defi- doubling of a point

ned. Given a pointP , computing2P means computingP + P , i.e. addition of the
point P to itself. This operation is also geometrically defined and is described in
Fig. 5.5-3. Multiplication of a pointP ∈ E by a positive integerk is defined as a scalar multiplication

sum of thek copies ofP . Thus,2P = P + P (doubling),3P = 2P + P (doubling
and addition),4P = 2 · 2P (doubling), etc. Generally, the scalar multiplication can
be iteratively computed as a chain of point doublings and point additions:

kP = P + (k − 1)P. 5.5-4

18 The derivation of this equation is out of the scope of this book. You can find the details in
[Menezes93].

140 5 Public-Key Encryption

5.5.2 Elliptic Curves Over Finite Fields

The group property is very important and actually this property enables us to do
cryptography with elliptic curves. For this purpose, elliptic curves with a finite num-
ber of points are considered, i.e. elliptic curves over finite fields. Such curves are
also calleddiscrete elliptic curves. Actually, they are not ”curves”, similar to thediscrete elliptic curves

continuous curves shown in Fig. 5.5-1, but rather a set of points which satisfy a
given equation. Since these curves consist of a few discretepoints, it is not clear
how to ”connect the dots” to make their graph look like a curve.

An elliptic curve over a fieldFp can be constructed by choosing the variablesa and
b within the fieldFp. The elliptic curve includes all points(x, y) which satisfy thedefinition of Ep(a, b)

elliptic curve equation modulop:

y2 mod p = x3 + ax + b mod p.

Note that the only difference between this equation and the Eq. 5.5-2 is that here
the computations are performedmod p, i.e. in a fieldFp. We can denote this curve
asEp(a, b). There are finitely many points on such an elliptic curve, together with
the infinity pointO. In general, the points which belong to the curve can be found
in the following manner:computing the points

• For eachx with 0 ≤ x < p, calculatex3 + ax + b mod p.

• For each result from the previous step, determine if it has a square rootmod

p.19 If not, there is no point inEp(a, b) with this value ofx. If so, there will be
two values ofy that satisfy the square root operation (exception: one value only
wheny = 0). These values(x, y) are the points onEp(a, b).

In the Fig. 5.5-4 the points of the curveE23(1, 1) : y2 = x3 + x + 1 overF23 and
their computation are shown. This curve has only 27 points. To exercise and learn,
generate elliptic curves over different fields (varyp) and with different parameters
(varya andb). Note how the number of elements on the curve change. Use thejava
applet on the book home page.

19 It is out of the scope of this course to describe the algorithms which proove the existence
of the square rootmod p and the computation of square roots. For this purpose, use the
functionmod_sqrt(a, p, 1) from the Crypto-Calculator.

5.5 Elliptic Curve Cryptography (ECC) 141

0 5 10 15 20
0

5

10

15

20

x

y

P

Q

R=P+Q

S=2P

- Elliptic curve E23(1, 1) : y2 = x3 + x + 1

x = 0 ⇒ y = 1, y = 22
x = 1 ⇒ y = 7, y = 16
x = 2 ⇒ y does not exist
x = 3 ⇒ y = 10, y = 13
x = 4 ⇒ y = 0
x = 5 ⇒ y = 4, y = 19
x = 6 ⇒ y = 4, y = 19
x = 7 ⇒ y = 11, y = 12
x = 8 ⇒ y does not exist
x = 9 ⇒ y = 7, y = 16
x = 10 ⇒ y does not exist
x = 11 ⇒ y = 3, y = 20

x = 12 ⇒ y = 4, y = 19
x = 13 ⇒ y = 7, y = 16
x = 14 ⇒ y does not exist
x = 15 ⇒ y does not exist
x = 16 ⇒ y does not exist
x = 17 ⇒ y = 3, y = 20
x = 18 ⇒ y = 3, y = 20
x = 19 ⇒ y = 5, y = 18
x = 20 ⇒ y does not exist
x = 21 ⇒ y does not exist
x = 22 ⇒ y does not exist

The set of all 27 points on the curve is: (0, 1), (0, 22),
(1, 7), (1, 16), (3, 10), (3, 13), (4, 0), (5, 4), (5, 19), (6, 4),
(6, 19), (7, 11), (7, 12), (9, 7), (9, 16), (11, 3), (11, 20),
(12, 4), (12, 19), (13, 7), (13, 16), (17, 3), (17, 20), (18, 3),
(18, 20), (19, 5), (19, 18).

Let P = (3, 10) and Q = (9, 7)

Then R = P + Q = (17, 20)
S = 2P = (7, 12)

Fig. 5.5-4: Discrete elliptic curvey2 = x3 + x + 1 overF23.

If p is prime and the expressionx3 + ax2 + b mod p contains no repeating factors
(or, equivalentely, if the determinant4a3 + 27b2 mod p is not 0), then the elliptic
curve can be used to form a group. The group operation is, similar as in the case group property of

(E, +)of continuous elliptic curves, the addition of points. The geometry used in elliptic
curve groups over real numbers cannot be used for elliptic curve groups overFp.
However, the algebraic rules can be adopted for curves overFp. In this case, the
computing of the sum point coordinates is performedmod p. Unlike elliptic curves
over real numbers, computations in the fieldFp involve no round off errors — an
essential property required for a cryptosystem. Now we summarize the addition
rules for points on a discrete elliptic curveEp(a, b).

SupposeP = (xp, yp) andQ = (xq, yq) are points on the curveEp(a, b). ”addition
of points” on the curve is defined as: addition rules

• If xp = xq andyp = −yq (the points lie on vertical line), thenP + Q = O.

• Otherwise,P + Q = R(xr, yr) where

xr = s2 − xp − xq mod p 5.5-5

yr = s(xp − xr)− yp mod p

and

s =

{

(yq − yp)(xq − xp)
−1 mod p, if P 6= Q

(3x2
p + a)(2yp)

−1 mod p, if P = Q (doubling ofP)

}

.

• P +O = O + P = P for all P ∈ Ep(a, b).

These equations hold except for the trivial case whereP or Q are equal to the point
of infinity. This definition of addition also includes the operation of doubling of
points as a special case whenP = Q. The only difference between the additiondoubling of points

Eq. 5.5-5 and those for addition and doubling of points on a continuous elliptic

142 5 Public-Key Encryption

curve presented in the Fig. 5.5-2 and Fig. 5.5-3 is that here the operations are pre-
formedmod p, i.e. in the fieldFp.

Example 5.5-1:
In this example, we compute the sum of the points P(3,10) and Q(9,7) on the
curveE23(1, 1):

s = (7− 10)(9− 3)−1 = (−3)(6)−1 = 20 · 4 = 80 ≡ 11 mod 23

xr = s2 − xp − xq = 112 − 3− 9 = 109 ≡ 17 mod 23

yr = s(xp − xr)− yp = 11(3− (−6))− 10 = 89 ≡ 20 mod 23.

Thus,R = P +Q = (17, 20). The double of the pointP (3, 10) can be computed
as follows:

s = (3 · 32 + 1)(2 · 10)−1 = 28 · 20−1 = 5 · 15 = 75 ≡ 6 mod 23

xs = s2 − xp − xp = 62 − 3− 3 = 30 ≡ 7 mod 23

ys = s(xp − xs)− yp = 6(3− 7)− 10 = −24− 10 ≡ −34 mod 23

= 12 mod 23.

The resulting point isS = 2P = (7, 12).

Another suitable field for cryptographic applications withelliptic curves is the field
F2m . Elements of the fieldF2m arem-bit strings. The rules for arithmetic in thiselliptic curves overF2m

field can be defined by eitherpolynomial representationor byoptimal normal basis
representation. An elliptic curve overF2m is constructed by choosing the elements
a andb within F2m , and satisfying the following elliptic curve equation which is
slightly adjusted for binary representation:

y2 + xy = x3 + ax + b. 5.5-6

There are finitely many points on this curve, also including the point of infinity
O. This curve also forms a group regarding the operation of addition of points,
which is defined slightly differently than in Eq. 5.5-5. Since F2m operates on bit
strings, computers can perform arithmetic in this field veryefficiently. In a true
cryptographic application, the parameterm must be large enough. Suitable choice
today ism = 160. For simplicity, we will further discuss only ECPKCs defined
overFp.

5.5.3 Elliptic Curve Cryptosystems (ECCs)

The basis of every public-key cryptosystem is a hard mathematical problem that is
computationally infeasible to solve. To construct a cryptosystem using elliptic cur-
ves, we need to find a ”hard problem” corresponding to factoring the product of two
large primes or taking the discrete logarithm. This hard problem is theelliptic curve

5.5 Elliptic Curve Cryptography (ECC) 143

discrete logarithm problem (ECDLP), which is based upon the intractability of sca-
lar multiplication of points. Before some cryptosystems based on elliptic curves
(ECCs) are described, the ECDLP is defined.

Consider the equationQ = kP , whereQ, P ∈ Ep(a, b) andk is an integer,k < p. discrete log problem in
(E, +)It is relatively easy to computeQ whenk andP are given through combination of

point doubling and point addition, but it is relatively hardto determinek whenP

andQ are given. So, if we use the additive notation to describe an elliptic curve
group (as we have done in the previous sections), we can definethe ECDLP in the
following way:

• Given pointsP andQ from Ep(a, b), find a numberk so thatQ = kP .

An elliptic curve group can also be described using the multiplicative notation, using
the same operation as Eq. 5.5-5 for multiplying copies of thepointP , yielding the
point Q = P · P · P..... · P = P k. In this case, we can define the ECDLP in the
following way:

• Given pointsP andQ from Ep(a, b), find a numberk so thatP k = Q.

Example 5.5-2:
In this example we try to find the discrete logarithmk of Q = (4, 5) to the base
P = (16, 5) on the curveE23 : y2 = x3 + 9x + 17. One (naive) way to findk is
to compute multiples ofP until Q is found:P = (16, 5), 2P = (20, 20), 3P =

2P + P = (14, 14), 4P = 2 · 2P = (19, 20), 5P = 4P + P = (13, 10), 6P =

2 · 3P = (7, 3), 7P = 6P + P = (8, 7), 8P = 2 · 4P = (12, 17), 9P =

8P + P = (4, 5). Since9P = (4, 5) = Q, the discrete logarithm ofQ to the
baseP is k = 9.

In real applications,k would be large enough (over 100 bits) so that it would be
infeasible to determinek in this manner. There are several algorithms for compu-
ting discrete logarithms which can be applied to elliptic curve groups (see section
2.6.3), but these are exponential time algorithms. Thus, a key advantage of elliptic
curve cryptosystems is that no subexponential algorithm isknown that breaks the
system20. Moreover, ECDLP is much harder than the DLP inZ∗

p. We now describe
analogous of some public- key cryptosystems based on the ECDLP.

Key Exchange with Elliptic Curves

The Diffie-Hellman key exchange algorithm can be applied on an elliptic curve
group. In this case, the security of the algorithm is based onthe elliptic curve dis-
crete log problem.

20 The description of the algorithms and their computational complexity are out of the scope of
this book. Overview of the algorithms and details can be found in [Menezes93].

144 5 Public-Key Encryption

Suppose that Alice and Bob (A andB) want to agree upon a key which will later be
used in conjunction with a classical cryptosystem. They first publicly choose a finiteparameters of the

system field Fp and an elliptic curveEp(a, b) defined over it. In order to enable enough
security, the primep should bep ≈ 2180. Then they choose a pointG(xg, yg) on
the curve which serves as a ”base”.G plays the role of a generator in the group
Ep(a, b), but even if the pointG is not a generator of the group, we would like the
subgroup generated byG to be large, preferably of the same order of size asE itself.
Consequently, the important criterion in selecting the point G is that the smallest
value ofn for whichnG = O (G generates the group) is a very large prime number.
Ep(a, b) andG are parameters of the cryptosystem known to all participants.

Global public elements:
- Elliptic curve Ep(a, b), p is prime
- Point G ∈ Ep(a, b) with the role of a generator

A B

Key Generation: Key Generation:

- Selects random a,
a of order of magnitude p

- Selects random b,
b of order of magnitude p

- Computes Ka = aG - Computes Kb = bG
- Sends Ka - Sends Kb

(a is private, Ka is public) (b is private, Kb is public)

-
Ka

�
Kb

- Computes K = aKb = abG - Computes K = bKa = baG

- Sets K = abG - Sets K = abG

Fig. 5.5-5: Diffie-Hellman key exchange with ECC.

To generate a key, Alice chooses a random integera of order of magnitudep, whichDiffie-Hellman ECC
algorithm she keeps secret. She computes the pointKa = aG ∈ E, which she makes public.

Bob does the same: he chooses a randomb, which he keeps secret, computes the
point Kb = bG, and makes it public. The secret key they use is then the point
K = abG. Both users can compute this key: Alice knowsbG (which is public
knowledge) and her own secreta, so she computesK = abG; Bob receivesaG and
multiplies it with his own secretb. Without solving the ECDLP (findinga knowing
aG andG or finding b knowing bG andG) there is no way to compute the key
K = abG knowing onlyaG andbG. The scheme is summarized in Fig. 5.5-5.

Note that the secret keyK, which is a point onEp(a, b), is a pair of numbers
(xk, yk). From this pair, a single number must be generated. One can simply use
thex coordinate or some simple function of the coordinates.

5.5 Elliptic Curve Cryptography (ECC) 145

Elliptic Curve Encryption/Decryption

To encrypt a given plaintext messagem with some EC cryptosystem, it must repre-
sent a pointP on the chosen curveEp(a, b), i.e. the message must be encoded in
(x, y) coordinates of the pointP . This pointP will be encrypted. There are several
approaches for this encoding, which we will not address here. Many approaches
for encryption/decryption using elliptic curves have beenanalyzed in the literature.
We now show only two of them: The ElGamal EC cryptosystem and the Menezes-
Vanstone EC cryptosystem.

Global public elements:

- Elliptic curve Ep(a, b) over Fp, p is prime
- Point G ∈ Ep(a, b) with the role of a generator

A B
Key Generation:

- Chooses random integer a
- Computes point Ka = aG

- Public key: Ka

- Private key: a

A’s public key Ka-
publishes Ka

B sends a message to A

Encryption:

- Plaintext m, encoded in point M
- Chooses random pos. integer k
- Computes ciphertext C as pair:

C1 = kG, C2 = M + kKa

- Sends ciphertext C = (C1, C2)�
sends C

Decryption:

- Receives ciphertext C
- Computes plaintext point M :

M = C2 − aC1

- Decodes plaintext m from point M

Fig. 5.5-6: ElGamal elliptic curve encryption scheme.

In the ElGamal EC cryptosystem, we start with the parameters of the crypto-ElGamal EC
cryptosystemsystem, which are known to each user: A finite fieldFp, an elliptic curveEp(a, b)

defined over it, and a pointG on the curve. Each user selects a private key as an inte-
gerai and computes the public keyaiG. If Bob wants to send a message to Alice,
he needs her public keyKa, which is a point computed from Alice asPa = aG

(note thata is Alice’s secret). Suppose, he wants to encrypt the plaintext message
m, which is encoded in the pointM ∈ Ep(a, b). Bob chooses a random positive
integerk and produces the ciphertextC consisting of the pair of pointsC1 = kG

andC2 = M + kKa and sends the pairC(C1, C2) to Alice. Note that Bob has used
Alice’s public keyKa to compute the ciphertext. He has masked the messageM

by addingkPa to it. Nobody but Bob knows the value ofk, so even thoughKa is
public, nobody can remove the maskkPa.

146 5 Public-Key Encryption

To decrypt the message, Alice uses her private keya to multiply the first point of
the ciphertextC1 with it, and substracts the result from the second point:

C2 − aC1 = M + kKa − a · kG = M + kaG− akG = M. 5.5-7

The resultM is a point on the curveEp(a, b) which can now be easily decoded to
the corresponding plaintextm. To recover the message, an attacker would have to
computek from a givenG andKa = kG which is assumed to be hard. There are
some practical difficulties in implementing an ElGamal cryptosystem on an elliptic
curve. The message has an expansion factor of (about) four. This happens since a
ciphertext consists of two points on the elliptic curve, each with two coordinates.
Another problem is that the plaintextm must be encoded (deterministically genera-
ted) in a point which lies on the curveE.

A more efficient cryptosystem has been found byMenezesandVanstone. In thisMenezes-Vanstone EC
cryptosystem variation, the elliptic curve is used for ”masking”, and plaintext and ciphertext are

allowed to be arbitrary ordered points of nonzero field elements, i.e.they are not
required to be points onE. This leads to a message expansion of factor two. We
now briefly describe this cryptosystem, which is summarizedin Fig. 5.5-7.

Global public elements:
- Elliptic curve Ep(a, b) over Fp, p is prime
- Point G ∈ Ep(a, b) with the role of a generator

A B
Key Generation:

- Chooses random integer a
- Computes point Ka = aG

- Public key: Ka

- Private key: a

A’s public key Ka-
publishes Ka

B sends a message to A

Encryption:

- Plaintext m = (m1,m2)
- Chooses random pos. integer k
- Computes: c0 = kG

(x1, x2) = kKa

- Computes parts of the ciphertext:
c1 = x1m1 mod p
c2 = x2m2 mod p

- Sends ciphertext c = (c0, c1, c2)¾
sends cDecryption:

- Receives ciphertext c = (c0, c1, c2)
- Computes (x1, x2) = ac0

- Computes plaintext parts m1 and m2:
m1 = c1x

−1
1 mod p

m2 = c2x
−1
2 mod p

- Plaintext m = (m1,m2)

Fig. 5.5-7: Menezes-Vanstone Elliptic curve cryptosystem.

5.5 Elliptic Curve Cryptography (ECC) 147

The global public elements of the system are an elliptic curveEp(a, b) and a pointG
on it. The curve must contain a cyclic subgroupH in which the discrete log problem
is intractable. Each user chooses a large random integerai and keeps it secret, and
publishesaiG. So, Alice generates her key pair by choosing an integera, which will
be her private key, and computes thea-multiple of the base pointKa = aG, which
will be her public key. Now Bob wants to send Alice the messagem = (m1, m2).
In order to encrypt this plaintext, he first chooses a random positive integerk and
computesc0 = kG and(x1, x2) = kKa. Then he computesc1 = x1m1 mod p and
c2 = x2m2 mod p, which are parts of the ciphertext. The ciphertext consist of c0, c1

andc2, i.e.c = (c0, c1, c2). To decrypt the ciphertext, Alice uses her private keya to
compute(x1, x2) = ac0 (becauseac0 = akG = k · aG = kKa = (c1, c2)) and then
computes the plaintext partsm1 = c1x

−1
1 mod p andm2 = c2x

−1
2 mod p. She gets

the plaintext asm = (m1, m2).

Example 5.5-3:
In this example we illustrate encryption and decryption according to the
Menezes-Vanstone cryptosystem. Let the curveE11(1, 6) : y2 = x3 +x+6 over
Z11 and the pointG(2, 7) be the public elements of the system. Alice chooses
a = 7 for her private key and computes her public key:Ka = aG = 7 · (2, 7) =

(7, 2). Suppose, Bob wants to send her the plaintextm = (m1, m2) = (9, 1).
Note thatm is not a point onE. He first chooses a random valuek = 6 and com-
putesc0 = kG = 6 · (2, 7) = (7, 9) and(x1, x2) = kKa = 6 · (7, 2) = (8, 3).
Then he computesc1 andc2 as:c1 = x1m1 mod p = 8 · 9 mod 11 = 6 and
c2 = x2m2 mod p = 3 · 1 mod 11 = 3. The ciphertext Bob sends to Alice is
c = (c0, c1, c2) = ((7, 9), 6, 3). When Alice receives the ciphertextc, she first
computes(x1, x2) = ac0 = 7 · (7, 9) = (8, 3), and then she computes the plain-
text partsm1 andm2 as:m1 = c1x

−1
1 mod p = 6·8−1 mod 11 = 6·7 mod 11 =

9 andm2 = c2x
−1
2 mod p = 3 · 3−1 mod 11 = 3 · 4 mod 11 = 1. So, the plain-

text is(9, 1).

All cryptosystems based on the discrete logarithm problem (DLP) can be converted
to elliptic curve cryptosystems. Some slight technical modifications are necessary
in order to adapt to the elliptic curve setting, but the underlying principles are the
same as for other DLP-based systems. A very important observation is that the best
known algorithms for the ECDLP have a complexity proportional to the square root
of the group size, whereas DLP inZp and integer factorization can be solved in
subexponential time. This implies that, for a certain levelof security, the sizes of advantages of ECCs

the parameter in ECC can be substantially smaller. For example, an elliptic curve
group with a 175-bit size has a security that is equivalent toRSA with a 1024-bit
modulus, or to systems based on DLP inZp with p a 1024-bit prime. The smaller
block size has important implications on the resources thatare needed to implement
an EC cryptosystem. For example, far less chip area is neededfor an elliptic curve
processor than for an RSA processor.

148 5 Public-Key Encryption

To better understand the properties of elliptic curves and the operations addition of
points and multiplication of a point with a scalar, as well asthe group properties,
please do some exercises with the java-applets on the book home page.

5.6 Other Public-Key Cryptosystems (PKCs)

We will now give a brief overview of several other public-keycryptosystems, which
have some importance in cryptology.

The Merkle-Hellman knapsack cryptosystemwas first described by Merkle andMerkle-Hellman
crypto system Hellman in 1978. Although this cryptosystem was broken in the early 1980’s, it

is still worth studying because of the underlying design technique. This system is
based on the ”hard” problem of subset sum, which is an NP-complete problem. That
means, that there is no known polynomial time algorithm thatsolves it.

TheMcEliece cryptosystemis based on algebraic coding theory and is still regardedMcEliece cryptosystem

as being secure. The NP-complete problem that is employed isdecoding a general
linear binary error-correcting code. One class of codes, the so called Goppa codes,
are used as base of this cryptosystem.

TheRabin’s cryptosystemgets its security from the difficulty of finding square rootsRabin’s cryptosystem

modulo a composite number. This problem is equivalent to factoring. The Rabin
public-key encryption scheme was the first example of aprovably secure encryp-
tion scheme(there is a proof that breaking the scheme is equivalent to solving a
computational problem which is widely believed to be difficult), which is a desira-
ble property of any encryption scheme.

149

6 Digital Signatures

6.1 Introduction

The notion of a digital signature may prove to be one of the most fundamental and
useful inventions of modern cryptography. A signature scheme provides a way for
each user to sign messages so that the signatures can later beverified by anyone
else. More specifically, each user can create a matched pair of private and public
keys so that only he can create a signature for a message (using his private key), but
everyone can verify the signature for the message (using thesigner’s public key).
The verifier can convince himself that the message content has not been altered sincedata integrity

the message was signed21. Also, the signer can not later repudiate having signed the
message, since no one but the signer possesses the private key22. non-repudiation

By analogy to the paper world, where one might sign a letter and seals it in an
envelope, one can sign an electronic message using one’s private key, and then seals
the result by encrypting it with the recipient’s public key.The recipient can perform
the inverse operations of opening the letter and verifying the signature using his
private key and the sender’s public key, respectively. These applications of public-
key technology, e.g. to electronic mail, are quite widespread today already.

Like a hand-written signature, the purpose of a digital signature is to guarantee authentication

that the individual sending the message really is the one whohe or she claims to
be23. Digital signatures are especially important for electronic commerce and are a
key component for most authentication schemes. To be effective, digital signatures
must be unforgeable. An example of what a digital signature looks like is given in
Example 6.1-1.

Example 6.1-1: Digital Signature

-------BEGIN SIGNATURE------

LQB1awUBMVSiA5QYCuMfgNYjAQFAKgLjZkBfbeNEsbthba4Blrcnjad

mcKgNv+a5Kr4537y8RCd+RHm75yYh5xxA1ojELwNhhb7cltrp2V7Llb
xAelws4S87UX80cLBtBcN6AACf11qymC2h+Rb2j5SU+rmXWru+=QFGs

------END SIGNATURE------

21 Data integrity: The assurance that the data received was exactly the data sent.

22 Non-repudiation: Prevents a user from denying previous commitments or actions.

23 Authenticationis any process through which one proves and verifies certain information.
Sometimes one may want to verify the origin of a document, theidentity of the sender, the
time and date a document was sent and/or signed, the identityof a computer or user, and so
on.

150 6 Digital Signatures

6.2 RSA Signatures

When public-key cryptography is used to encrypt a message, the sender encrypts
the message with the public key of the intended recipient. When public-key cryp-
tography is used to calculate a digital signature, the sender encrypts the message or
the message digest24 of the document with his or her own private key. Anyone with
access to the public key of the signer may verify the signature.

Alice

Alice’s private
key

Message

Hash Function

Message Digest

Signature

sign

Message Signature

Transmitted Message
Bob

verify

If these are the same, the signature is
verified.

Message

Hash Function

Actual
Message Digest

Signature

Expected
Message Digest

Alice’s public
key

compare

Fig. 6.2-1: RSA digital signature scheme using a hash function.

More specifically, suppose Alice wants to send a signed message to Bob (see
Fig. 6.2-1):

• The first step is generally to apply a hash function to the message, creating a
message digest. The hash function takes a message of an arbitrary length and
shrinks it down to a fixed length.

• To create a digital signature, Alice signs the message digest instead of the mes-
sage itself. This saves a considerable amount of computation time.

• Alice sendsBob the encrypted message digest and the message, which she may
or may not encrypt using Bob’s public key.

• In order for Bob to authenticate the signature he must apply the same hash func-
tion as Alice to the message she sent him, decrypt the encrypted message digest
usingAlice’s public key and compare the two.

• If the two are the same he has successfully authenticated thesignature. If the two
do not match there are a few possible explanations. Either someone is trying to
impersonate Alice, the message itself has been altered since Alice signed it or
an error occurred during transmission.

24 A hash functionH is a transformation that takes an inputm and returns a fixed-size string,
which is called the hash value or message digesth. One can think of a message digest as a
"digital fingerprint" of the larger document. Hash functions will be introduced in chapter 7.

6.2 RSA Signatures 151

6.2.1 Some Comments

As described above, everyone can read the message and verifythe signature. This
does not satisfy situations whereA (Alice) wishes to retain thesecrecyof the docu- secrecy

ment. In this case she may wish to sign the document, then encrypt it usingBob’s
public key.B (Bob) will then need to decrypt the message using his private key and
verify the signature on the recovered message usingA’s public key.

Alternately, if it is necessary forthird partiesto validate the integrity of the messagethird parties

without being able to decrypt its content, a message digest may be computed on the
encrypted message, rather than on its plaintext form.

There is a potential problem with this type of digital signature.A not only signed
the message she intended to but also signed all other messages that happen to hash
to the same message digest. When two messages hash to the samemessage digest,
this is called acollision; the collision-free properties of hash functions are necessary collision

security requirements for most digital signature schemes.A hash function is secure
if it is very time consuming, if at all possible, to figure out the original message
given its digest. However, there is an attack called thebirthday attack25 that relies birthday attack

on the fact that it is easier to find two messages that hash to the same value than to
find a message that hashes to a particular value.

In addition, someone could pretend to beA and sign documents with a key pair he
claims isA’s. To avoid scenarios such as this, there are digital documents called
certificatesthat associate a person with a specific public key. certificates

Digital timestampsmay be used in connection with digital signatures to bind a docu- timestamps

ment to a particular time of origin. It is not sufficient to just note the date in the
message, since dates on computers can be easily manipulated. It is better that time-
stamping is done by someone everyone trusts, such as a certifying authority.

6.2.2 Description of the algorithm

The RSA cryptosystem was developed by Ronald Rivest, Adi Shamir, and Leonard
Adleman in 1977 ([RSA78]); RSA stands for the first letter in each of its inventors’
last names. For more information on RSA, see Section 5.2 or [MOV96].

The key generation, signature generation, and signature verification procedures for
RSA are given below.

RSA key generation

Each entityA does the following:

• Take two large primes,p andq, and compute their productn = pq; n is called
the modulus.

25 Its name arises from the fact that for a group of 23 or more people the probability that two or
more people share the same birthday is higher than 50%.

152 6 Digital Signatures

• Choose a number,e, less thann and relatively prime to(p − 1)(q − 1), which
meanse and(p− 1)(q − 1) have no common factors except1.

• Find another numberd such that(ed− 1) is divisible by(p− 1)(q − 1).

• The valuese andd are called the public and private exponents, respectively.The
public key is the pair(n, e); the private key is(n, d).

The factorsp andq may be erased or kept with the private key.

RSA signature generation

To sign a messagem, A does the following:

s = md mod n

whered andn areA’s private key. She sendsm ands to B.

RSA signature verification

To verify the signatures, B exponentiates and checks that the messagem is reco-
vered:

m = se mod n

wheree andn areA’s public key.

6.3 ElGamal Signature Scheme

The ElGamal system is a public-key cryptosystem based on thediscrete logarithm
problem26. It consists of both encryption and signature variants27.

6.3.1 Key generation

Each entityA does the following:

1. Generate a large random primep and a generatorα of the multiplicative group
Z∗

p.

2. Select a random integera, 1 ≤ a ≤ p− 2.

3. Computey = αa mod p.

4. A’s public key is(p, α, y); A’s private key isa.

26 For more information on the discrete logarithm problem, see Section 5.3.

27 For more information on the ElGamal cryptosystem and its security aspects, see Section 5.4

6.4 DSA - Digital Signature Algorithm 153

6.3.2 Signature generation

To sign a messagem, A does the following:

1. Select a random secret integerk, 1 ≤ k ≤ p − 2, with gcd(k, p− 1) = 1.

2. Computer = αk modp.

3. Computek−1 mod(p− 1).

4. Computes = k−1(h(m) − ar) mod (p − 1); h being a collision-free hash
function.

5. The signature for the messagem is the pair(r, s).

6.3.3 Signature verification

To verify A’s signature(r, s) onm, B should:

1. Obtain an authentic copy ofA’s public key(p, α, y).

2. Verify that1 ≤ r ≤ p− 1; if not, then reject the signature.

3. Computev1 = yrrs modp.

4. Computeh(m) andv2 = αh(m) modp.

5. Accept the signature if and only ifv1 = v2.

6.4 DSA - Digital Signature Algorithm

The Digital Signature Algorithm (DSA) was proposed in August 1991 by the U.S.
National Institute of Standards and Technology (NIST) and became a U.S. Federal
Information Processing Standard (FIPS 186) in 1993. The FIPS 186 standard is also
referred to as theDigital Signature Standard(DSS). The DSA was the first digi- DSS

tal signature scheme accepted as legally binding by a government. The algorithm
is a variant of theElGamalsignature scheme (see Section 6.3). The key genera-ElGamal

tion, signature generation, and signature verification procedures for DSA are given
below.

6.4.1 DSA key generation

Each entityA does the following:

1. Select a primeq such that2159 < q < 2160.

2. Select a 1024-bit prime numberp with the property thatq|p − 1. (The DSS
mandates thatp be a prime such that2511+64t < p < 2512+64t where0 ≤ t ≤
8. If t = 8 thenp is a 1024-bit prime.

3. Select an elementh ∈ Z∗
p and computeg = h(p−1)/q modp; repeat untilg 6= 1

(g is a generator of the unique cyclic group of orderq in Z∗
p).

4. Select a random integerx in the interval[1, q − 1].

5. Computey = gx modp.

154 6 Digital Signatures

6. A’s public key is(p, q, g, y); A’s private key isx.

6.4.2 DSA signature generation

To sign a messagem, A does the following:

1. Select a random secret integerk in the interval[1, q − 1].

2. Computer = (gk modp) modq.

3. Computek−1 modq.

4. Computes = k−1(h(m) + xr) modq whereh is the Secure Hash Algorithm
(SHA-1)28.

5. Is s = 0 then go to step 1 (ifs = 0, thens−1 mod q does not exist;s−1 is
required in step 3 of signature verification).

6. The signature for the messagem is the pair or integers(r, s).

6.4.3 DSA signature verification

To verify A’s signature(r, s) onm, B should:

1. Obtain an authentic copy ofA’s public key(p, q, g, y).

2. Verify thatr ands are integers in the interval[1, q − 1].

3. Computew = s−1 modq andh(m).

4. Computeu1 = h(m)w modq andu2 = rw modq.

5. Computev = (gu1yu2 modp) modq.

6. Accept the signature if and only ifv = r.

6.4.4 Security aspects

DSA signatures are 320 bits in size, sincer ands are each integers less thanq. The
security of the DSA relies on two different but related discrete logarithm problems.

One is the discrete logarithm problem inZ∗
p where the number field sieve algorithm

applies; this logarithm has a subexponential running time.

The second discrete logarithm problem works to the baseq: givenp, q, g, andy find
x, such thaty ≡ gx (modp). For largep (e.g. 1024-bits), the best algorithm known
for this problem is the Pollard rho-method, and takes about

√

πq/2

steps.

28 See Section 7.4.3.

6.5 ECDSA - Elliptic Curve Digital Signature Algorithm 155

6.5 ECDSA - Elliptic Curve Digital Signature
Algorithm

The elliptic curve analogue of the DSA is the ECDSA. Instead of working in a
subgroup of orderq in Z∗

p, this algorithm works in an elliptic curve groupE(Zp).
In February 2000 the US Secretary of Commerce approved the inclusion of the
ECDSA in the US Government’s Digital Signature Standard. The revised standard is
FIPS 186-2 that specifies ECDSA by giving a reference to the ANSI X9.62 standard.
The correspondence between some math notations used in DSA and ECDSA are
shown in Table 6.5-1. Using Table 6.5-1 and Table 6.5-2, the analogies between
DSA and ECDSA should be obvious ([JM99]).

Tab. 6.5-1: Correspondence between DSA and ECDSA notation.

DSA notation ECDSA notation

q n

g P

x x

y Q

Tab. 6.5-2: Correspondence between Z∗
p and E(Zp) notation [JM99].

Group Z∗

p E(Zp)

Group elements Integers {1, 2, . . . , p− 1} Points (x, y) on E plus O
Group operation Multiplication modulo p Addition of points

Notation Elements: g, h
Multiplication: g · h
Inverse: g−1

Division: g/h
Exponentiation: ga

Elements: P, Q
Addition: p + Q
Negative: −P
Subtraction: P −Q
Multiple: aP

Discrete logarithm
problem

Given g ∈ Z∗

p and h = ga

mod p, find a
Given P ∈ E(Zp) and
Q = aP , find a

The key generation, signature generation, and signature verification procedures for
ECDSA are given below.

6.5.1 ECDSA key generation

Each entityA does the following:

1. Select an elliptic curveE defined overZp. The number of points inE(Zp)

should be divisible by a large primen.

2. Select a pointP ∈ E(Zp) of ordern.

3. Select a statistically unique and unpredictable integerd in the interval[1, q −
1].

4. ComputeQ = dP .

156 6 Digital Signatures

5. A’s public key is(E, P, n, Q); A’s private key isd.

6.5.2 ECDSA signature generation

To sign a messagem, A does the following:

1. Select a statistically unique and unpredictable integerk in the interval[1, q −
1].

2. Computekp = (x1, y1) andr = x1 modn (herex1 is regarded as an inte-
ger, e.g. by conversion from its binary representation). Ifr = 0, then go
to step 1 (this is a security condition: ifr = 0, then the signing equation
s = k−1(h(m) + dr) modn, does not involve the private keyd).

3. Computek−1 modn.

4. Computes = k−1(h(m) + dr) modn, whereh is the Secure Hash Algorithm
(SHA-1)29.

5. If s = 0, then go to step 1. (Ifs = 0, thens−1 modn does not exist;s−1 is
required in step 3 of signature verification).

6. The signature for the messagem is the pair of integers(r, s).

6.5.3 ECDSA signature verification

To verify A’s signature(r, s) onm, B should:

1. Obtain an authentic copy ofA’s public key(E, P, n, Q).

2. Verify thatr ands are integers in the interval[1, q − 1].

3. Computew = s−1 modn andh(m).

4. Computeu1 = h(m)w modn andu2 = rw modn.

5. Computeu1P + u2Q = (x0, y0) andv = x0 modn.

6. Accept the signature if and only ifv = r.

6.5.4 Note

ANSI X9.62 prescribes thatn > 2160. The parametern should have about 160 bits
to obtain a security level similar to that of the DSA (with 160-bit q and 1024-bitp).
If this is the case, then DSA and ECDSA signatures have the same size (320 bits).

The important consistencies between ECDSA and DSA are as follows:consistencies with DSA

1. DSA and ECDSA are based on the ElGamal signature scheme anduse the
same signing equation:s = k−1(h(m) + dr) modn.

29 See Section 7.4.3.

6.6 Signatures with Additional Functionality 157

2. The values that are relatively difficult to generate are the system parameters
(p, q, andg for DSA; E, P , andn for ECDSA) which are public. The genera-
tion of a private key is relatively simple and generating theassociated public
key is straightforward.

3. DSA and ECDSA both use the SHA-1 as cryptographic hash function.

For more information on DSA and ECDSA see [JM99].

6.5.5 Security aspects

The security of the ECDSA is based on the followingelliptic curve discrete loga-
rithm problem(ECDLP): given an elliptic curveE defined overZp, a pointP ∈
E(Zp) of ordern, and a pointQ ∈ E(Zp), determine the integerl, 0 ≤ l ≤ n − 1,
such thatQ = lP , provided that such an integer exists.

The ECDLP has been analyzed by mathematicians around the world, and no signifi-
cant weaknesses have been reported. For more information onsecurity aspects and
key lengths, see Section 5.5.

6.6 Signatures with Additional Functionality

There are signature schemes that provide functionality beyond authentication and
non-repudiation. To achieve additional features which thebasic method does not
provide, we combine a basic digital signature scheme with a specific protocol. For
information on further signature schemes not mentioned here, see [MOV96].

6.6.1 Fail-stop signatures

A fail-stop signature scheme is a type of signature introduced by Birgit Pfitzmann
and Michael Waidner to protect against the possibility thatan enemy may be able to
forge a user’s signature. It is a variation of the one-time signature scheme, in which
only a single message can be signed and protected by a given key at a time. The
scheme is based on the discrete logarithm problem. In particular, if an enemy can
forge a signature, then the actual signer can prove that forgery has taken place by
demonstrating the solution of a supposedly hard problem. Thus the forger’s ability
to solve that problem is transferred to the actual signer.

The term "fail-stop" refers to the fact that a signer can detect and stop failures, i.e.
forgeries. Note that if the enemy obtains an actual copy of the signer’s private key,
forgery cannot be detected. What the scheme detects are forgeries based on crypt-
analysis. For more information on fail-stop signatures, see [Pfi96] and [MOV96].

158 6 Digital Signatures

6.6.2 Blind signatures

Blind signature schemes, first introduced by David Chaum ([CRS83]), allow a per-
son to get a message signed by another entity without revealing any information
about the message to the other entity.

Using RSA signatures blind signatures work as follows: Suppose entityA has a
messagem that she wishes to have signed by entityB, and she does not wantB to
learn anything aboutm. Let (n, e) beB’s public key and(d) be his private key30. A
generates a random valuer such thatgcd(r, n) = 1 and sends

m′ = re m mod n

to B. The valuem′ is "blinded" by the random valuer, and henceB can derive no
useful information from it.B returns the signed value,

s′ = (m′)d = (rem)d mod n

to A. Sinces′ = rmd modn, A can obtain the true signatures of m by computing

s = s′r−1 mod n.

Now A’s message has a signature she could not have obtained on her own. This
signature scheme is secure provided that factoring and rootextraction remain dif-
ficult. However, regardless of the status of these problems the signature scheme is
unconditionally "blind" sincer is random. The randomr does not allow the signer
to learn anything about the message even if the signer can solve the underlying hard
problems.

Blind signatures have numerous uses, e.g. digital cash. Thus it is not surprising that
there are now numerous variations of the blind signature scheme.

6.6.3 Undeniable signatures

Undeniable signature schemes, first introduced by Chaum andvan Antwerpen, are
non-self-authenticating signature schemes, where signatures can only be verified
with the signer’s consent. However, if a signature is only verifiable with the aid of a
signer, a dishonest signer may refuse to authenticate a genuine document. Undenia-
ble signatures solve this problem by adding a new component called thedisavowal
protocolin addition to the normal components of signature and verification.

The scheme is implemented using public-key cryptography based on the discrete
logarithm problem.

30 For more information on RSA key generation, see Section 6.2.2.

6.6 Signatures with Additional Functionality 159

Key generation

Each entityA does the following:

1. Take a random primep = 2q + 1 whereq is also a prime.

2. Generate a generatorα of the multiplicative groupZ∗
p.

3. Select a random integerα ∈ {1, 2, . . . , q − 1}.
4. Computey = αa modp.

5. A’s public key is(p, α, y); A’s private key isa.

Signature generation

To sign a messagem, A does the following:

s = ma mod p.

A sendsm ands to B.

Signature verification

Verification is carried out by a challenge-response protocol. To verify A’s signature
s onm, B should:

1. Obtain an authentic copy ofA’s public key(p, α, y).

2. Select random secret integersx1, x2 ∈ {1, 2, . . . , q − 1}.
3. Computez = sx1yx2 modp and sendz to A.

4. A computesw = (z)a−1
modp (whereaa−1 ≡ 1 (modq)) and sendsw to B.

5. B computesw′ = mx1αx2 mod p and accepts the signature if and only if
w = w′.

One can prove that the signature verification works as required:

w ≡ (z)a−1 ≡ (sx1yx2)a−1 ≡ (max1αax2)a−1 ≡ mx1αx2 ≡ w
′

mod p.

The disavowal process is similar.

Signature disavowal

The disavowal process determines wheterA is attempting to disavow a valid signa-
tures using the verification algorithm (presented above), or whether the signature
is a forgery.

1. B obtains an authentic copy ofA’s public key(p, α, y).

2. B selects random secret integersx1, x2 ∈ {1, 2, . . . , q − 1}.
3. B computesz = sx1yx2 modp and sendsz to A.

4. A computesw = (z)a−1
modp (whereaa−1 ≡ 1 (modq)) and sendsw to B.

5. If w = mx1αx2 modp, B accepts the signatures and the protocol halts.

160 6 Digital Signatures

6. B selects random secret integersx
′

1, x
′

2 ∈ {1, 2, . . . , q − 1}, and computes

z
′

= sx
′

1yx
′

2 modp, and sendsz
′

to A.

7. A computesw
′

= (z
′

)a−1
modp and sendsw

′

to B.

8. If w
′

= mx
′

1αx
′

2 modp, B accepts the signatures and the protocol halts.

9. B computesc = (wα−x2)x
′

1 modp andc
′

= (w
′

α−x
′

2)x1 modp. If c = c
′

, then
B concludes thats is a forgery; otherwise,B concludes that the signature is
valid andA is attempting to disavow the signatures.

161

7 Hash Functions and Authentication
Codes

One of the most important area of network security is that of message authentica-
tion and the related topic of digital signatures. It is almost impossible to handle all
cryptographic functions and protocols that have been proposed or implemented for
this application in the last twenty years. As such, the purpose of this chapter is to
provide a broad overview of the subject and introduce the most important design
criteria. The basic approaches are surveyed, including theincreasingly important
area of secure hash functions which are used in many cryptographic protocols.

7.1 Authentication Functions

Message authenticationis a procedure to verify that received messages come frommessage authentication

the alleged source and have not been altered. It may also verify sequencing and
timeliness. Generally, message authentication is a notionfor measures which deal
with following items [Stallings99a]:

1. Masquerade: Insertion of messages into the network from a fraudulent
source. This includes the creation of messages by an opponent that are purpo-
sed to come from an authorized entity. Also included are fraudulent acknow-
ledgments of message receipt or nonreceipt.

2. Content modification: Changes to the contents of a message, including inser-
tion, deletion, transposition, or any other modification.

3. Sequence modification: Any modification to a sequence of messages bet-
ween parties, including insertion, deletion, and reordering.

4. Timing modification : Delay or replay of messages. In a connection-oriented
application, an entire session or sequence of messages could be a reply of
some previous valid session, or individual messages in the sequence could be
delayed or replayed. In a connectionless application, an individual message
(e.g. datagram) could be delayed or replayed.

A digital signature is an authentication technique that also includes measures to
counter repudiation by either source or destination. Generally, a digital signature
technique will also counter some or all the attacks listed initems 1-4, with the
following item as additional:

• Repudiation: Denial of receipt of message by destination or denial of transmis-
sion of message by source.

Any message authentication mechanism has two levels: At thelower level there
must be some sort of function that produces an authenticatora value to be used authenticator

to authenticate a message. This function is then used as primitive in a higher-level
authentication protocol that enables a receiver to verify the authenticity of the mes-
sage. In this section we are concerned with different types of functions that may be
used to produce an authenticator:

162 7 Hash Functions and Authentication Codes

• Hash functions,

• Message authentification codes (MAC).

The message encryption can also be seen as an authenticationfunction because the
ciphertext of the entire message serves as its authenticator. This is explained in the
following.

7.1.1 Message Encryption as Authentication Function

WhenA andB communicate using conventional (symmetric) encryption, we can
say that the receiverB is assured that the message which came was generated byA

(Fig. 7.1-1). The message must have come fromA becauseA is the only other partyauthentication with
conventional

encryption
that possesses the shared secret keyK and therefore the only party with the informa-
tion necessary to construct ciphertexts that can be decrypted withK. Futhermore,
if m is recovered,B knows that none of the bits ofm have been altered, because
an opponent that does not knowK would not know how to alter bits in the cipher-
text to produce desired changes in the plaintext. So, we may say that conventional
encryption provides authentication as well as confidentiality.

m mE D

K K
K

E [m]

Source A Destination B

Fig. 7.1-1: Conventional encryption: confidentiality and authentication.

The straightforward use of public-key encryption (Fig. 7.1-2 a) provides confiden-
tiality but not authentication. The sourceA uses the public keyKe,B of the desti-authentication with

public-key encryption nationB to encrypt the messagem. Because onlyB has the corresponding private
keyKd,B only B can decrypt the message. This scheme provides no authentication
because any opponent could also use B’s public key to encrypta message, claiming
to beA.

7.1 Authentication Functions 163

Source Destination
-¾ -¾

a) Confidentiality

b) Authentication

and signature

c) Confidentiality,

authentication,

and signature

Fig. 7.1-2: Asymmetrical encryption: confidentiality and authentication.

Using the other key part, public-key encryption schemes canhowever provide
authentication:A uses its private keyKd,A to encrypt the message, andB uses A’s
public keyKe,A to decrypt it (Fig. 7.1-2 b). This provides a measure for authentica-
tion: The message must have come fromA becauseA is the only party that posses-
sesKd,A and therefore the only party with the information necessaryto construct
ciphertexts that can be decrypted usingKe,A. This is the principle of constructing
digital signatures, although for digital signatures some additional primitives are nee-
ded. Note that this scheme does not provide confidentiality.Anyone in possession
of A’s public key can decrypt the ciphertext.

To provide both confidentiality and authentication,A can encryptm first by using
her private keyKd,A, which provides message authentication, and then using B’s
public key Ke,B, which provides confidentiality (Fig. 7.1-1 c). Note that inthis
case, the public-key algorithm which is very complex and slow must be executed
four times in each communication.

7.1.2 Message Authentication Code (MAC) as Authentication
Function

An alternative authentication technique involves the use of a secret key to gene-
rate a small fixed-size block of data, known ascryptographic checksumor message cryptographic

checksumauthentication code (MAC). This technique assumes that two communicating part-
nersA andB share a common secret keyK. WhenA has a message forB, it calcu-
lates theMAC as a function of the messagem and the keyK : MAC = C(K, m),
also denoted asCK(m). This MAC is appended to the message and both are trans-
mitted toB. The process of concatenation is shown in the diagramms by the symbol

164 7 Hash Functions and Authentication Codes

‖. WhenB receives the messagem and its MAC, it uses the same secret keyK and
performs the same calculationCK(m) on the received messagem to generate a new
MAC. Then, he compares the received MAC with the calculated one (Fig. 7.1-3 a).message authentication

with MAC If the received MAC matches the calculated one, then the receiver B is assured that
the message has not been altered, because onlyA andB know the secret keyK. If
an attackerO (Oscar) alters the message, but does not alter its MAC, then the MAC
calculated from the receiverB differs from the received MAC which was calcula-
ted byA. Because the attackerO is assumed not to know the secret key, he can not
alter the MAC for it to correspond to the alterations in the message. The receiverB
is also assured that the message is from the alleged senderA, because no one else
could compute a proper MAC to the message (no one else knows the secret keyK).

Source Destination
-¾ -¾

a) Message

authentication

b) Authentication and confidentiality (MAC on the plaintext)

c) Authentication and confidentiality (MAC on the ciphertext)

Fig. 7.1-3: Basic uses of MAC.

Note that this process provides authentication but not confidentiality, because themessage authentication
and confidentiality

with MAC
message as a whole is transmitted unencrypted. Confidentiality can be provided by
performing message encryption either after or before the MAC algorithm. In both
cases, two separate keysK1 (for MAC) andK2 (for encryption) are needed, each
of which is shared by the senderA and the receiverB. In the first case, the MAC
is calculated with the message as input and is then concatenated to the message.
The entire block is then encrypted (Fig. 7.1-3 b). In the second case, the message is
encrypted first and then the MAC is calculated using the resulting ciphertext and is
concatenated to the ciphertext to form the transmitted block (Fig. 7.1-3 c). Typically
it is preferable to tie the authentication directly to the plaintext (case b). Note that
the MAC does not provide a digital signature because both sender and receiver share
the same key.

7.1 Authentication Functions 165

7.1.3 Hash Function as Authentication Function

A variation of the message authentication code is the one-way hash function. A hash code = hash value
= message digesthash function accepts a variable-size messagem as input and produces a fixed-size

hash codeh = H(m) as output. The hash code is a function of all the bits of the
message and provides an error-detection capability: A change of any bit or bits in
the message results in a change to the hash code. The hash codeis often called
hash valueor message digest (MD). Note that usually the hash function is publicly
known.

In order to provide message authentication a hash code can beused in several ways message authentication
with hash codes(Fig. 7.1-4). In figure a) the message and the concatenated hash code is encryp-

ted using conventional encryption, which enables confidentiality. Because onlyA
andB have the secret key, the message must have come fromA and has not been
altered. The hash code provides redundancy required to achieve authentication. If
some application does not require confidentiality, then forauthentication only the
hash code is encrypted using conventional encryption (fig. b). This can also be done
using public-key encryption (fig. c). This provides authentication, but also digital
signature because only the sender could have produced the encrypted hash code.
If confidentiality as well as digital signature is desired, then the message plus the
public-key encrypted hash code can be encrypted using symmetric key (fig. d). Ano-
ther technique for providing authentication (fig. e) assumes that the two communi-
cating partiesA andB share a common secret valueS. The hash value ofm||S
is computed and appended tom. BecauseB knowsS, it can recompute the hash
value and verify it. Because the secret value itself is not sent, an opponent cannot
modify an intercepted message. On this approach confidentiality can be added by
encrypting the valuem||H(m||S) before sending it to the other side (fig. e).

166 7 Hash Functions and Authentication Codes

H E

m
II

m
H

D

CompareK K

KE [H(m)]

H E

m
II

m
H

D

CompareKd,A

d,A

e,AK

K
E [H(m)]

K
K

d,A
d,A

Kd,A

e,AK

II

E [H(m)]

mm
D H

H E

E

Compare
K K

K
E [m||]E [H(m)]

D

m

Compare

II

II II
m

S

S

H (m||S)
H

H

E D

K K

KE [m || H(m||S)]

m

Compare

II II
m

S

S

H (m||S)H

H

Source Destination

H

m
II

m
E D H

Compare
K

K

K
E [m||H(m)]

H(m)

a) A B: E [m]||H(m)]

- Confidentially (only A and B share K)
- Authentication (H(m) is cryptographically protected)

K

b) A B: m||E [H(m)]

- Authentication (H(m) is cryptographically protected)
K

c) A B: m||E [H(m)]

- Authentication and digital signature (H(m) is cryptographically protected,
only A could create)

K

E [H(m)]K

d,A

d,A

d) A B: E [m||E [H(m)]]

- Authentication and digital signature
- Confidentiality (only A and B share K)

K K d,A

e) A B: m||H(m||S)
- Authentication (only A and B share S)

f) A B: E [m||H(m||S)]

- Authentication (only A and B share S)
- Confidentiality (only A and B share K)

K

II

Fig. 7.1-4: Basic uses of hash functions.

7.2 Requirements for Hash Functions

The purpose of a hash function is to produce a ”fingerprint” ofa file, message, or
other block of data. Formally defined, a hash function is a function H that maps a

7.2 Requirements for Hash Functions 167

messagem of any bit length into a fixed-lengthhash valueh (also calledmessage definition of hash
functiondigest), which serves as an authenticator:

h = H(m).

The hash value is appended to the message at the source and both are transmitted
together. The receiver authenticates the message by recomputing the hash value and
comparing it with the received hash value. Because the hash function itself is not
considered to be secret, some additional protection of the hash value is required
(Fig. 7.1-4).

It will be necessary for the hash functionH to satisfy certain properties in order
to prevent various frauds. Since hash values are used not only for message authen-
tication, but are also a composing part of every digital signature scheme, we have
to be careful that the use of a hash functionH does not weaken the security of
the signature scheme (because the message digest is signed,not the message). A collision-free hash

functioncollision-free hash functionis one of the basic requirements for achieving security.
Intuitively, collision-freemeans that two messages which have the same hash value
can not be found. Because the notion ”collision free” plays acentral role in the
security analysis of hash functions, we will define this notion more precisely.

V : public verification functionr

S : private signature functionr

authentic channel

h Vrh(m)

(true, false)

m h h(m) Sr (m, sig) (m, sig)
unsecure channel

Fig. 7.2-1: Generation and verification of a digital signature with theaid of a hash function for
compression.

Observe the general digital signature scheme in Fig. 7.2-1,where Alice sends a mes-
sagem and its signaturesig to Bob. The most obvious type of attack for an opponent
Oscar is to start with a valid signed message(m, sig) wheresig = SK(H(m)). (The
pair (m, sig) could be any message previously signed by Alice). Then he computes
h = H(m) and attempts to find messagem′ 6= m such thath(m′) = h(m). If Oscar
can do this,(m′, sig) would be a valid signed message, i.e. aforgery. In order to
prevent this type of attack, we require that the hash function H have the following
collision-free property:

168 7 Hash Functions and Authentication Codes

Definition 7.2-1: Letm be a message. A hash functionH is weakly collision-free forweak collision
resistance m if it is computationally infeasible to find a messagem′ 6= m such thatH(m′) =

H(m). This property is called weak collision resistance.

Another possible attack is the following: Oscar first finds any two messagesm 6= m′

such thatH(m) = H(m′). Oscar then givesm to Alice and persuades her to sign
the message digestH(m), obtainingsig. Then (m′, sig) is a valid forgery. This
motivates to require a different collision-free property:

Definition 7.2-2: A hash functionH is strongly collision-free if and only if it isstrong collision
resistance computationally infeasible to find any two messagesm andm′ such thatm′ 6= m

andH(m′) = H(m). This property is called strong collision resistance.

Observe that the hash functionH is strong collision resistant if and only if it is
computationally infeasible to find a messagem such thatH is not weakly collision-
free form.

It is often possible with certain signature schemes to forgesignatures on random
message digestsh. Therefore, we observe another kind of attack. Suppose an atta-
cker Oscar computes a signature on such a randomh, and then he finds a message
m such thath = H(m). If he can do this, then(m, sig) is a valid forgery. To prevent
this attack, the functionH must beone-way function, i.e. the functionH can not be
inverted:m = H−1(h).

Definition 7.2-3: A hash functionH is one-way if, given a message digesth, it isone-way property

computationally infeasible to find a messagem such thatH(m) = h.

One-way functions are extremely important cryptographic primitives. Probably the
best known and simplest use of one-way functions is for passwords. Namely, in a
multi-user computer system, instead of storing a table of login passwords, one can
store, for each passwordpi the valuehi = H(pi). At the login procedure passwords
can be easily checked by computingH(pi) and comparing it with the stored value,
but even the system administrator can not deduce any user’s password by examing
the stored table.

Existence of one-way functions is a necessary condition forthe existance of most
known cryptographic primitives, including secure encryption and digital signatures.
But the current state of knowledge in complexity theory doesnot allow to prove the
existance of one-way functions. So, we assume their existance.

We now summarize the properties a hash functionH must have in order to be usefulproperties required

for message authentication:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. h = H(m) is relatively easy to compute for any givenm (both in hardware
and software).

7.3 Size of the Hash Value (Message Digest) 169

4. m = H−1(h) should be infeasible to compute for any given codeh (one-way
property).

5. Weak collision resistance.

6. Strong collision resistance.

The first three properties are relevant for the practical application of a hash function,
and the second three for its security. The sixth property refers to how resistant the
hash function is to a class of attacks known as the birthday attack, which we will
shortly examine in the next section.

7.3 Size of the Hash Value (Message Digest)

In this section we determine a necessary security conditionfor hash functions that
depends only on the size of the message digest produced by thehash function.
This necessary condition results from a simple method of finding collisions which
is informally known as thebirthday attack. This terminology comes from the so-
calledbirthday paradox, which says that in a group of 23 random persons, at least
two will have the same birthday with a probability larger than 1/2. Before we state
the security conditions, we describe the birthday paradox.

7.3.1 The Birthday Paradox

The problem can be stated as follows:What is the minimum value of k such definition of the
problemthat the probability that at least two persons in a group ofk people have the

same birthday is greater than 0.5?So, we ask for the probability thatanypair of
persons in the group ofk people have the same birthday. We will now try to give an
answer to this question. AsP (n, k) we define the probability that we have at least
one duplicate ink items, where each item is able to take on one ofn equally likely
(probable) values between1 andn. Thus, we are looking for the smallest value ofk

such thatP (365, k) ≥ 0, 5.

It is easier first to derive the probability that there are no duplicates, which we
denote asQ(365, k). If k > 365, then it is impossible for all values to be different.
So, we assumek ≤ 365. Now we consider the number of different waysN for
havingk values with no duplicates. We may choose any of the365 values for the
first item, any of the remaining364 numbers for the second item, and so on. Hence,
the number of different ways is

N = 365 · 364 · 363 · · (365− k + 1) =
365!

(365− k)!
.

The total number of possibilities is365k (each item can get any of365 values, with
or without duplicates). So, the probability of no duplicates is simply the fraction of
the sets of values that have no duplicates out of all possiblesets of values:

Q(365, k) =
N

365k
=

365!/(365− k)!

365k
=

365!

(365− k)! 365k

170 7 Hash Functions and Authentication Codes

and

P (365, k) = 1−Q(365, k) = 1− 365!

(365− k)! 365k
. 7.3-1

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P(365,k)

Fig. 7.3-1: The birthday paradox.

This function is plotted in Fig. 7.3-1. The probabilities seem surprisingly large to
anyone who has not considered the problem before. We achievea probability greater
than 0.5 already by chosingk = 23, i.e. P (365, 23) = 0.5073. For k > 60, the
probability for having a duplicate is almost 1.

The birthday problem can be generalized to the following general problem of
duplications: Given a random integer variable with uniformdistribution betweengeneral case of

duplications 1 andn and a selection ofk instances (k ≤ n) of the random variable, what is the
probabilityP (n, k) that there is at least one duplicate? The birthday problem isjust
a special case withn = 365. By the same reasoning as before, we can generalise
the Eq. 7.3-1:

P (n, k) = 1− n!

(n− k)! nk
. 7.3-2

In order to simplify Eq. 7.3-2, we use the well known inequality

(1− x) ≤ e−x for all x ≥ 0.

7.3 Size of the Hash Value (Message Digest) 171

Then we can rewrite the Eq. 7.3-2 as:

P (n, k) = 1− n!

(n− k)! nk
= 1− n · (n− 1) · · (n− k + 1)

nk

= 1− [
n− 1

n
· n− 2

n
· · n− k + 1

n
]

= 1− [(1− 1

n
) · (1− 2

n
) · · (1− k − 1

n
)]

> 1− [(e−1/n) · (e−2/n) · · (e−(k−1)/n)]

> 1− e−[1
n

+ 2
n

+ + k−1
n

] = 1− e−
1
n
·(1+2+....+(k−1))

> 1− e−
1
n
·
k(k−1)

2 .

Finally, we have the simplified relation for the probabilityP (n, k):

P (n, k) > 1− e−
k(k−1)

2n . 7.3-3

Using Eq. 7.3-3 we can find for which value ofk we haveP (n, k) > 0, 5: 50 % probability for
duplication

1/2 = 1− e−
k(k−1)

2n

1/2 = e−
k(k−1)

2n =
1

e
k(k−1)

2n

2 = e
k(k−1)

2n ⇒ ln(2) =
k(k − 1)

2n
.

For largek we can replacek · (k − 1) by k2 and we getln(2) = k2/2n, i.e.

k =
√

2 · ln(2) · n = 1, 18
√

n ≈
√

n. 7.3-4

We can prove that Eq. 7.3-3 gives very good approximation: For n = 365 we get
k = 1, 18

√
365 = 22.54, which is very close to the correct answer23.

7.3.2 Lower Bound on the Sizes of Message Digest

The result of the Eq. 7.3-4 says that hashing just over
√

n random values yields a
collision with probability of50%. The birthday attack imposes a lower bound on
the size of message digests. Suppose we have a hash functionH with 2m possible
outputs (i.e. anm-bit output). IfH is applied tok random inputs, then the value of
k so that the probability of at least one duplicate (i.e.H(x) = H(y) for some inputs
x, y) is 1/2 can be computed as:

k =
√

2m = 2m/2.

A 40-bit message would be very insecure, since a collision could be found with recommendable size
for message digestthe probability of50% with

√
240 = 220 (about a million) random hashes. It is

usually suggested that the minimum acceptable size of a message digest is 128 bits.
In this case the birthday attack will require over264 hashes. The choice of a 160-bit
message digest for use in the digital signature standard (DSS) was motivated by
these considerations.

172 7 Hash Functions and Authentication Codes

7.4 Construction and Classification of Hash
Functions

Hash functions are usually implemented as a sequence of similar compression steps
(iterations) through which a messagem, is processed block-wise via acompression
functionto a hash valueh(m), as illustrated in Fig. 7.4-1. An input messagem ofcompression function

arbitrary finite length is divided into fixed-lengthn-bit blocksmi. This preprocess
typically involves appending extra bits (padding) as necessary to attain an overall
bit length which is a multiple of the block lengthn, and often includes for security
reasons a block indicating the bit length of the unpadded input. Each blockmi then
serves as an input to an internal fixed-size compression function, which computes
a new intermedia result of bit lengthk (k is fixed), as a function of the previous
k-bit intermediate result and the next input blockmi. If hi denotes the partial result
after theith iteration, the general process for the inputm = m1m2......mb can begeneral model

represented as:

h0 = IV ; hi = f(hi−1, mi) for 1 ≤ i ≤ b ; h(m) = g(hb) . 7.4-1

arbitrary length input m

iterated
compression
function

fixed length output

output

optional output
transformation

Fig. 7.4-1: General model for an iterated hash function.

Regarding the design of the compression function, the preprocessing and the outputclassification

transformation, we distinguish between four categories ofiterated hash functions:

1. Hash functions based on symmetric block ciphers,

2. Hash functions based on modular arithmetic,

3. Dedicated hash functions, and

4. Provable secure hash functions.

7.4 Construction and Classification of Hash Functions 173

Hash functions based on symmetric block ciphers make it possible to use cryp-
tographic techniques which are already implemented and they use the know how
for designing new block ciphers that already exist. The efficiency of a hash function
based on modular arithmetic (e.g. asymmetric cipher) wouldusually not be accepta-
ble. The third group contains dedicated designs for hash functions. These techniques
were developed for a more efficient software implementation. Dedicated hash func-
tions have become more and more important in recent years. Finally the category of
hash functions must be mentioned whose security is provableunder certain assump-
tions. However, the constructions known so far do not have any practical meaning
due to their inefficiency. In the following we concentrate onhash functions which
are based on symmetric ciphers and dedicated hash functions.

7.4.1 Hash Functions Based on Block Ciphers

Motivation for constructing hash functions from block ciphers is that if an efficient motivation

implementation of a block cipher is already available (either in hardware or in soft-
ware), then using it as hash function may provide additionalfunctionality almost
without any additional cost. The idea is that if the block algorithm is secure, then security

the one-way hash function will also be secure. The block cipher is iteratively used
as an internal compression function.

If (n, r) denotes a block cipher defining an invertible function fromn-bit plain-
text ton-bit ciphertext using anr-bit key, then the hash functions constructed from
this block cipher are divided into those producing single-length (n-bit) and double-
length (2n-bit) hash values. The motivation for double-length hash functions is that
manyn-bit block ciphers exist of size approximatelyn = 64, and single-length
hash-codes of this size are not collision resistant. In the simplest case, the size of
the key used in such hash functions is approximately the sameas the block length of
the cipher (i.e.n bits). In other cases, hash functions use larger (e.g. double-length)
keys. One useful measure for hash functions based on block ciphers is thehash
rate, or the number ofn-bit message blocks processed per encryption. The higherhash rate

the hash rate, the faster the algorithm.

Suppose that using the encryption functionEK(m) we want to produce the hash
valueh of the messagem which can be subdivided intob subblocksmi which are construction

processed individually andh0 is some random initial valueIV . The general scheme
is as follows (see Fig. 7.4-2):

A
C

Key

Encrypt
B

Å denotes bitwise XOR

A, B, and C can be either m,h ,

m h , or a constant
i i-1

i i-1Å

Fig. 7.4-2: General hash function based on symmetric block cipher.

174 7 Hash Functions and Authentication Codes

h0 = IV, where IV is a random initial value

hi = EA(B)⊕ C (for all blocks i)

h = hb

whereA, B andC can be eithermi, hi−1, (mi ⊕ hi−1), or a constant. The three
different variables can take on one of four possible values,so that there are 64 total
schemes of this type. 15 are trivially weak because the result does not depend on
one of the inputs. 37 are insecure for more subtle reasons. Bellow the remaining 12
secure schemes are listed:

1. hi = Ehi−1
(mi)⊕mi

2. hi = Ehi−1
(mi ⊕ hi−1)⊕mi ⊕ hi−1

3. hi = Ehi−1
(mi)⊕ hi−1 ⊕mi

4. hi = Ehi−1
(mi)⊕mi

5. hi = Emi
(hi−1)⊕ hi−1

6. hi = Emi
(mi ⊕ hi−1)⊕mi ⊕ hi−1

7. hi = Emi
(hi−1)⊕mi ⊕ hi−1

8. hi = Emi
(mi ⊕ hi−1)⊕ hi−1

9. hi = Emi⊕hi
(mi)⊕mi

10. hi = Emi⊕hi
(hi−1)⊕ hi−1

11. hi = Emi⊕hi
(mi)⊕ hi−1

12. hi = Emi⊕hi
(hi−1)⊕mi.

The first scheme was described in 1985 by S.M. Matyas, C.H. Mayer, and J. Oseas
from IBM and is also known as Matyas-Mayer-Oseas hash function. The second
scheme is known as N-Hash (described in 1990 by Miyaguchy, Ohta, and Iwata) and
was proposed as an ISO standard. The fifth scheme was proposedby Carl Meyer,
but in the literature it is commonly called Davies-Meyer hash function. The first,
second, third, fourth, ninth, and eleventh schemes have a hash rate of 1 i.e. the key
length equals the block length. The others have a rate ofk/n, wherek is the key
length.

Davis-Meyer Hash Function

Given a messagem which can be divided intob blocksmi, its Davis-Mayer hashDavis-Meyer hash
function valueh can be computed with iterations as shown in Fig. 7.4-3 [Winternitz84]. The

hash value has the same length as the block value.

7.4 Construction and Classification of Hash Functions 175

h
i

m
i

h
i-1

Encrypt

Key

h
i-1

h
i

m
i

h
i-1

Key

Encrypt

Davis-Meyer hash function:

h = IV (random initialisation)

h = E (h) h i = 1..b

h = h

0

i m i-1 i-1

b

i Å

A

Modified Davis-Meyer hash
function:

h = IV (random initialisation)

h = E (h) i=1..b

h = h

0

i h i-1

b

i-1||mi

A

Fig. 7.4-3: Davis-Meyer hash functions.

Lai and Massey modified the Davies-Meyer technique to work with the IDEA (Inter- Modified Davis-Meyer
hash functionnational Data Encryption Standard) cipher [Lai92]. IDEA has 64-bit block size and

128-bit key size. This function hashes the message in blocksof 64 bits and produ-
ces 64-bit hash values (see Fig. 7.4-3). No other attack on this scheme is known
than brute force. There are also other modifications of the Meyer hash function, for
example parallel Davies-Meyer (hash rate 1 which produces hash values twice the
block length), Tandem Davies-Meyer, and Abreast Davies-Meyer (both have hash
rate 1/2 and 128-bit hash values).

Matyas-Meyer-Oseas Hash Function

Matyas-Meyer-Oseas hash

function:

h0 = IV (random initialisation)

hi = Ehi−1
(mi) ⊕ mi , ∀ i = 1..b

h = hb

Fig. 7.4-4: Matyas-Meyer-Oseas hash function.

This hash function was presented in 1985 by Matyas, Meyer andOseas [Matyas85]. Matyas-Meyer-Oseas
hash functionIt is a strong one-way function and has the hash rate 1. The keylength equals the

block length. The principle is shown in Fig. 7.4-4. Input of the algorithm is a bit-
string (message)m, which is divided inton-bit blocks and padded, if necessary, to
complete the last block. The padded message consists ofbn-bit blocks:m1m2....mb.
A constantn-bit initial valueIV must be pre-specified.

176 7 Hash Functions and Authentication Codes

Meyer-Shilling Hash Function

This hash function was first developed by C.H. Meyer and M. Shilling at IBM
[Meyer88] and is sometimes also known as MDC-2. It has a hash rate of1/2 andMeyer-Shilling hash

function produces a hash value twice the length of the block size. It isshown in Fig. 7.4-5.
It has two hash valueshi andgi which are initialized with different random initial
valuesh0 andg0. The algorithm is patented and is secure with respect to current
computing power. The specifications use DES as block function, although every
encryption algorithm can be used.

h
i

g
i

m
i

g
i-1

h
i-1

Key

Key

Encrypt

Encrypt

Fig. 7.4-5: Meyer-Shilling hash function

Many other hash functions based on block ciphers have been proposed: Quisquater-
Girault, MDC-4, AR, Miyaguchi-Preneel etc. The interestedreader can find more
information in the original litareture or in [Menezes96a] and [Schneier96a].

7.4.2 Hash Functions Based on Modular Arithmetic

The basic idea of hash functions based on modular arithmeticis to construct an ite-
rated hash function usingmod n arithmetic as basis for the compression function.
Motivating factors are re-use of existing software or hardware for modular arith-
metic and scalability to match required security levels. A significant disadvantage
however is that the computation of these functions is very slow.

7.4 Construction and Classification of Hash Functions 177

Exponentiation modulon = pq

If n = pq is the product of two large primes ande is chosen so thatgcd(e, ϕ(n)) = exponentiation modulo
n = pq1, then the modular exponentiation functionE defined byE(m) = me mod n is

a trapdoor one-way function. If we don’t have the trapdoor (additional informa-
tion needed to invert the function), we can not determine theunknownm when
E(m) is given. The only practical method to findm is to use the exponentd with
ed ≡ 1 mod ϕ(n) and calculatecd mod n. Thus, invertingE without the trapdoor
appears to be as difficult as factoringn. This is the basis of the MASH (Modular
Arithmetic Secure Hash) hash function which has been proposed for inclusion in a
draft ISO/IEC standard. The bit length of the modulusn affects the security, and
also determines the block size of the messages to be processed and the size of the
hash value (e.g. 512-bit modulus yields a 512-bit hash value).

Exponentiation in a finite field

For any prime powerq the multiplicative group of the finite fieldGF (q) of order
q is cyclic. If q is a large prime power anda is a primitive element ofGF (q)

(i.e. generator of the cyclic multiplicative group), then the function defined as
E(m) = am mod q is a one-way function. In practice it appears that the only fields exponentiation in a

finite fieldthat are used for implementations areGF (p) wherep is large prime orGF (2n) for
largen. Findingm from E(m) would mean to find the discrete logarithm ofE(m)

to the basea in GF (q). The computation ofE(m) = ax mod p requires at most
2 log2 x operations while the best general algorithms known for extracting loga-
rithms modulop require a precomputation of the order ofexp((ln p)1/2(ln ln p)1/2)

operations. Arithmetic inGF (2n) for largen can be performed faster than arith-
metic over large primes, so there is some reason to prefer theone-way function
E(m) = am in GF (2n). In this casen determines the block size of the messages to
be processed and the size of the hash value.

Squaring modulon

If n = pq wherep andq are two large primes, then the functionE(m) = m2 mod n squaring modulon

is a trapdoor one-way function, where the trapdoor information is the knowledge of
the prime factors. InvertingE(m) (finding m from E(m)) means finding a square
root of E(m) modulon. The operation of computing square roots modulon can
be performed efficiently whenn is a prime, but is difficult whenn is a composite
integer whose prime factors are unknown (computationally equivalent to factoring).
The integern determines the block size of the messages to be processed andthe
size of the hash value.

178 7 Hash Functions and Authentication Codes

7.4.3 Dedicated Hash Functions

Dedicated or customized hash functions are those which are specially designed fordedicated hash
functions the explicit purpose of hashing, with optimized performance in mind, and without

being constrained to reusing existing system components such as block ciphers or
modular arithmetic. Those which have received the greatestattention in practice are
based on the MD4 hash function. MD4 is the fourth function in the serie of message
digest algorithms and was designed specifically for software implementation on 32-
bit machines. Security concerns about MD4 motivated the development of MD5
shortly later, as a more conservative variante of MD4. Otherimportant subsequent
variants are SHA-1, RIPEMD-128 and RIPEMD-160.

Message Digest 4 (MD4)

MD4 is a one-way hash function designed by Ron Rivest [Rivest90]. The algorithmMD4

has a message of arbitrary length as input and produces a 128-bit hash value. The
original MD-4 design goals were that breaking it should require roughly brute-force
effort. MD4 is suitable for high-speed software implementation because it is based
on a simple set of bit manipulations on 32-bit operands. After the algorithm was
introduced, it was cryptanalytic attacked by Merkle, Biham, and others. Collisions
have been found in220 compression function computations. After this attack, Rivest
strengthened the algorithm and the result is MD5.

Message Digest 5 (MD5)

MD5 was designed as an improved version of MD4 [Rivest92]. Although moreMD5

complex than MD4, it is similar in design and also produces a 128-bit hash. Since
MD5 is one of the most used hash algorithms, we will now describe it in some more
detail to illustrate how it works.

a) MD5 main loop

Initial values (hex):

A = 01234567

B = 89abcdef

C = fedcba98

D = 76543210

b) One MD5 operation

The four nonlinear functions are:

f1(x, y, z) = (x ∧ y) ∨ ((¬x) ∧ z)

f2(x, y, z) = (x ∧ y) ∨ (y ∧ (¬z))

f3(x, y, z) = x ⊕ y ⊕ z

f4(x, y, z) = y ⊕ (x ∨ (¬z))

Fig. 7.4-6: MD5 hash function.

7.4 Construction and Classification of Hash Functions 179

After some initial preprocessing, MD5 processes the input text in 512-bit blocks
(if necessary the message is padded until its length is a multiple of 512), divided
into 16 32-bit subblocks. The output of the algorithm is a setof four 32-bit blocks,
which concatenate to form a single 128-bit hash value. The 32-bit variablesA, B, C,

andD, also called chaining variables, are initialized with fixedvalues (see Fig. 7.4-
6). Then, the main loop of the algorithm begins and the roundsare repeated for
every 512-bit message block. The four variables are copied into different variables:
a getsA, b getsB, c getsC andd getsD. The main loop has four rounds which are
very similar. Each round uses different operation 16 times.Each operation performs rounds in MD5

nonlinear function on three ofa, b, c, andd. Then it adds the result to the fourth
variable, a subblock of the textMj and a constantti. Then it rotates that result a
variable number of bits to the right and adds the result to oneof a, b, c, ord. Finally,
the result replaces one ofa, b, c, or d.

There are four nonlinear functionsfi(x, y, z), one used in each operation (a diffe-
rent one for each round). These functions are designed so that if the corresponding
bits of x, y and z are independent and unbiased, then each bit of the result will
be independent and unbiased. LetMj represents thejth subblock of the message
(j = 0, .., 15), and<<< s represents a left circular shift ofs bits31, then the ope- operations in each

roundrations in each round of MD5 (shown in Fig. 7.4-6 under b) can be represented
as:

F1(a, b, c, d, Mj, s, ti) denotes a = b + ((a + f1(b, c, d) + Mj + ti) <<< s)

F2(a, b, c, d, Mj, s, ti) denotes a = b + ((a + f2(b, c, d) + Mj + ti) <<< s)

F3(a, b, c, d, Mj, s, ti) denotes a = b + ((a + f3(b, c, d) + Mj + ti) <<< s)

F4(a, b, c, d, Mj, s, ti) denotes a = b + ((a + f4(b, c, d) + Mj + ti) <<< s).

The number of shift bitss in each round, the constantsti and the order of the sub-
blockMi have been determined by the designer, and the four rounds (64steps) are
shown in Table 7.4-1.

31 The constantsti are chosen in the following way: In stepi, ti is the integer part of232 ·
abs(sin(i)), wherei is in radians.

180 7 Hash Functions and Authentication Codes

Ta
b

.7
.4

-1
:

R
ou

nd
op

er
at

io
ns

in
M

D
5.

R
ou

nd
1

R
ou

nd
2

R
ou

nd
3

R
ou

nd
4

F
1
(a

,b
,c

,d
,M

0
,7

,d
7
6
a
a
4
7
8
)

F
2
(a

,b
,c

,d
,M

1
,5

,f
6
1
e2

5
6
2
)

F
3
(a

,b
,c

,d
,M

5
,4

,f
f
f
a
3
9
4
2
)

F
4
(a

,b
,c

,d
,M

0
,6

,f
4
2
9
2
2
4
4
)

F
1
(d

,a
,b

,c
,M

1
,1

2
,e

8
c7

b7
5
6
)

F
2
(d

,a
,b

,c
,M

6
,9

,c
0
4
0
b3

4
0
)

F
3
(d

,a
,b

,c
,M

8
,1

1
,8

7
7
1
f
6
8
1
)

F
4
(d

,a
,b

,c
,M

7
,1

0
,4

3
2
a
f
f
9
7
)

F
1
(c

,d
,a

,b
,M

2
,1

7
,2

4
2
0
7
0
d
b)

F
2
(c

,d
,a

,b
,M

1
1
,1

4
,2

6
5
e5

a
5
1
)

F
3
(c

,d
,a

,b
,M

1
1
,1

6
,6

d
9
d
6
1
2
2
)

F
4
(c

,d
,a

,b
,M

1
4
,1

5
,a

b9
4
2
3
a
7
)

F
1
(b

,c
,d

,a
,M

3
,2

2
,c

1
bd

ce
ee

)
F

2
(b

,c
,d

,a
,M

0
,2

0
,e

9
b6

c7
a
a
)

F
3
(b

,c
,d

,a
,M

1
4
,2

3
,f

d
e5

3
8
0
c)

F
4
(b

,c
,d

,a
,M

5
,2

1
,f

c9
3
a
0
3
9
)

F
1
(a

,b
,c

,d
,M

4
,7

,f
5
7
c0

f
a
f
)

F
2
(a

,b
,c

,d
,M

5
,5

,d
6
2
f
1
0
5
d
)

F
3
(a

,b
,c

,d
,M

1
,4

,a
4
be

ea
4
4
)

F
4
(a

,b
,c

,d
,M

1
2
,6

,6
5
5
b5

9
c3

)

F
1
(d

,a
,b

,c
,M

5
,1

2
,4

7
8
7
c6

2
a
)

F
2
(d

,a
,b

,c
,M

1
0
,9

,0
2
4
4
1
4
5
3
)

F
3
(d

,a
,b

,c
,M

4
,1

1
,4

bd
ec

f
a
9
)

F
4
(d

,a
,b

,c
,M

3
,1

0
,8

f
0
cc

c9
2
)

F
1
(c

,d
,a

,b
,M

6
,1

7
,a

8
3
0
4
6
1
3
)

F
2
(c

,d
,a

,b
,M

1
5
,1

4
,d

8
a
1
e6

8
1
)

F
3
(c

,d
,a

,b
,M

7
,1

6
,f

6
bb

4
b6

0
)

F
4
(c

,d
,a

,b
,M

1
0
,1

5
,f

f
ef

f
4
7
d
)

F
1
(b

,c
,d

,a
,M

7
,2

2
,f

d
4
6
9
5
0
1
)

F
2
(b

,c
,d

,a
,M

4
,2

0
,e

7
d
3
f
bc

8
)

F
3
(b

,c
,d

,a
,M

1
0
,2

3
,b

eb
f
bc

7
0
)

F
4
(b

,c
,d

,a
,M

1
,2

1
,8

5
8
4
5
d
d
1
)

F
1
(a

,b
,c

,d
,M

8
,7

,6
9
8
0
9
8
d
8
)

F
2
(a

,b
,c

,d
,M

9
,5

,2
1
e1

cd
e6

)
F

3
(a

,b
,c

,d
,M

1
3
,4

,2
8
9
b7

ec
6
)

F
4
(a

,b
,c

,d
,M

8
,6

,6
f
a
8
7
e4

f
)

F
1
(d

,a
,b

,c
,M

9
,1

2
,8

b4
4
f
7
a
f
)

F
2
(d

,a
,b

,c
,M

1
4
,9

,c
3
3
7
0
7
d
6
)

F
3
(d

,a
,b

,c
,M

0
,1

1
,e

a
a
1
2
7
f
a
)

F
4
(d

,a
,b

,c
,M

1
5
,1

0
,f

e2
ce

6
e0

)

F
1
(c

,d
,a

,b
,M

1
0
,1

7
,f

f
f
f
5
bb

1
)

F
2
(c

,d
,a

,b
,M

3
,1

4
,f

4
d
5
0
d
8
7
)

F
3
(c

,d
,a

,b
,M

3
,1

6
,d

4
ef

3
0
8
5
)

F
4
(c

,d
,a

,b
,M

6
,1

5
,a

3
0
1
4
3
1
4
)

F
1
(b

,c
,d

,a
,M

1
1
,2

2
,8

9
5
cd

7
be

)
F

2
(b

,c
,d

,a
,M

8
,2

0
,4

5
5
a
1
4
ed

)
F

3
(b

,c
,d

,a
,M

6
,2

3
,0

4
8
8
1
d
0
5
)

F
4
(b

,c
,d

,a
,M

1
3
,2

1
,4

e0
8
1
1
a
1
)

F
1
(a

,b
,c

,d
,M

1
2
,7

,6
b9

0
1
1
2
2
)

F
2
(a

,b
,c

,d
,M

1
3
,5

,a
9
e3

e9
0
5
)

F
3
(a

,b
,c

,d
,M

9
,4

,d
9
d
4
d
0
3
9
)

F
4
(a

,b
,c

,d
,M

4
,6

,f
7
5
3
7
e8

2
)

F
1
(d

,a
,b

,c
,M

1
3
,1

2
,f

9
9
8
7
1
9
3
)

F
2
(d

,a
,b

,c
,M

2
,9

,f
ce

f
a
3
f
8
)

F
3
(d

,a
,b

,c
,M

1
2
,1

1
,e

6
d
b9

9
e5

)
F

4
(d

,a
,b

,c
,M

1
1
,1

0
,b

d
3
a
f
2
3
5
)

F
1
(c

,d
,a

,b
,M

1
4
,1

7
,a

6
7
9
4
3
8
e)

F
2
(c

,d
,a

,b
,M

7
,1

4
,6

7
6
f
0
2
d
9
)

F
3
(c

,d
,a

,b
,M

1
5
,1

6
,1

f
a
2
7
cf

8
)

F
4
(c

,d
,a

,b
,M

2
,1

5
,2

a
d
7
d
2
bb

)

F
1
(b

,c
,d

,a
,M

1
5
,2

2
,4

9
b4

0
8
2
1
)

F
2
(b

,c
,d

,a
,M

1
2
,2

0
,8

d
2
a
4
c8

a
)

F
3
(b

,c
,d

,a
,M

2
,2

3
,c

4
a
c5

6
6
5
)

F
4
(b

,c
,d

,a
,M

9
,2

1
,e

b8
6
d
3
9
1
)

7.4 Construction and Classification of Hash Functions 181

As we see, each step has a unique additive constant. Each stepadds in the result
of the previous step, and this promotes a faster avalanche effect. The left circular avalanche effect

shift amountss in each round have been approximately optimized to yield a fas-
ter avalanche effect. The four shifts used in each round are different from the ones
used in other rounds. While no collisions for MD5 have yet been found, collisi-
ons have been found for the MD5 compression function, but this does not lead to
attacks against MD5 in practical applications. Regardlessof this weakness, MD5 is
widespread used in practice.

Secure Hash Algorithm (SHA)

The secure hash algorithm (SHA), based on MD4, was proposed by the US National SHA

Institute for Standards and Technology (NIST) for certain US federal government
applications [NIST92]. SHA is also used in the Digital Signature Standard (DSS).
The standard is the Secure Hash Standard (SHS) and SHA is the algorithm used in
this standard.

When a message of any length< 264 bits is input, the SHA produces 160 bit hash
value (longer than MD5!). SHA is designed to be computationally infeasible to
recover a message corresponding to a given message digest, or to find two different
messages which produce the same message digest.

- Initial values (hex): A = 67452301

B = efcdab89 C = 98badcfe

D = 10325476 E = c3d2e1f0

- Constants used in the algorithm:

Kt = 5a827999, for t = 0 to 19

Kt = 6ed9eba1, for t = 20 to 39

Kt = 8f1bbcdc, for t = 40 to 59

Kt = ca62c1d6, for t = 60 to 79

- Transformation of the mess. blocks Mt into words Wt:

Wt = Mt, for t = 1 to 15

Wt = (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16 <<< 1),

for t = 16 to 79

Fig. 7.4-7: One SHA operation.

We now will briefly describe how SHA algorithm works to produce the 160-bit
hash value. First the message is padded to make it a multiple of 512 bits. Five 32-bit
variablesA, B, C, D, andE (needed to produce a 160-bit hash value) are initialized
as shown in Fig. 7.4-7. Then the main loop of the algorithm begins. It processes
message blocks of 512 bits at a time and processes all blocks of the message. First
the five variables are copied into different variables:a getsA, b getsB, and so on.
The main loop has four rounds of 20 operations each (MD5 has four rounds of 16 main loop of SHA

operations). Each operation performs a nonlinear functionon three ofa, b, c, d, and

182 7 Hash Functions and Authentication Codes

e, and then does shifting and adding similar to MD5. The nonlinear functions of
SHA are:

ft(x, y, z) = (x ∧ y) ∨ ((¬x) ∧ z), for t = 0 to 19

ft(x, y, z) = x⊕ y ⊕ z, for t = 20 to 39

ft(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), for t = 40 to 59

ft(x, y, z) = x⊕ y ⊕ z, for t = 60 to 79.

The four constantsKt used in the algorithm are shown in Fig. 7.4-7. The message
block is transformed from 16 32-bit words (M0 to M15) to 80 32-bit wordsW0

to W79 (see Fig. 7.4-7). Ift is the operation number (from 1 to 80) and<<< s

represents a left circular shift ofs bits, then the main loop is:

FOR t = 0 to 79
TEMP = (a <<< 5) + f_t(b, c, d) + e + W_t + K_t

e = d

d = c

c = b <<< 30

b = a

a = TEMP

END

After this,a, b, c, d, ande are added toA, B, C, D, andE respectively and the algo-
rithm continues with the next block of data. The final output is the concatenation of
A, B, C, D, andE.

SHA has additional expand transformation (Mt to Wt), an extra round, and bettercomparison of SHA
and MD5 avalanche effect. A significant effect of the expansion of 16-word message blocks

to 80 word block in the compression function is that any two distinct 16-word
blocks yield 80-word values which differ in a larger number of bit positions, signi-
ficantly expanding the number of bit differences among message words input to the
compression function. The redundancy added by this preprocessing evidently adds
strength. The designers of SHA did not publish the design criteria for the algorithm.
There are no known cryptographic attacks against SHA. Because it produces a 160-
bit hash, it is more resistant to brute-force and birthday attacks than the 128-bit hash
functions.

Other Dedicated Hash Functions

RIPE-MD: The research and Development in Advanced Communication Tech-RIPEMD-128

nologies in Europe (RACE) programm was launched by the European Commu-
nity to support pre-normative work in communication standards and technologies.
As part of this effort, RACE established the RACE Integrity Primitive Evaluation
(RIPE) group, consisting of six leading European cryptography research groups,
to put together techniques to meet the anticipated securityrequirements for Inte-
grated Broadband Communication (IBC). Within this project, the RIPEMD (RIPE
Message Digest) hash function was developed, also denoted as RIPEMD-128. The

7.4 Construction and Classification of Hash Functions 183

algorithm is a variation of MD4, designed to resist known cryptanalytic attacks, and
produces a 128-bit hash value [RACE92].

Taking into account the knowledge gained in the analysis of MD4, MD5, and
RIPEMD-120, the hash algorithmRIPEMD-160was developed. The RIPEMD- RIPEMD-160

160 compression function differs from MD4 in the number of words of chaining
the variable, the number of rounds, the round functions themselves, the order in
which the input words are accessed, and the amounts by which results are rotated.
The overall RIPEMD-160 compression function maps 21-word inputs to 5-word
outputs. Each input block is processed in parallel by distinct versions of the com-
pression function. The 160-bit outputs of the separate lines are combined to give a
single 160-bit output.

Tab. 7.4-2: Summary of the most used hash functions.

Hash
function

Bitlength Rounds x Steps per round Relative
Speed

MD4 128 3 x 16 1.00

MD5 128 4 x 16 0.68

RIPEMD-128 128 4 x 16 twice (in parallel) 0.39

SHA-1 160 4 x 20 0.28

RIPEMD-160 160 5 x 16 twice (in parallel) 0.24

HAVAL is a variable-length hash function presented in 1993 by Zheng et al. HAVAL

[Zheng93]. It is based on MD5 and processes messages in blocks of 1024 bits
(MD5’s blocks are 512 bit), and has eight 32-bit chaining variables (MD5 has
four). HAVAL replaces MD5’s simple nonlinear functions with highly nonlinear
7-variable functions. Each round uses a single function, but in every step a different
permutation is applied to the inputs. It has a new message order and every step uses
a different additive constant. It has a variable number of rounds, from three to five,
each having 16 steps, and it can produce a hash length of 128, 160, 192, 224, or
256 bits. The variable number of rounds and the variable-length output result in 15
versions of this algorithm.

Snerfuis a one-way hash function designed by Ralph Merkle [Merkle90]. The heart Snerfu

of the algorithm is a functionH, which hashes 512-bit message blocks into 128-bit
values. The next block is appended to the hash of the previousblock and is hashed
again. After the last block the first 128 bits are appended to abinary representation
of the length of the message and is hashed one final time. The functionH is based
on a reversible block cipher function that operates on 512-bit blocks and randomizes
data in several passes. It is recommended to use Snerfu with at least eight passes.
However, in this case the algorithm is significantly slower than either MD5 or SHA.

184 7 Hash Functions and Authentication Codes

7.4.4 Provable Secure Hash Functions

Most hash functions used in the practice are heuristically secure. But a desired fea-
ture of cryptographic primitives is the provable security.A cryptographic method
is said to beprovably secureif it can be shown that breaking the method is essen-provable security

tially as difficult as solving a well-known problem, such as integer factorisation or
the computation of discrete logarithms. Hash functions canalso be designed using
some of this hard solvable number theoretic problems as kernel of the compression
function. A challenge in this approach is that all possible attacks lead to the ability
to solve the referenced problem, which is considered infeasible given current know-
ledge and an opponent with bounded resources.

Chaum-van Heijst-Pfitzmann (CHP) Hash Function

One example for a provably secure hash function is the Chaum-van Heijst-
Pfitzmann (CHP) hash function [Chaum92], based on the discrete logarithm pro-CHP hash function

blem. It is defined as follows: Supposep is a large prime andq = (p − 1)/2 is
also prime. Letα andβ be two primitive elements ofZp. The valuelogα(β) is not
public, and we assume that it is computationally infeasibleto compute this value.
The hash function

h : {0, ..., q − 1} × {0, ..., q − 1} → Zp \ {0}

is defined as follows:

h(x1, x2) = αx1βx2 mod p.

This hash function will be secure, if a particular discrete logarithm can not be
computed. It can be proved32 that if one collisionh(x1, x2) = h(x3, x4) for
(x1, x2) 6= (x3, x4) of the CHP hash functionh can be found, then the discrete
logarithmlogαβ can be computed efficiently. This hash function is not fast enough
to be of practical use, but it is conceptually simple and provides a nice example of
a hash function that can be proved to be secure under a reasonable computational
assumption.

7.5 Message Authentication Codes (MAC)

A message authentication code (MAC), also known ascryptographic checksum, is a
functionC of a variable-length messagem and a secret keyK shared only by sender
and receiver, that produces a fixed-length valueMAC that serves as authenticator:

MAC = C(K, m) or MAC = CK(m).

Actually, MAC is a key-dependent one-way hash function whose specific purpose
is message authentication. MACs have the same properties asthe one-way hash

32 The proof is out of the scope of this book. The proof is explained in [Stinson95b].

7.5 Message Authentication Codes (MAC) 185

functions discussed previously, but they also include a key. This implies the main
difference between message authentication with MACs and hash functions: Ever-
yone can prove whether a messagem is authentic if the authentication is performed
with a hash function, but only someone with an identical key can verify the MAC.

A MAC should have the following properties: properties

• Ease of computation: For a known functionC, given a keyK and an input
m, CK(m) is easy to compute.

• Compression: The functionC maps the inputm of arbitrary length to an output
CK(m) of fixed bit lengthn.

• Computation resistance: Given text-MAC pairs(mi, MACi) it is computatio-
nally infeasible to compute any text-MAC pair(m, MAC) for any new input
m 6= mi. The feature of computation resistance implies the property of key non-
recovery(it must be computationally infeasible to recoverK from one or more
pairs(mi, MACi) for thatK.

In general, the MAC function is a many-to-one function. The domain of the func-
tion consists of messages of some arbitrary length, whereasthe range consists of all
possible MACs and all possible keys. If ann-bit MAC is used, then there are2n pos-
sible MACs whereas there areN possible messages withN >> 2n. Furthermore,
with ak-bit key, there are2k possible keys.

MACs are very useful to provide authenticity without secrecy. They can be used
to authenticate files between users, or if the files of some user have been altered
(perhaps by a virus). A user can compute the MAC of his files andstore it in a table,
and use it later for comparison. This can not be achieved by using a hash function
for message authentication, because, for example, the virus can compute the new
hash value of the altered file and replace the table entry (since a key is not used). An
easy way to turn a one-way hash function into a MAC is to encrypt the hash value
with a symmetric algorithm. Vice versa, any MAC can be turnedinto a one-way
hash function by making the key public.

Requirements for MACs

In assessing the security of a MAC function, we need to consider the types of attacks security of MACs

that may be mounted against it. An objective of an adversary for a MAC algorithm is
the following:Without prior knowledge of the key K, compute a new text-MAC
pair (m, CK(m)) for some textm 6= mi, when one or more pairs(mi, CK(mi))

are given.So, the opponent should not be able to construct a new messageto match
a given MAC, it is however not necessary to reconstruct the key K. Similar to the
situation for signature schemes, the following attack scenarios exist for MACs:

• Known-text attack: One or more text-MAC pairs(mi, CK(mi)) are available.

• Chosen-text attack: One or more text-MAC pairs(mi, CK(mi)) are available for
mi chosen by the adversary.

• Adaptive chosen-text attack: Themi may be chosen by the adversary as above,
and successive choices based on the results of prior queriesare allowed.

186 7 Hash Functions and Authentication Codes

The functionCK(m) should be uniformly distributed in the sense that for randomly
chosen messagesm andm′, the probability thatCK(m) = CK(m′) is 2−n, where
n is the number of bits in the MAC. This requirement deals with the need to thwart
a brute-force attack based on chosen plaintext. That is, if we assume that the oppo-
nent does not know the keyK but does have access to the MAC function and can
present messages for MAC generation, then the opponent could try various messa-
ges until finding one that matches a given MAC. If the MAC function is uniformely
distributed, then a brute-force method would require on an average2n−1 attempts
before finding a message that fits a given MAC.

Key recovery of the MAC itself is, of course, the most damaging attack. A brute-
force attempt to discover the authentication key requires no less effort than that
required to discover the decryption key of the same length.

7.6 Some MAC algorithms

Compared to the large number of hash functions, relatively few MACs have been
proposed. Many of these are for historical reasons based on block ciphers. Many ite-
rated MACs can be described as iterated hash functions (see Fig. 7.4-1 and Eq. 7.4-
1). In this case, the MAC key is generally part of the output transformationg. It may
also be an input to the compression function in the first iteration, and be involved in
the compression functionf in every stage.

7.6.1 MAC based on block ciphers

The most commonly used MAC algorithm based on block cipher makes use of theCBC-MAC

CBC-mode. Input of the algorithm (Fig. 7.6-1) is the messagem and the secret
MAC-key K. The messagem is first padded if necessary, and then divided inb

blocksm1,, mb. If EK denotes encryption using the algorithmE with the keyK,
then the blockHb is computed as follows:

H1 = EK(m1)

Hi = EK(Hi−1 ⊕mi) for 2 ≤ i ≤ b ,

H = Hb.

E

+

K

m1

H1

E

+

K

m

H

2

2

E

+

K

m

H

H H

0

3

3

b -1E E E

+

K

KK’

m

optional

b

....

Fig. 7.6-1: CBC-based MAC algorithm.

7.6 Some MAC algorithms 187

Optionally, to increase the strength of a MAC, we can use a second keyK ′ 6= K

and computeH ′
b = E−1

K ′ (Hb) and finallyH = EK(H ′
b). This reduces the threat of

an exhaustive key search, without impacting the efficiency.RIPE-MAC is a variant
of CBC-MAC. Both versions,RIPE-MAC1(64-bit MAC) andRIPE-MAC3(64-bit RIPE-MAC1

RIPE-MAC3MAC), differ in their internal encryption functionE being either single DES or
two-key triple-DES, requiring a 56- or 112-bit keyK.

7.6.2 Constructing MACs from Hash Functions

A common suggestion is to construct a MAC from a hash algorithm by simply
including the secret key as part of the hash input. But the construction of a MAC MACs from hash

functionsfrom a hash function requires careful analysis, because some security risks arise. For
example, it is insecure to use thesecret prefix methodfor constructing MACs from
hash functions. In this method, the MAC of the messagem is MAC = H(K||m),
i.e. the keyK is appended at the beginning of the message, and then the hashvalue
is computed. It is also insecure to construct a MAC using the key K as the initial
valueIV of some iterated hash functions, or using the key as a suffix, i.e.MAC =

H(m||K) (secret suffix method). More secure is to append the key at both the start
and the end of the hash computations:MAC = H(K||p||m||K). Herep is a string
used to padK to the length of one block. For example, ifH is MD5 andK is
128 bits,p is a 384-bit string. This method is known as theenvelope method with
padding. One can also use the following secure construction also known ashash-
based MAC: MAC = H(K||p1||H(K||p2||m)), wherep1 andp2 are distinct strings
of sufficient length to padK out to the full block length of the compression function.

7.6.3 Dedicated (Customized) MACs

Dedicated MACs are algorithms designed for the specific purpose of message
authentication. We will mention here only three of them.

MAA (Message Authenticator Algorithm) is a customized MAC algorithm invol- MAA

ving 32-bit operations for all computations (designed for 32-bit machines). It uses
a messagem of arbitrary length and a 64-bit MAC-key as input and produces 32-
bit MAC on m. The main loop consists of two parallel interdependent streams of
computations. This algorithm is an ISO standard.

In MD5-MAC the compression function of the MD5 hash function is rearranged to MD5-MAC

depend onK, implying the secret key be involved in all iterations, thusproviding
additional protection.

The IBC-hash MAC algorithm is interesting because it is provably secure and the IBC-hash

chance of a successful attack can be quantified. The heart of the algorithm is the
iterationhi = ((mi mod p) + v) mod 2n. The secret key is the pairp andv, where
p is ann-bit prime andv is a random number less than2n. The valuesmi are derived
by a carefully specified padding procedure. The probabilities of breaking both the

188 7 Hash Functions and Authentication Codes

one-wayness and the collision-resistance can be quantifiedand the security level
can be chosen by changing the parameters.

189

8 Entity Authentication

8.1 Introduction

Computer systems are now used in almost all aspects of business and commerce
and there are various applications where it is necessary fora computer to verify the
identity of a person before allowing the person access (e.g.ATMs33). Conventio-
nal methods of identification based on possession of ID cardsor exclusive know-
ledge – like a PIN34 or a password – are not altogether reliable. ID cards can be
lost, forged, or misplaced; passwords can be forgotten or compromised. Biometric
authentication on the contrary is based on the use of physiological or behavioural
characteristics. One of the earliest and best-known biometric technologies is finger-
print recognition. New biometric applications include face, hand, finger, iris, retina,
signature, and voice recognition.

8.2 Entity Authentication

Entity authentication is a process whereby one party, theverifier, is assured of the
identity of a second party, theclaimant, involved in a protocol and that the claimant
has actually participated in the protocol. Typically, the verifier is presented with the
claimed identity of the claimant (e.g. that the claimant is Alice) and the goal is to
verify that the identity of the claimant is indeed Alice.

There are three main categories of criteria that may be used to authenticate a user:

• something the userknowse.g. a password or another secret fact;

• something the userhase.g. a smart card or token;

• something the useris e.g. a fingerprint or retinal pattern.

8.2.1 Authentication based on what the user knows

This method requires the user to provide information or responses to questions and
therefore involves asking the user a question, then checking the reply against a reply
stored in the system and if there is a match, the user is authenticated. For example,
a user logs onto a system and then provides a claimed identity, such as a user name.
The system then requests the password which, when entered correctly, serves to
verify the user’s identity.

Password mechanisms suffer the same problems as any other authenticator using
knowledge as proof of identity. If an impostor finds, guesses, or steals a user’s pass-
word, he has the key to an account, and can use it until the password is changed.

33 Automated teller machines.

34 Personal Identification Number.

190 8 Entity Authentication

8.2.2 Authentication based on what the user has

This method of user authentication, common to most mechanisms outside of those
used for computer systems, requires the possession of an object. Such a token, e.g.
keys, magnetic cards, must be shown to the authentication mechanism for the user
to be granted access. When used as the only means of authentication, thewhat-the-
user-hasmethod can be compromised by someone losing a valid token.

To strengthenwhat-the-user-hasmethods of authentication,what-the-user-knows
methods are typically added, such as requiring a code to use the token. ATMs are a
common example.

8.2.3 Authentication based on what the user is

The third method of user authentication requires the authentication device to mea-
sure some physical characteristic of the user being identified. The characteristics
could be either a user’s physiological traits, e.g. fingerprints, hand geometry, etc.
or his behavioural characteristics, e.g. voice and signature. This method of identi-
fication is calledbiometrics. The primary advantage is that a biometrics cannot be
misplaced or forgotten; it representssomething that the user is.

8.3 Password-based authentication

Password-based authentication still is the dominant mechanism for identity authen-
tication of computer users, even though passwords are susceptible to attack: Users
tend to choose passwords that are easy to remember, which in the case of textual
passwords normally implies that they are easy to obtain by searching through a care-
fully designed dictionary of candidate passwords. In one case study of over 14,000
Unix passwords, almost 25 % of the passwords were found by searching for words
from a carefully designed dictionary consisting of only3 ·106 words [Monrose99a].

8.3.1 Password selection

In traditional authentication schemes a password is a string of characters, usually
of length six or more. For selecting good passwords, four techniques are generally
known:

• User education: Users are instructed on how to select good passwords. In gene-
ral, this strategy does not work well because users do not follow these guidelines.

• Password generators: The system chooses a random password for each user.
From a theoretical point of view, this is the perfect solution. In practice, however,
users will tend to forget passwords, or, worse, they will write them down or store
them somewhere.

• Reactive password checking: Special programmes are run periodically by the
system administrators to find weak passwords and the corresponding users are
informed and asked to change their password.

8.3 Password-based authentication 191

• Proactive password checking: When a user selects a password, the system
checks immediately whether it is acceptable. If the password is obvious (e.g.
equal to the login name), or belongs to a given set of dictionaries, it is not accep-
ted and the user is asked to choose a new one.

Proactive password checking is considered to be the best approach.

8.3.2 Attacks

The security of a password system depends on how difficult it is for an attacker to
determine a valid password. The basic attacks that authentication protocols need to
guard against arereplay attacks(an attacker records messages and resends them at
a later time),password search, password guessing and dictionary attacks.

Password search

The password length provides an absolute bound to the numberof possible pass-
words in a system. Knowing the composition of allowable passwords, one can com-
pute the number of possible passwords allowed by a particular system byql, where
q is the size of the character space andl the length of the password.

Small increases in length can dramatically increase the number of possible pass-
words, which is usually too large to enable an exhaustive search35.

It would seem that passwords should be as long as possible. However, users must
be able to remember their passwords.

Password guessing and dictionary attacks

The space of passwords that are likely to be selected in practice is much smaller
than the number of possible passwords, since users tend not to use a wide variety of
symbols in their passwords. Making the attacker’s job even easier is the tendency
to select words or names as passwords. Not only does this practice make little use
of character space, it also drastically limits the number ofguesses an attacker has to
make. Words found in a dictionary, for instance, are poor passwords and knowledge
about a user can provide valuable clues to an attacker.

To prevent dictionary attacks, it is now common practice forsystem administrators
to invoke reactive password checkers on an existing collection of user chosen pass-
words to identify weak password choices, or to use proactivecheckers to filter out
certain classes of poorly chosen passwords when the user inputs his password for
the first time (see Section 8.3.1). Password checkers successfully increase the uncer-
tainty of user’s passwords thus making them move beyond the reach of dictionary
and exhaustive search attacks, but the resulting passwordsare not necessarily easy
for users to remember.

35 For detailed information about the number of possible passwords and the time required to test
each, see [Menezes96a], page 392.

192 8 Entity Authentication

8.3.3 Salting

Password guessing attacks are still likely to succeed when conducted on a large
collection of passwords, even if proactive and reactive checkers are being used. To
make dictionary attacks less effective, ann-bit random number (called thesalt) is
appended to a user’s password and the concatenated string isthen encrypted using
a one-way hash function. Both the encrypted string and the salt are stored in a pass-
word table. When a user tries to authenticate and enters his password, the salt is
retrieved from the password table, prepended to the password, and the concatenated
string encrypted. The result is compared to that stored in the password table and
authentication succeeds if they match. The difficulty of exhaustive search on any
particular user’s password is unchanged by salting since the salt is given in clear-
text in the password file. However, salting increases the complexity of a dictionary
attack against a large set of passwords simultaneously, by requiring any precompu-
ted dictionary of hashed passwords to contain2n variations of each trial password.
Salting also ensures that users with the same textual passwords will have different
encrypted entries in the password table.

8.3.4 One-time passwords

In 1981 Lamport proposed a one-time password authentication scheme based on a
one-way function.

A wants to identify itself toB by use of a one-time password:

1. One-time setup:

a. UserA begins with a secretw. Let H be a one-way function.

b. A constantt is fixed (e.g.t = 100 or 1000), defining the number of
identifications to be allowed (thereafter, the system is restarted with a
neww to avoid replay attacks).

c. A transfersw0 = H t(w), in a manner guaranteeing its authenticity, to
the systemB. B initializes its counter forA to iA = 1.

2. Protocol messages: Theith identification,1 ≤ i ≤ t, proceeds as follows:

A→ B : A, i, wi(= H t−i(w)).

HereA→ B: X denotesA sending the messageX to B.

3. Protocol actions: To identify itself for sessioni, A does the following:

a. A computeswi = H t−i(w), and transmits (1) toB.

b. B checks thati = iA, and that the received passwordwi satisfies:
H(wi) = wi−1. If both checks succeed,B accepts the password, sets
iA ← iA+1, and saveswi for the next session verification.

Lamport’s scheme can withstand an intruder obtaining useful information for brea-
king the system by tampering with or eavesdropping on the communication links.
Lamport’s scheme is practical and can be implemented with microcomputers.

8.4 Challenge-response 193

However, in order to enforce security, users should change their passwords peri-
odically.

8.4 Challenge-response

The main difficulty in designing secure password mechanismsarises from the fact
that the space of passwords from which most users tend to choose is small and
much easier to attack by guessing than, for example, random cryptographic keys.
Guessing attacks are most effective when a large number of guesses can be made
automatically and each guess verified to see whether the guess was correct. A stan-
dard way to address this issue is to use salting as described in Section 8.3.3.

More effective solutions to the problem associated with time-invariant passwords
are those that involve the use of challenge-response mechanisms. Challenge-
response is a common authentication technique whereby an entity is prompted (the
challenge) to provide some private information (the response). The time-variant
challenge36 is typically a number chosen randomly and secretly by one entity at the
beginning of the protocol.

8.4.1 Challenge-response based on symmetric encryption

In case of challenge-response protocols based on symmetric-key encryption both
users (claimant and verifier) are required to share a symmetric key. In systems with a
small number of users, each pair of users may share a key a priori. In larger systems
there may be need for an on-line trusted third party (TTP) providing session keys to
two entities. Therefore, each entity also needs to share a key with the TTP.

In the following, challenge-response based on symmetric-key encryption according
to ISO/IEC 9798-2 is specified. Provided that both usersA andB share a secret key,
the claimant verifies its identity by demonstrating knowledge of the shared key by
decrypting a challenge (and possibly additional data) using the key.

Unilateral authentication based on a timestamp

A→ B : EK(tA, B∗),

wheretA denotes a timestamp generated byA , EK a symmetric encryption algo-
rithm with a keyK shared byA andB, and optional message fields are denoted by
an asterisk (*). Upon reception and decryption,B verifies that the timestamptA is
acceptable, and optionally verifies the received identifieras its own. The identifier
B here prevents an adversary from re-using the message immediately onA, in the
case that a single bidirectional keyK is used.

36 For detailed information about time-variant parametersand random numbers, see [Mene-
zes96a], pp. 397.

194 8 Entity Authentication

Unilateral authentication based on random numbers

Timestamps may be replaced by a random number, at the cost of an additional
message:

A← B : rB,

A→ B : EK(rB, B∗),

whererB denotes a random number generated byB. B decrypts the received mes-
sage and verifies that the random number matches that sent in message one. Optio-
nally, B checks that the identifier in message two is its own; this prevents a reflec-
tion attack in the case of a bidirectional keyK. To prevent chosen-text attacks on
the encryption schemeEK , A may (as below) embed an additional random number
in message two. Another possibility is to restrict the form of the challenges; the
critical requirement is that they are non-repetitive.

Mutual authentication based on random numbers

A← B : rB,

A→ B : EK(rA, rB, B∗),

A← B : EK(rB, rA),

whererA denotes a random number generated byA. Upon reception of message
two, B carries out the checks as above and, in addition, recovers the decryptedrA

for inclusion in message three. Upon decryption of message three,A verifies that
both random numbers match those used earlier. The second random numberrA in
message 2 serves both as a challenge and to prevent chosen-text attacks.

8.4.2 Challenge-response based on public-key encryption

Public-key encryption may also be used for challenge-response protocols. In this
case, a claimant demonstrates knowledge of its private key in two ways:

1. the claimant decrypts a challenge encrypted under its public key, or

2. the claimant digitally signs a challenge.

The public-key pair used for identification should not be used for other purposes,
since that could compromise security.

8.4 Challenge-response 195

Challenge-response based on public-key decryption

A← B : h(r), B, PA(r, B),

A→ B : r,

wherePA denotes the public-key encryption algorithmA, andh a one-way hash
function. B chooses a random numberr, computes thewitness37x = h(r), and
computes the challengee = PA(r, B). B sends message one toA. A then decrypts
e to recoverr′andB′, computesx′ = h(r′), and terminates ifx′ 6= x or if B′ is
unequal to its own identifierB. Otherwise,A sendsr = r′ to B. Entity authentica-
tion of A is successful, ifB verifies that the receivedr agrees with that sent earlier.
The use of the witness eliminates chosen-text attacks.

Challenge-response based on digital signatures

In the following, challenge-response based on signatures according to ISO/IEC
9798-3 is specified. If the verifier has the authentic public key of the claimant a
priori, certificates may be omitted. Otherwise, it is assumed that the verifier has
appropriate information to verify the validity of the public key contained in a recei-
ved certificate.

Unilateral authentication based on a timestamp

A→ B : certA, tA, B, SA(tA, B),

whererA denotes a random number andtA a timestamp generated byA. SA denotes
A’s signature mechanism andcertA the public-key certificate containingA’s signa-
ture public key. Upon reception,B verifies that the timestamp is acceptable, the
received identifierB is its own, and checks that the signature over these two fields
is correct by usingA’s public key extracted fromcertA after verifying the latter.

Unilateral authentication based on random numbers

Timestamps may be replaced by a random number, at the cost of an additional
message:

A← B : rB,

A→ B : certA, rA, B, SA(rA, rB, B),

B verifies that the cleartext identifier is its own, and verifiesthat A’s signature is
valid over the cleartext random numberrA, the same numberrB as sent in message
one, and its identifier. The use of the signedrA prevents chosen-text attacks.

37 x is evidence for the knowledge ofr without disclosing it.

196 8 Entity Authentication

Mutual authentication based on random numbers

A← B : rB,

A→ B : certA, rA, B, SA(rA, rB, B)),

A← B : certB, A, SB(rB, rA, A),

Processing of messages one and two is as above and message three is processed
analogously to message two.

8.5 Zero-knowledge

Challenge response protocol itself uses something similarto zero-knowledge
concepts but uses other encryption techniques, like publickey techniques, or
symmetric-key techniques. As we will see in this chapter, zero-knowledge proto-
cols on the other hand do not rely on digital signatures or public key-encryption,
and avoid the use of block ciphers, sequence numbers, and timestamps. They make
use of random numbers not only as challenges, but also as commitments to prevent
cheating.

A natural way of establishing a person’s identity is to ask him to supply a proof of
knowledge of a fact that this person is supposed to know. In zero-knowledge (ZK)
protocols, the claimant (called aprover in the context of zero-knowledge proto-
cols)A demonstrates knowledge of a secret to the verifierB, without revealing any
information whatsoever that is of use toB in conveying this knowledge to others.

General structure of zero-knowledge protocols

For a large class of zero-knowledge protocols the procedureis as follows:

A→ B : witness,

A← B : challenge,

A→ B : response.

The prover claiming to beA selects a random element from a pre-defined set as
its secret commitment, and therewith computes an associated (public) witness. This
defines a set of questions all of whichA claims to be able to answer and only the
legitimate partyA, with knowledge ofA’s secret, is truly capable of answering
all the questions. The answer to any one question provides noinformation about
A’s long-term secret.B’s subsequent challenge selects one of these questions.A

provides its response, whichB verifies for correctness.

The protocols of Feige-Fiat-Shamir, Guillou-Quisquater,and Schnorr provide solu-
tions to the identification problem. Each one has advantagesand disadvantages with
respect to various performance criteria and for specific applications (see [Mene-
zes96a], p. 416).

8.5 Zero-knowledge 197

8.5.1 Feige-Fiat-Shamir identification protocol

The Feige-Fiat-Shamir identification protocol enables an entity to identify itself by
providing knowledge of a secret using a zero-knowledge proof. The protocol reveals
no information whatsoever aboutA’s secret identification value(s).

1. Selection of system parameters. After selecting two secret primesp and q

each congruent to3 mod 4, the trusted third partyT publishes the common
modulusn = pq for all users.n has to be computationally infeasible to factor.

2. Selection of per-entity secrets. Each entityA does the following

a. selectk random integerss1, . . . , sk in the range1 ≤ si ≤ n − 1, andk

random bitsb1, . . . , bk.

b. computevi = (−1)bi · (s2
i)

−1 mod n for 1 ≤ i ≤ k.

c. A identifies itself by conventional means toT , which then registers
A’s public key (v1, . . . , vk; n), while only A knows its private key
(s1, . . . , sk) andn. Therewith the one-time set-up phase is completed.

3. Protocol messages. The three messages involved in each ofthet rounds are

a. A→ B : (x = ±r2 mod n)

b. A← B : (e1, . . . , ek), ei ∈ {0, 1}
c. A→ B : (y = r ·∏ej=1 sj mod n).

4. Protocol actions.A identifies itself toB by t executions of the following steps
andB accepts the identity only if allt executions are successful.

a. A chooses a random integerr, 1 ≤ r ≤ n − 1, and a random bitb. A

then computesx = (−1)b · r2 mod n and sends the witnessx to B.

b. B sends the randomk-bit vector(e1, . . . , ek), i.e. the challenge, toA.

c. A computes the responsey = r ·∏k
j=1 s

ej

j mod n and sends it toB.

d. B computesz = y2 · ∏k
j=1 v

ej

j mod n , and checks thatz = ±x and
z 6= 0.

8.5.2 Guillou-Quisquater identification protocol

The Guillou-Quisquater (GQ) identification scheme – an extension of the Fiat-
Shamir protocol – involves three messages between the claimantA whose identity
is to be proven, and the verifierB.

1. Selection of system parameters.

a. A trusted third partyT selects random RSA-like primesp andq yielding
a modulusn = pq.

b. T defines a public exponentv ≥ 3 with gcd(v, φ) = 1 whereφ =

(p− 1)(q − 1), and computes its private exponents = v−1 mod φ.

c. System parameters(v, n) are made available for all users.

2. Selection of per-user parameters.

198 8 Entity Authentication

a. Each entityA is given a unique identityIA from which JA = f(IA),
satisfying1 < JA < n, is derived using a known redundancy function
f .

b. T gives the secretsa = (JA)−s mod n to A.

3. Protocol messages. The three messages involved in each ofthet (oftent = 1)
rounds are

a. A→ B: IA, x = rv mod n

b. A← B: e, 1 ≤ e ≤ v

c. A→ B: y = r · se
A mod n.

4. Protocol actions.A identifies itself toB by t executions of the following steps
andB accepts the identity only if allt executions are successful.

a. A selects a secret random integerr, i.e. the commitment,1 ≤ r ≤ n−1,
and computes the witnessx = rv mod n.

b. A sends the pair of integers(IA, x) to B.

c. B selects the challengee (a random integer),1 ≤ e ≤ v and sends it to
A.

d. A computes the responsey = r · sA
e mod n and sends it toB.

e. B receivesy, constructsJA from IA using f , computesz = JA
e ·

yv mod n and acceptsA’s proof of identity if bothz = x andz 6= 0.

8.5.3 Schnorr identification protocol

An alternative to the Fiat-Shamir and GQ protocols is the Schnorr identification
protocol, whose security is based on the intractability of the discrete logarithm pro-
blem. The basic idea is thatA proves knowledge of a secreta (without revealing it)
in a time-variant manner (depending on a challengee), identifying A through the
association ofa with the public keyv via A’s authenticated certificate.

1. Selection of system parameters.

a. A suitable primep is selected such thatp − 1 is divisible by another
primeq.

b. An elementβ is chosen,1 ≤ β ≤ p− 1, having multiplicative orderq.

c. Each party obtains an authentic copy of the system parameters (p, q, β)
and the public key of the trusted third partyT , allowing verification of
T ’s signatureST (m) on messagesm.

d. A parametert, 2t < q, is chosen.

2. Selection of per-user parameters.

a. Each claimantA is given a unique identityIA.

b. A chooses a private keya, 0 ≤ a ≤ q−1, and computesv = β−a mod p.

8.6 Biometrics 199

c. A identifies itself by conventional means toT , transfersv to T with
integrity, and obtains a certificatecertA = (IA, v, ST (IA, v)) from T

bindingIA with v.

3. Protocol messages. The three messages involved are

a. A→ B : certA, x = βr mod p

b. A← B : e, 1 ≤ e ≤ 2t < q

c. A→ B : y = ae + r mod q.

4. Protocol actions.A identifies itself toB as follows

a. A chooses a random numberr, i.e. the commitment,1 ≤ r ≤ q − 1,
computes the witnessx = βr mod p, and sends protocol message one to
B.

b. B authenticatesA’s public keyv by verifiying T ’s signature oncertA,
and sends a never previously used random challengee, 1 ≤ e ≤ 2t, to
A.

c. A verifies1 ≤ e ≤ 2t, and sends the responsey = ae + r mod q to B.

d. B computesz = βyve mod p, and acceptsA’s identity if z = x.

8.6 Biometrics

8.6.1 Introduction

Biometrics is the science of automatically identifying individuals based on their dis-
tinctive physiological or behavioural characteristics and unlike PINs or passwords,
biometrics cannot be lost, stolen, or overheard. A physiological characteristic is a
relatively stable physical feature such as a fingerprint, iris pattern, or retina pattern.
A behavioural characteristic, e.g. signature, keystroke pattern, voice, on the other
hand, has some physiological basis, but also reflects a person’s emotional state (see
Fig. 8.6-1).

Biometrics

Physiological Behavioural

Face Fingerprint Hand Eye Signature VoiceKeystroke

Fig. 8.6-1: Biometrics ecompasses both physiological and behavioural characteristics.

Access management based on biometric techniques can be applied to:

200 8 Entity Authentication

• access to banks and strategic structures,

• user recognition for banking transactions via ATMs,

• user recognition for information applications residing indatabases (consultation
via remote access, the Internet or a WAN), or

• control of any access to information-technology applications.

Any human physiological or behavioural characteristic could be a biometrics pre-
conditioned if it has the following properties ([Jain99a]):

• universality - every person should have the characteristic,

• uniqueness - no two persons should be the same in terms of the characteristic,

• permanence - the characteristic should be invariant with time, and

• collectability - the characteristic can be measured quantitatively.

8.6.2 Authentication and Identification

Biometric systems can be used for identifying an individualfrom all those enrolled
in the system, by authenticating a claimed identity.

• Identification:
Identification is a one-to-many comparing process: a biometric sample of an
unknown person is presented to the system. The system compares the sample
(template) with a database of reference templates of known individuals. On the
basis of the comparison, the system then picks the one that matches the charac-
teristics of the unknown individual.

• Authentication:
Authentication is a one-to-one comparing process: a personpresents a biome-
tric sample and a claim (e.g. name, number) that a particularidentity belongs to
the system. The sample is then compared against a single reference template of
a single enrollee whose identity is being claimed. The algorithm either accepts
(match) or rejects (non-match) the claim. The reference template does not have
to reside in a large database. It can be carried within a smartcard or other secu-
rity device.

Biometric systems that rely on identification are mainly used in law enforcement,
forensics, and intelligence. These applications include identifying faces from mug
shots, fingerprints, and surveillance images. Authentication is used during point-of-
sale transactions, to control access to computers or to secure buildings.

8.6.3 Architecture and functionality

A biometric system is an automated system capable of

• capturing a biometric sample from a user,

• extracting biometric data from that sample,

• comparing the biometric data with that contained in one or more reference tem-
plates,

8.6 Biometrics 201

• deciding how well they match, and

• indicating whether or not an identification or authentication of identity has been
achieved.

Logically, a biometric system can be divided into two stages: the enrollment module
and the identification module (Fig. 8.6-2).

In both processes, the first stage is for the user to present his biometric feature
(e.g. fingerprint) to the system, and a biometric sample (e.g. fingerprint image) is
captured. The second stage converts this biometric sample to biometric data (e.g.
minutiae38 coordinates) for matching. The final stage of the enrollmentprocess is
to form the reference template for the individual; in the case of authentication or
identification the final stage is to compare the biometric data with the reference
template.

Capture

Authentication or identification

Present
biometric

Enrolment

Process Store

Capture
Present
biometric

Process

Compare

Match

No match

Fig. 8.6-2: Basic biometric process.

• Enrollment produces a biometric data record for storage andfuture matching enrollment

operations through a series of capture/process steps.

• Authentication compares (on a one-to-one basis) newly captured resp. processedauthentication

biometric samples against previously enrolled biometric samples from a known
individual. This step answers the question "Is this person who he claims to be?".

• Identification compares (on a one-to-many basis) newly captured resp. proces- identification

sed biometric samples against a database of previously enrolled samples. This
answers the question "Who is this person?".

• Capture obtains the raw biometric data (like a bitmapped finger image) from a biometric data

biometric capture device (like a finger scanner).

• Process extracts a unique biometric identifier (like fingerprint details) from the biometric identifier

raw biometric data.

38 Small details found in finger images such as ridge endings or bifurcations.

202 8 Entity Authentication

8.6.4 Error statistics

The most commonly discussed measure of a biometric’s performance is its identify-
ing power. Biometric systems can never provide an absolutely certain identification
because analysis of physiological and behavioural characteristics has a natural range
of variation. The presentation of a correct/incorrect password in a password-based
authentication system always correctly results in acceptance/denial of an identity
authentication claim. On the other hand, even if a legitimate biometric identifier
is presented to a biometric-based authentication system, the correct authentication
may not be guaranteed due to sensor noise and limitations of feature extractor and
matcher (false rejection). Similarly, there is a possibility that an impostor will be
incorrectly accepted by a biometric-based authenticationsystem (false acceptance).

The corresponding error rates are calledfalse rejection rate(FRR) andfalse accep-
tance rate(FAR). They determine the quality of a biometric system (seeFig. 8.6-3).

er
ro

r
ra

te
 %

FAR

Equal Error Rate

false rejections

false acceptances

person
accepted

FRR

person
rejected

difference between biometric sample and reference template

decision threshold

Fig. 8.6-3: False rejections and false acceptances.

False Acceptance Rate (FAR)

FAR is the probability that a biometric system will incorrectly identify an individualFAR

or will fail to reject an impostor. It is stated as follows:

FAR = NFA/NIIA

or

FAR = NFA/NIV A

where FAR is the false acceptance rate, NFA is the number of false acceptances,
NIIA is the number of impostor identification attempts, and NIVA is the number of
impostor verification attempts.

8.6 Biometrics 203

False Rejection Rate (FRR)

FRR is the probability that a biometric system will fail to identify an enrollee, or FRR

verify the legitimate claimed identity of an enrollee. It isstated as follows:

FRR = NFR/NEIA

or

FRR = NFR/NEV A

where FRR is the false rejection rate, NFR is the number of false rejections, NEIA is
the number of enrollee identification attempts, and NEVA is the number of enrollee
verification attempts.

In a perfect biometric system, both error rates would be zero. Unfortunately, bio-
metric systems are not perfect, such systems operate between the two extremes. For
most applications, the system parameters are set to achievea desired false accep-
tance rate, which results in a corresponding false rejection rate. The parameter set-
ting depends on the application. For a bank’s ATM, where the overriding concern
may be to avoid irritating legitimate customers, the false-reject rate will be set low
at the expense of the false-alarm rate. On the other hand, forsystems that provide
access to a secure area, the false-alarm rate will be the overriding concern.

Because system parameters can be adjusted to achieve different false acceptance
rates, it often becomes difficult to compare systems that provide performance mea-
surements based on different false acceptance rates.

8.6.5 Attacks

There are several possible sources of attacks on a biometricsystem, which are des-
cribed below (see Fig. 8.6-4).

1. Fake biometric at the sensor: In this mode of attack, a possible reproduction
of the biometric being used will be presented to the system. For example, a
fake finger or a copy of a signature.

2. Resubmission of old digitally stored biometrics signal:In this mode of attack,
an old recorded signal is replayed into the system bypassingthe sensor. For
example, presentation of an old copy of fingerprint image or recorded audio
signal of a speaker.

3. Override feature extract: The feature extractor could beattacked with a Trojan
horse to change it to produce feature sets of choice.

4. Tampering with the feature representation: After the features have been
extracted from the input signal, they are replaced with a synthesized fea-
ture set of choice assuming the representation is known. Often the two stages
of feature extraction and matcher are inseparable and this mode of attack is
extremely difficult. However, if minutiae are transmitted to a remote matcher
(e.g. over the Internet) than this threat is very real.

204 8 Entity Authentication

5. Override matcher: The matcher is attacked to produce the desired result.

6. Tampering with stored templates: The database of enrolled templates is
available locally or remotely. This database can also be distributed over
several servers. The stored template attacker tries to modify one or more tem-
plates in the database which could result in at least denial of service for the
corrupted template.

7. Channel attack between stored templates and the matcher:The templates from
the stored database are sent to the matcher through a channelwhich could be
attacked to change the contents of the templates before theyreach the matcher.

8. Decision override: If the final result can be overridden with the choice of
result from the attacker, the final outcome is very dangerous. Even if the actual
pattern recognition system has an excellent performance characteristic, it can
be rendered useless by a simple exercise of overriding the result.

Sensor
Feature

Extractor Matcher
Application

Device

Override
feature extract

Stored
templates

Channel

1

4

3 7 6

Override
matcher

5

82

Yes/No

Fig. 8.6-4: False rejections and false acceptances.

There are several techniques to prevent attacks at various points. For instance, sen-
sing finger conductivity or pulse can stop simple attacks at point 1. Encrypted com-
munication channels can eliminate at least remote attacks at point 4. The simplest
way to stop attacks at points 5, 6 and 7 is to have the matcher and the database
reside in a secure location. Of course even this cannot prevent attacks in which
there is collusion. Cryptography again can help at point 8.

205

9 Key Management Techniques

9.1 Introduction

Security services based on cryptographic mechanisms oftenassume cryptographic
keys to be distributed to the parties which are involved in communication before cryptographic keys

securing the communication. The secure management of thesekeys is one of the
most critical elements when integrating cryptographic functions into a system. Even
the most ingenious security concept will be ineffective if the key management is
weak. Key management includes the

• generation,

• certification and authentication,

• establishment and distribution,

• escrow/recovery,

• storage, update and destruction,

of keying material. Key management techniques depend on theunderlying crypto-
graphic techniques, the intended use of the keys and the implied security policy.
The appropriate protection of keys is subject to a number of factors, such as the
type of application for which the keys are used, the threats they face, or the diffe-
rent states the keys may assume. Primarily, depending upon their type, keys have to
be protected against disclosure, modification, destruction and replay.

9.2 Key Generation

There are several possibilities to generate keys used in cryptographic systems. The
main criteria for a chosen method is the key lifetime and its application. Crypto-
graphic keys are often differentiated in data encryption keys (DEK), key encryption data encryption keys

keys (KEK) and master keys. Keys which are usually used to secure communi- key encryption keys

master keyscation should have a limited lifetime, whereas data encryption keys may be used
for a longer period. Master keys, which may have a long lifetime, are exclusively
used to encrypt KEKs and should be stored in secure hardware components. Every
key generation must be carried out in such a way that unauthorized persons have no
access to the generation process. Therefore the keys must begenerated in a trustwor-
thy site or from authorized users of a cryptographic system in a trusted environment.
Beside the key generation environment, the generation process is very important for
the security of a system. In order to evaluate the security ofa cryptographic algo-
rithm usually made assumption is that every key occurs with the same probability.
In this respect, an ideal case to generate keys is a true random processes like tossing
a coin or throwing a dice. Such manual methods are expensive and cannot be used
to generate lots of keys or keys with a short lifetime. But in some special cases e.g.
the generation of master keys, the use of these secure methods is recommended. A
possibility to generate keys automatically is the use of methods based on radioactive

206 9 Key Management Techniques

sources, quantum effects in semiconductors or resistance noise. Due to the mentio-
ned problems with true random processes, cryptographic keys are often generated
by pseudorandom processes. Most common software for generating pseudorandom
numbers available on many computer systems is usually too predictable to be used
for this purpose. One possibility of generating cryptographic keys is to choose a
suitable pseudorandom generator (which guarantees unpredictable values) and to
initialize it with a manually produced master value. Such a key generator expands
one true random key into several pseudorandom keys.

9.3 Certification and Authentication

Certificates are issued for authentication purposes. A credential containing identify-
ing data together with other information (e.g. public keys)is rendered unforgeable
by some certifying information (e.g. a digital signature provided by aKey Certifica-
tion Center). Certification may be an online service where some certification autho-
rity provides interactive support and is actively involvedin the key distribution pro-
cesses; or it may be an offline service so that certificates areissued to each entity at
some initial stage. The three main types of authentication are entity authenticationauthentication

or identification, message content authentication, and message origin authentica-
tion. The term verification refers to the process of checkingthe appropriate claims,
i.e. the correct identity of an entity, the unmodified message content, or the correct
source of a message. The validity of a certificate can be verified using some public
information (e.g. a public key of aKey Certification Center), and can be carried out
without the assistance of the certification authority, so that the trusted party is only
needed for issuing the certificates.

9.4 Key Establishment

Key establishment is the process of making a key available toone or more enti-
ties. Key establishment techniques include secret key agreements and key transport
for secret, and public keys. For many environments, protocols that allow to esta-
blish keying material in one pass are of particular interest. If entity authentication
is a requirement, typically a setup phase is needed prior to key establishment. The
establishment of keys can be rather complex. Key establishment protocols are influ-
enced by the nature of the communication links, the trust relationships involved and
the used cryptographic techniques. The entities may eithercommunicate directly or
indirectly, they may belong to the same or to different security domains, and they
may or may not use the services of a trusted authority. The following conceptual
models illustrate how these different aspects affect key establishment.

9.4 Key Establishment 207

9.4.1 Point-to-Point Key Establishment

The basic mechanism of every key establishment technique isthe point-to-point
key establishment (see Fig. 9.4-1). If based on symmetric cryptographic techniques,
point-to-point key establishment requires that the two parties involved already share
a key that can be used to protect the keying material to be established. If based
on asymmetric techniques, point-to-point key establishment typically requires that
each of the parties has a public key with its associated private key, and that the
authenticated public key is known to the other party:

• For data integrity or data origin authentication, the recipient requires the sender’sdata integrity

corresponding public key certificate.

• For confidentiality, the sender requires a public key certificate of the intended confidentiality

recipient.

A B
Fig. 9.4-1: Point-to-point key establishment.

9.4.2 Key Establishment Within One Domain

One of the simplest forms of key establishment employs a single Trusted Third
Party (TTP) (e.g. aKey Distribution Center(KDC), aCertification Authority(CA)) Trusted Third Party

for the entire system (see Fig. 9.4-2). This authority may offer key management
services such as the generation, certification, distribution and translation of keying
material. When entities use asymmetric techniques for the secure exchange of infor-
mation, each entity may need to contact its authority to get an appropriate public
key certificate. In situations where the communicating partners trust each other and
can mutually authenticate their public key certificates, noauthority is needed. When
symmetric cryptography is used between two such entities, the sender and the recei-
ver are required to share keys with the authority. Key establishment then is initiated
in one of two ways:

• By one entity generating the key and sending it to aKey Translation Center
(KTC). The KTC receives an enciphered key from one entity, deciphers it and
reciphers it using the key shared between itself and the other entity. Then it may
either forward the re-enciphered key directly, or send it back to the first entity,
who forwards it to the second entity.

• By one entity asking a KDC to generate a key for subsequent distribution. The
KDC then either distributes the key directly to both entities, or sends it back to
the initiator, who forwards it to the other entity.

208 9 Key Management Techniques

$

TTP

A B
Fig. 9.4-2: Key establishment using aTrusted Third Party.

9.4.3 Key Establishment Between Domains

The third model involves entities belonging to different security domains (see
Fig. 9.5-1). By definition, each domain has its own authority. If A andB either
trust each other or each entity trusts the authority of the other’s domain, then keys
may be distributed according to the model described above. When the entities use
asymmetric techniques and do not have access to a common directory service that
offers public key certificates, each entity shall contact its respective authority to
get its partner’s public key certificate. The authorities ofA andB may exchange
the public key certificates of entitiesA andB and forward them toA andB. A
second approach for public key certificates is cross certification exchanging, where
the CAs certify the public keys of the other CAs. When the entities use symmetric
techniques, at least one of them has to contact its authorityto receive a secret key
for communication. The authorities then establish a commonsecret key to be used
by the entities. This key may be distributed by one authorityto both entities using
the other authority as a KTC, or via one of the entities which is responsible for
forwarding the key to the other entity.

9.5 Key Distribution

Key distribution refers to procedures by which keys are securely provided to parties
legitimately asking for them. The fundamental problem of key exchange or dis-
tribution is to establish keying material to be used in symmetric and asymmetric
mechanisms whose origin, integrity, and confidentiality can be guaranteed. As a
result of diverse decisions appropriate to different circumstances, a large variety of

9.5 Key Distribution 209

key distribution protocols exist. Therefore it is necessary to explicate key distribu-
tion techniques in order to understand which goals the different techniques achieve,
and on which assumption they depend.

$

TTP A

$

TTP B

BA

Domain A Domain B

Fig. 9.5-1: Key establishment between two domains.

9.5.1 Techniques for Distributing Public Keys

Protocols involving public key cryptography are typicallydescribed assuminga
priori possession of (authentic) public keys of appropriate parties. This allows full
generality among various options for acquiring such keys. Alternatives for distribu-
ting explicit public keys with guaranteed or verifiable authenticity, including public
exponentials for Diffie-Hellman key exchange (or more generally, public parame-
ters), include the following.

• Point-to-Point delivery over a trusted channel: Authenticpublic keys of other point-to-Point delivery

users are obtained directly from the associated user by personal exchange, or
over a direct channel, originating at that user, and which guarantees integrity
and authenticity. This method is suitable if used infrequently, or in small closed
systems. A related method is to exchange public keys and associated information
over an untrusted electronic channel, and provide authentication of this informa-
tion by communicating a hash from it via an independent authentic channel. One
of the disadvantages of this method is the cost of the trustedchannel.

210 9 Key Management Techniques

• Direct access to a trusted public file (e.g. public key register): A public database,
with trusted integrity, may be set up to contain the name and authentic public
key of each system user. This may be implemented as a public key register ope-public key register

rated by a trusted party. Users acquire keys directly from this register. While
remote access to the register over unsecured channels is acceptable against pas-
sive adversaries, a secure channel is required for remote access in the presence of
active adversaries. One method of authenticating a public file is by tree authenti-
cation of public trees. Authentication trees provide a method for making public
data available with verifiable authenticity, by using a treestructure in conjunc-
tion with a suitable hash function, and authenticating the root value.

• Use of an online trusted server: An online trusted server provides access toonline trusted server

the equivalent of a public file storing authentic public keys, returning reques-
ted individual public keys in signed transmissions; confidentiality is here not
required. The requesting party possesses a copy of the servers’ signature verifi-
cation public key, allowing verification of the authenticity of such transmissions.
Disadvantages of this approach are that the trusted server must be online, or that
the trusted server may become a bottleneck.

• Use of an offline server and certificates: In a one-time process, each partyAoffline server

contacts an offline trusted party referred to as aCertification Authority(CA),
to register its public key and obtain the CA’s signature verification public key.
The CA certifies entityA’s public key by binding it to a string identifyingA,
thereby creating a certificate. Parties obtain authentic public keys by exchanging
certificates or extracting them from a public directory. Public key certificates
are a vehicle by which public keys may be stored, distributedor forwarded over
unsecured media without danger of undetectable manipulation. The objective is
to make one entity’s public key available to others such thatits authenticity and
validity are verifiable.

• Use of systems implicitly guaranteeing authenticity of public parameters: Inguaranteeing systems

such systems, including identity-based systems and those using implicity cer-
tified keys, by algorithmic design, modification of public parameters results in
detectable, non-compromising failure of cryptographic techniques.

9.5.2 Secret Key Transport Mechanisms

Secret key transport based on symmetric techniques makes use of (long-term) sym-
metric keys shareda priori between sender and receiver. The ISO/IEC39 ([ISO96])
specifies twelve such mechanisms, some based on point-to-point key transport and
others based on mechanisms involving a third party. Secret key transport using
public key techniques assumes that the sender possessesa priori an authentic public
encryption key of the intended recipient. Also in this case ISO/IEC specifies mecha-
nisms whose major properties are the number of passes, key control, key authen-

39 International Organization for Standardization/International Electrotechnical Commission

9.5 Key Distribution 211

tication, key confirmation, and entity authentication. In the following sections, a
number of typical examples for secret key transport mechanisms is given.

Secret Key Transport using Symmetric Techniques

In the basic key transport mechanism in Fig. 9.5-2, the keying matrialk is supplied
by entity A

BA

)(
,

kE
BAk

Fig. 9.5-2: Basic mechanism using symmetric techniques.

1. A sendsB the keying materialk enciphered with the shared keykA,B.

2. B deciphers the message and thus obtainsk.

This basic mechanism only provides implicit key authentication toA. However, the
mechanism can easily be extented to also provide unilateralauthentication of entity
A, implicit key authentication and a freshness guarantee toB, and protection of
replay back toA. In the mechanism shown in Fig. 9.5-3, two additional fields are
transferred in the enciphered part:

BA

)||||/(
,

kBNTE
BAk

Fig. 9.5-3: Secret key transport with unilateral authentication.

1. A sendsB a timestampT or a sequence numberN , the distinguishing iden-
tifier B (in order to prevent a so-called substitution attack, i.e. the reuse of
this message fromA by an adversary masquerading asB), and the keying
materialk. The data fields are enciphered withkA,B.

2. B deciphers the message, checks the correctness of its distinguishing identi-
fier, checks the timestamp or sequence number, and obtains the keyk.

212 9 Key Management Techniques

Third Party Secret Key Transport Using Symmetric Techniques

Third Party secret key transport mechanisms based on symmetric techniques ass-
ume that both entitiesA andB a priori share a secret key (denoted bykA,T and
kB,T , respectively) with the TTP. Furthermore, the third party is requested to be
online with at least one of the entities. In the following keytransport mechanism,
the keying materialk is supplied by a KDC:

A B

$

TTP

)||/(||)||||/(
,

kNTEkANTE AkTk TB

)||||/(||)||||(,,
kANTEkBTVPE TTkBk A

TA

BTVPA ||

Fig. 9.5-4: Secret key transport with TTP.

1. A requests keying material from the KDC by sending a message to the KDC
that contains a time variant parameterTVPA (a random number, timestamp,
or sequence number) and the distinguishing identifier of therecipientB.

2. The KDC returns a protected message toA that containsk enciphered for A
and enciphered forB:

EkA,T
(TVPA ‖ B ‖ k)EkB,T

(T/NT ‖ A ‖ k).

3. On receipt of this message,A deciphers the first part, checks that the time
variant parameter sent to the TTP was used in constructing the message,
checks the distinguishing identifier, and obtainsk. If all checks are positive,
A forwards the second part of the message toB followed by a data field
Ek(T/NA ‖ k) which enablesB to authenticateA and to check the integrity
of the retrieved keyk.

4. B deciphers the message, checks the correctness of the timestamp or sequence
number, and obtains the keying materialk. The distinguishing identifier indi-
cates toB thatk was requested byA. ThenB deciphers the second part of
the message and checks the correctness of the time variant parameter and of
its distinguishing identifier.

This mechanism provides entity auhentication ofA and key confirmation toB. By
adding a fourth message, it can be extended to provide mutualentity authentication
and mutual key confirmation.

9.5 Key Distribution 213

Point-to-Point Secret Key Transport Using Public Key Techniques

ElGamal and RSA key transport are examples for a one-pass keytransport mecha-
nism based on asymmetric techniques. For the mechanism shown in Fig. 9.5-5 it is
required thatA has access to an authenticated copy ofB’s public encryption key
ke,B.

A B

)||||/(, kANTE Bke

Fig. 9.5-5: ElGamal key transport.

1. A sendsB a timestampT or a sequence numberN , the distinguishing iden-
tifier A, and the keying materialk. The data fields are enciphered withB’s
public keyke,B.

2. B deciphers the received message, checks the correctness of the time variant
parameter and associates the recovered keying material with A.

The mechanism provides replay protection and implicit key authentication forA
since onlyB is able to recover the keyk. In contrast to the analogue mechanism
based on symmetric techniques,B has no assurances regarding the source of the
keying material. To also provide authentication of the initiator A, the key token is
signed in addition to encipherment:

A B

))|||/((
,

kANTSE Ak Be

Fig. 9.5-6: Key transport with originator signature.

1. A forms a data block consisting of a timestamp or a sequence number, the
recipient’s distinguished identifier, and the keying material k. Then A signs
the data and enciphers the signature usingB’s public encryption key. The
result is transferred toB.

2. B deciphers the received message and verifies integrity and origin of the key
token. ThenB validates that he is the intended recipient of the token and that
the token has been sent timely. If all verifications are successful,B accepts
the keying materialk.

This mechanism provides replay protection, unilateral entity authentication (based
on A’s digital signature), and mutual implicit key authentication (since onlyB is
able to decipher and onlyA is able to sign). Depending on the needs of the enviro-
ment, the signature may also be applied after encipherment.

214 9 Key Management Techniques

9.5.3 Key-Exchange Algorithms

Diffie-Hellman

The first and best known key agreement protocol is theDiffie-Hellman(DH) key
exchange. The protocol gets it’s security from the difficulty of calculating discrete
logarithms in a finite field, as compared with the ease of calculating exponentiation
in the same field. DH can be used for key distribution - entities A andB can use
this algorithm to generate a secret key - but it cannot be usedto encrypt and decrypt
messages. First,A andB agree on large primes,n andg, such thatg is primitive
mod n. These two integers don’t have to be secret;A andB can agree on them over
a public channel. Then the following steps are performed:

1. A chooses a large random integerx and sendsBX = gx mod n,

2. B chooses also a large random integery and sendsAY = gy mod n,

3. A computesk = Y x mod n,

4. B computesk′ = Xy mod n.

Bothk andk′ are equal togxy mod n. No one listening on the channel can compute
this value since they only known, g, X andY . Unless they can compute the discrete
logarithm and recoverx or y, they do not solve the problem. Sok is the secret
key that both entitiesA and B computed independently. The DH key exchange
protocol can easily be extented to work with three or more people. The mechanism
described above is the traditional DH key agreement scheme which provides neither
key authentication nor key confirmation and is vulnerable tothe man-in-the-middle
attack. The classic man-in-the-middle attack on Diffie-Hellman key exchange is asman-in-the-middle

attack follows:

1. A sends his public key toB. An adversary intercepts this key and sends his
own public key toB.

2. B sends his public key toA. The adversary intercepts also this key and sends
his own public key toA.

3. WhenA sends a message toB, encrypted with the replaced public key of the
adversary, the adversary intercepts the message, decryptsit with his private
key, and re-encrypts the message with public key ofB, and sends it toB.

4. WhenB sends a message toA, encrypted with the replaced public key of the
adversary, the adversary intercepts the message, decryptsit with his private
key, and re-encrypts the message with public key ofA, and sends it toA.

This attack works, becauseA andB have no way to verify that they are communica-
ting with each other. Assuming the adversary does not cause any noticeable network
delays,A andB believe they communicate securely, while the adversary reads all
traffic. This attack can be prevented by using protocols which provide authentica-
tion (e.g. key exchange with digital signatures).

9.5 Key Distribution 215

ElGamal

ElGamal key agreement is a one-pass variant of the DH protocol where one entity
uses a static public key agreement key and the other entity needs to have access
to an authentic copy of this key. For ElGamal key agreement, following steps are
performed:

1. A chooses a large random integerx, computesgx mod n and sends the result
to B. Furthermore,A computes, usingx andB’s public key agreement key
gb, the shared key ask = (gb)x mod n.

2. On receipt of the message,B computes the same shared key using his private
key agreement keyb: k = (gx)b mod n.

If static public key agreement keys are distributed using certificates, ElGamal key
agreement provides unilateral key authentication.

Station-to-Station Protocol

The DH key exchange is vulnerable to a man-in-the-middle attack. One way to
prevent this problem is to have entityA andB sign their messages to each other. The
Station-to-Station protocol(STS) assumes thatA has a certificate with entityB’s
public key and thatB has a certificate with entityA’s public key. These certificates
have been signed by a trusted authority. The following stepsare performed in order
to generate a secret keyk:

1. A generates a random numberx, computesgx mod n and sends the result to
B.

2. B in turn generates a random numbery, computesgy mod n and the shared
key k = (gx)y. B then signs the concatenation ofgx andgy and the distin-
guished identifier ofA and encrypts the signature using the computed keyk.
The result is appended togy and transferred toA.

3. A computes the shared keyk = (gy)x, deciphers the encrypted data and veri-
fies B’s signature. If verification is successful,A sendsB an analogously
constructed enciphered signature.

4. B decrypts the received message and verifiesA’s signature.

The STS protocol provides secret key establishment with mutual entity authenti-
cation and mutual key confirmation. Another variant of the STS protocol is being
considered for standardization with the Internet securityprotocol (IPsec).

Encrypted Key Exchange

TheEncrypted Key Exchange(EKE) protocol provides security and authentication
on computer networks, using both symmetric and public key cryptography in a way
that a shared secret key is used to encrypt a randomly generated key. Within this
protocol A and B share a common passwordP and using this protocol they can
authenticate each other and generate a common session keyk. In the following
enumeration the basic EKE protocol is described:

216 9 Key Management Techniques

1. A generates a random public-key/private-key key pair and encrypts the public
key k′, using a symmetric algorithm andP as the key:EP (k′). A sends
B(A, EP (k′)).

2. B decrypts the message to obtaink′. ThenB generates a random session key
k and encrypts it with the public key received from A andP as the key and
sendsA: (EP (Ek′(k))).

3. A decrypts the message to obtaink and generates a random stringRA. Then
A encrypts it withk and sendsB: Ek(RA).

4. B decrypts the message to obtainRA and generates another random stringRB

and encrypts both strings withk. ThenB sends the result toA: Ek(RA, RB).

5. A decrypts the message to obtainRA andRB. Assuming the stringRA

A received fromB is the same as the oneA sent toB in step (3),A encrypts
RB with k and sends it toB: Ek(RB).

6. B decrypts the message to obtainRB and assuming the stringRB B received
from A is the sameB sent toA in step (4), the protocol is complete. Both
parties are able to communicate usingk as the session key.

EKE can be implemented with a variety of public-key algorithms like RSA or ElGa-
mal.

9.6 Key Escrow/Key Recovery

A key escrow or key recovery scheme is an encrytion system with a backup decryp-
tion capability available under special prescribed conditions. Such a scheme allows
law enforcement authorities, users, or other authorized persons to decrypt cipher-
text with the help of key escrow/recovery information supplied by one or more
TTPs. In a general key escrow/recovery scenario one assumesthat the communi-
cating entities A and B are in different domains and that there is the requirement
to be able to recover decipherment keys from either domain independently. A key
escrow/recovery scheme typically includes the following mechanisms:

• The sending entity prepares for transmission the enciphered message and some
additional information which enables specific third parties to recover the decryp-
tion key (should this later become necessary). For this, thesending entity may
need to involve a TTP.

• The recipient checks the correct format of the recovery parameters received with
an encrypted message and rejects messages where this checksfails.

In a simple example for such a scheme, the sender A takes the session keyk used to
encipher the messagem, encrypts this key with the public encryption keykT,Ap of
the involved TTP and in addition with the public keykT,Bp of the receiver B’s TTP.
The enciphered message is then transmitted together with two encipherments of the
session key:

EkT,Ap
(k) ‖ EkT,Bp

(k) ‖ Ek(m).

9.7 Storing, Updating and Destroying Keys 217

With such a protocol, both TTPs independently are able to release the session key
k.

9.7 Storing, Updating and Destroying Keys

Storing Keys

Storage of keying material refers to a key storage facility which provides secure
storage of keys for future use, e.g. confidentiality and integrity for secret keying
material, or integrity for public keys. Secret keys must be protected by physical
security (e.g. by storing it within a cryptographic device)or enciphered by keys that
have physical security. For all keying material, unauthorized modification must be
detectable by suitable authentication mechanisms.

Updating Keys

Assuming an encrypted data link where users want to change keys daily, the effort
to distribute a new key every day is laborious. An easier solution is to generate a
new key from the old key, and this process is called key updating. This can be done
using a one-way function. Two entities sharing the same key and both operating
on it using the same one-way function, will get the same result (note, that even an
adversary gets the same result if he can access the old key). This result can be used
to create a new key, but it is obvious that the new key is only assecure as the old
one.

Key Destruction

Key destruction refers to procedures by which parties are assured of the secure
destruction of keys that are no longer needed. Destroying keys means eliminating
all records of this key, such that no information remaining after the deletion provides
any usable information about the destroyed key (note: when deleting a file on most
computer systems, the file isn’t really deleted; the only thing deleted is an entry in
the disk’s index file, used for telling the machine that the file is there). A key may
be destroyed by overwriting it with a new key or by zeroizing it. Keying material
stored on magnetic media should either be zeroized or the media itself should be
destroyed.

218 10 Public Key Infrastructure

10 Public Key Infrastructure

10.1 Introduction

A major advantage of asymmetric key cryptography over symmetric key crypto-
graphy (see [Kaderali00b], chapter 4) is that the key distribution problem is easier
to solve. Symmetric key distribution systems are expensiveand hard to manage.
In high-security applications with imminent man-in-the-middle attacks, symmetric
systems require expensive and cumbersome secure communication lines, face-to-
face meetings or courier services. In asymmetric cryptosystems the public key can
be distributed without the fear of compromising the secret private key. Nevertheless,
key management in public key cryptography is still a difficult and complex issue.

Many currently emerging applications in the field of information technology rely on
the principles of asymmetric key cryptography. The basic security related features
that public-key systems can supply are confidentiality, data integrity, authentication,
and non-repudiation. Typical real-world examples are:

Secure Email The need for a secure messaging environment for the Internetis of
paramount importance. Although in the past the public awareness for the pro-
blems concerning insecure email was very low, the spread of details about glo-
bal surveillance systems like ECHOLON immediately produced great con-
cern about this issue. ECHOLON is a code word for a global automated com-
munication interception system, operated by the intelligence agencies of the
United States, the United Kingdom, Canada, Australia, and New Zealand.
The consortium is led by the American National Security Agency (NSA).
Some estimates state that ECHOLON intercepts up to 3 billioncommunicati-
ons everyday. These include phone calls, emails, internet downloads, satellite
transmission, etc.

Secure electronic paymentAt the moment, many payments in Internet-based e-
commerce transactions are based on credit cards. Accordingto the credit card
company Eurocard the number of credit card frauds has risen to an alerting
degree. Eurocard stated that in the year 2000 the fraud rate increased by 32%.
The security of electronic credit card payments can be increased by applying
asymmetric key cryptography. For example, a mechanism for authentication
of involved parties (customers, merchants, banks) can be provided. Further-
more, the credit card and payment information should be encrypted during
the transaction. Today’s most popular credit card payment system was intro-
duced by Visa International and MasterCard in 1996 under thename Secure
Electronic Transaction (SET). SET employs asymmetric cryptography for key
exchange and digital signature (two different key pairs).

Access control At the moment the prevailing method of access control in corporate
and open networks is to employ weak authentication with passwords. Pass-
words that can be remembered (and thus used) by human users, even if they

10.1 Introduction 219

have a reasonable length, normally have such a low entropy40 that dictionary
attacks are readily successful. Even though sophisticatedmethods for useful
password selection exist, these methods are often too cumbersome for casual
users or users simply do not bother to use them. Hence, it can be advisable to
replace low entropy passwords with large entropy asymmetric keys.

Authorization Allowing a user to access a computer system is a special form of
authorization. Other forms of authorizations are, e.g. theauthorization to pro-
vide medical advice over the Internet, the authorization toview the content of
a video on demand stream, the authorization to spend money inthe name of
a company, etc. Such authorizations can be realized with so-called authoriza-
tion certificates, which bind a special form of authorization to a public key.
The holder of the corresponding private key is then able to prove that she is
allowed to carry out the certified action.

Electronic Signature The recent evolution of the Internet into an open and glo-
bal communication platform has greatly stimulated electronic commerce and
Internet-based business-to-business transactions. An increasing number of
transactions are carried out online which leads to a demand for an electro-
nic equivalent of traditional contracts. Especially politicians from the lea-
ding industry nations were under pressure from businesses and providers of
e-commerce solutions to quickly adopt legislation of electronic signatures.
Emerging electronic signature acts include the use of digital signatures as a
legal replacement of hand-written signatures. In february2001, the German
Bundestag approved the adoption of the European electronicsignature direc-
tive. Before this law can be put into practice, the "Bürgerliches Gesetzbuch"
and the "Zivilprozessordnung (ZPO)" have to be adjusted. The directive uses
the termelectronic signatureinstead ofdigital signatureand defines electro-
nic signature as follows:

"Electronic signature" means data in electronic form whichare attached to or
logically associated with other electronic data and which serve as a method of
authentication.

Furthermore, the directive also defines an advanced electronic signature:

"Advanced electronic signature" means an electronic signature which meets
the following requirements: (a) it is uniquely linked to thesignatory; (b) it
is capable of identifying the signatory; (c) it is created using means that the
signatory can maintain under his sole control; and (d) it is linked to the data
to which it relates in such a manner that any subsequent change of the data is
detectable.

40 Only random passwords have maximum entropy.

220 10 Public Key Infrastructure

In practice, this will most often be achieved by digital signatures with explicit sup-
port of non-repudiation.

It can be seen from the examples above, that asymmetric key cryptography is app-
lied in diverse disguises. For all these applications to work effectively, sophisticated
key management and distribution systems have to be constructed. The key manage-
ment system for applications of asymmetric key cryptography is calledpublic-key
infrastructure(PKI). A typical PKI consists of hardware, software, the people wor-
king to administer and maintain the infrastructure, as wellas policies regarding
security, privacy and liability.

10.2 Basics of PKI

Most public-key applications rely on the fact that a public key is uniquely bound to
a real world person. For these application it is absolutely essential, that the public
keys which are distributed are authentic. This means that a party, which receives a
public key of an entity must be assured that this entity controls the corresponding
private key. In [Kaderali00b], section 7.5.1, techniques for the distribution of public
keys were introduced. In practice, the association of a public key to an entity is most
often achieved through a public-key certificate issued by atrusted third party (TTP).

10.2.1 Identity Certificates and Trusted Third Parties

Identity certificates, originally introduced by Kohnfelder [Kohnfelder76] in 1976,
bind a public key to the name of the owner of the correspondingprivate key and
are signed by a trusted third party. A certificate is a data structure that consists of a
name and a public key which form the data part, and a digital signature over the data
part carried out by a TTP (see Fig. 10.2-1). Hence, identity certificates use a name
to identify a key holder. A key holder is defined as the person or other entitiy that
controls the private key corresponding to the public key. Identity certificates can be
distributed over unsecure channels like open networks.

Bob has the public key

Key_Bob

Issued by: TTP

Signed: Key_TTP

name of subject

Public key of subject

name of issuer

private key of issuer

Fig. 10.2-1: Structure of an identity certificate.

10.2 Basics of PKI 221

Fig. 10.2-2 shows two parties, Alice and Bob, where Alice wants to send a confi-
dential message to Bob. Alice is not able to authenticate Bob’s public-key herself
and asks a trusted third party for a certificate which conveysBob’s public key. Alice
can accept the certificate and thus indirectly authenticateBob if the following two
conditions are met:

1. Alice authenticates the TTP, i.e. she must know the TTP’s public key.

2. Alice must trust the TTP, that it correctly authenticatesBob before it creates
a certificate.

Only if both conditions are met, the authentication is successful. If Alice does
not authenticate the TTP (check the public key), she is susceptable to man-in-the-
middle-attacks. If she does not trust the TTP, she should better not accept the certifi-
cate because the TTP could have been very inaccurate concerning the authentication
of Bob.

A B

$

TTP

Trusts

Authenticates Certifies

Fig. 10.2-2: Certificate from trusted third party (TTP).

While the methods available for authentication are well understood, the notion of
trust has not yet been clearly defined. In contrast to other fundamental concepts of
computer security like privacy and integrity, trust often remains an ambigious term.
There are many notions of trust in the field of computer security, e.g.

• System trust: trust as assurance in the correct and secure functioning ofsoftware,
computer systems, and legal systems.

• Entity trust: trust as belief in the benevolent, honest, competent, and predictable
behaviour of autonomous agents (human or software).

• Dispositional trust: trust across a broad spectrum of situations and entities.
Example: a person assumes that irrespective of whether people are good or bad,
one will obtain better outcomes by trusting them - hence, oneshould generally
trust them.

Trust is always expressed in a relation to an entityand to an action. If an entity is
trustworthyit means that this entity isableandwilling to act in other entities’ best
interests.

If we regard trust as a personal relation between two entities Alice an Bob, the
following properties seem to be reasonable:

222 10 Public Key Infrastructure

1. Trust is not symmetric. If Alice trusts Bob it does not meanthat Bob also
trusts Alice.

2. Trust is not transitive. If Alice trusts Bob, and Bob trusts Carol, Alice does
not necessarily trust Carol.

Trust that is not transitive is also referred to asdirect trust. Nevertheless, in practice
trust is often transitive and is then referred to asindirect trust. For instance, pro-
fessional organizations and recommendation services impart trust by virtue of their
reputation, and insurance companies impart trust by increasing the financial predic-
tability of outcomes. In these two examples trust flows from reputable institutions
to other principals. Generally, certain kinds of trust are transitive, while others are
not.

A PKI that manages keys in a community/organisation with an already existing trust
relationship between the trusted third parties and the users is referred to asclosed
PKI. A typical example is a corporate PKI. In anopen PKIthere is no "natural"
trust relationship between trusted third parties and users. Open PKIs are thus much
harder to realize. A typical example is a PKI for electronic signature applications.

Currently, there are two important certificate formats: theX.509 format which was
standardized by ITU-T [IT97b], and the Open PGP format whichwas standardi-
zed by IETF RFC 2440 [RFC2440]. Both formats are described infurther detail
in Section 10.3). In PKIs based on X.509 certificates a trusted third party is called
certificate authority (CA) which is an institution responsible for certifying users of
the PKI. CAs in open PKIs which provide certificates as a commercial service are
called trust centers. In PGP every user can also act as a certificate authority and is
then referred to as introducer. The structure in which all users certify each other and
rely on certificates issued by other users is known as web of trust.

The goal of identity certificates is to bind a public key to an entity. Each entity must
be represented by a unique identifier to distinguish it from other entities. X.509 and
PGP employ different concepts to achieve globally unique identifiers.

Distinguished names

X.509 certificates rely on the X.500 [IT97a] approach of distinguished names.
X.500 and X.509 are standards which were published by the ITUin 1988. X.500
describes a distributed international public directory which is based on the client-
server principle. The directory is organized in a hierarchical tree structure (direc-
tory information tree (DIT)) with a global authority as root. The original purpose
of X.500 was to built a global database of named entities: people, computers, prin-
ters, etc. These entities are the leaves of the information tree. The nodes of the
DIT represent countries and organisations which are responsible for the following
parts (nodes and leaves) of the information tree. Originally, X.509 certificates were
used to specify which entity was allowed to modify which partof the X.500 tree.
This was achieved by binding the name of the entity to a publickey (originally a
password). The names in X.500 have a special format and are called distinguished
names. The distinguished name is a complete path from the root to the referred

10.2 Basics of PKI 223

entity. Fig. 10.2-3 shows an exemplary information tree with distinguished names.
Table 10.2-1 shows the allowed attribute types for distinguished names.

It must be noted that the X.500 plan of a single-rooted open online-telephone book
is unlikely to ever come to fruition. Firstly, collections of employee and hardware
information are considered valuable or even secret assets.Most organizations and
corporations will certainly not publish sensitive data in an open directory. Secondly,
the idea of a distinguished name, which must be globally unique, is also not likely
to occur. The required global naming discipline is simply not achievable, both for
economical and political reasons. There is one exception tothis rule: the Domain
Name System of the Internet which is a global namespace holding unique names.

Country
c=DE

Organisation
c=DE, o=FernUni Hagen

Organisational unit name
c=DE, o=FernUni Hagen, ou=KS

Common name
c=DE, o=FernUni Hagen, ou=KS, cn=Gerd Steinkamp

Fig. 10.2-3: X.500 directory structure with distinguished name.

Tab. 10.2-1: Attributes for distinguished
names.

Attribute Meaning

c country name

o organization name

ou organizational unit name

s surname

cn common name

l locality name

sp state or province name

st street address

t title

sn serial number

bc business category

d description

224 10 Public Key Infrastructure

Names in the Domain Name System

The DNS namespace is under the control of the Internet Corporation for Assigned
Names and Numbers (ICANN). The ICANN is a non-profit organization formed
by a broad coalition of the Internet’s business, technical,academic, and user com-
munities. The tasks of ICANN include the coordination of thetechnical manage-
ment of the Internet’s domain name system and the allocationof the IP address
space. Hence, in contrast to an X.500 distinguished name, a DNS name is truly uni-
que, which is guaranteed by a single authority, the ICANN. A single root could be
accomplished, simply because it was setup before the Internet gained its interna-
tional economical and political importance. An examplary DNS name is shown in
Fig. 10.2-4.

Country
de

Organisation
fernuni-hagen.de

Organisational unit name
ks.fernuni-hagen.de

Email address:
gerd.steinkamp@ks.fernuni-hagen.de

Root:
ICANN

de uk se

Fig. 10.2-4: A name in the DNS.

Creation and storage of key pairs and certificates

For each of the different public-key applications like encryption, authentication,
electronic signatures an individual key pair has to be created. The reason for this is
that the different applications require seperate considerations with respect to

• creation, storage and backup,

• expiry and key lifetime.

A decryption key has different backup requirements than an electronic signature
key. The decryption key must be backed up and stored over the whole lifetime of
the encrypted documents. A signature private key, on the other hand,must neverbe
backed up! Non-repudiation can only be achieved if only the owner has access to
the private signing key. Otherwise, impersonation can occur. Hence, the signature
key must be securely stored in a way, that only the rightful owner of the key can
control it. For instance, this can be achieved by storing theprivate key on a tamper-
resistant smart card which is secured by the owner’s biometrics. A signature private
key requires a relatively short lifetime because it must remain uncompromised. This
is in complete contrast to the decryption key, which expireswith the encrypted
document. Hence, in some cases it never expires. If the decryption key expires prior
to the document, the document is lost. It can be seen, that thedistinct functions of

10.2 Basics of PKI 225

encryption and electronic signature cannot be truly and effectively provided using
just one key pair.

An electronic signature key must never be used for challenge-response authentica-
tion because it would compromise security by allowing chosen-plaintext attacks.
For example, Bob challenges Alice with a random numberrb encrypted under
Alice’s public key, and Alice is required to respond with thedecrypted random
number. If Bob challenges Alice withh(x), wherex is a message unknown to Alice,
Alice’s response to this authentication request may unwittingly provide to Bob her
electronic signature on the hash value of the messagex.

There are two options for the creation of the key pair:

• The key pair is created by the certificate authority. The CA also creates the
certificate which binds the public key to the holder’s identity. If this is a key
pair for electronic signatures, the user has to trust the CA that it does not copy
the private key during creation. This is not a big issue in closed PKIs but has to
be considered in open PKIs (like that conforming to the European directive for
electronic signatures).

• The key pair is created by the user. The user uses his own equipment to create
the key pair. Afterwards, he either creates a certificate himself (e.g. PGP) or
contacts a certificate authority to testify the binding of his identity to the public
key.

As already mentioned, in high-security applications the private key has to be secu-
rely stored. The environment, in which keys are stored and cryptographic operations
are carried out is called personal security environment (PSE). The private key must
never leave the PSE. Encrypted documents are decrypted in the PSE, because the
private decryption key is needed for this operation. Documents are signed inside
the PSE for the same reason. Furthermore, the PSE may also hold the correspon-
ding public-key certificate. Another important function isthe generation of key pairs
which requires high-quality random numbers that the PSE must be able to generate.
This may be a reason to delegate key generation to a professional CA which can
afford the required cryptographically sound equipment. Alternatively, user work-
stations can generate random numbers by evaluating random events produced by
the user, like mouse movements or keyboard typing. A simple PSE ist just some
memory space on the user’s personal computer, secured by a password. A high-
security PSE is a hardware device like a smart card that is physically protected
against tampering and secured with biometrics against unauthorized access.

Although devices like smart cards seem to be well suited as a PSE, the following
problem has to be considered in electronic signature applications: The PSE must
be able to display the document to be signed. In the smart cardexample, a sensible
place to put the display would be the card reader (here the PSEconsists of the smart
card and the card reader). Nevertheless, for most signatureapplications the display
integrated in the card reader will simply be too small. It maybe sufficient to display
the value of an electronic cheque, but it will not be able to show a multipage elec-
tronic contract. Hence, such a large document must be displayed outside the PSE.

226 10 Public Key Infrastructure

This introduces a major security risk, because now the user has to trust equipment
that is outside his PSE to correctly display the document to be signed. In the case
of the Internet-connected PC, all it needs to let the user sign an arbitrary document
is a trojan horse. The trojan horse would display the document the user thinks he
is signing, but would send a different document (in practicethe hash value of the
document) to the PSE. A more general term often used instead of PSE is trusted
computing base (TCB). Electronic signature applications need a TCB (which inclu-
des the display) to provide the required evidence for non-repudiation that a court is
willing to accept.

Time stamping and Notarization

Time stamping is a service in which a trusted third party - a time stamp authority
(TSA) - signs a message, in order to provide evidence that it existed prior to a given
time. Time stamping is mandatory for non-repudiation applications like the electro-
nic signature. For instance, a user cannot claim that a transaction was later forged
after compromise of a private key occured, because the existence of the signed time
stamp indicates that the transaction in question could not have been created after
the indicated time.

Time stamping is a special form of notarization. A notary service is a more general
service which is not only able to testify the existence of a document at a given time,
but also vouches for the truth of more general statements at specified points in time.

Certificate Distribution, Expiration and Revocation

There are two basic mechanisms for the distribution of certificates:

1. In the pull model the acceptor of authentication information (e.g. a compu-
ter that authenticates a user) pulls the certificate from a certificate directory,
which often is a database holding all relevant certificates.Depending on the
size of the PKI this can be a single directory server or a distributed database
consisting of multiple directory servers.

2. In the push model the certificates are sent out to all users upon certificate
creation. Alternatively, the user that acts as a signer (e.g. in an authentication
situation) may provide an appropriate certificate as evidence when needed.

In many applications certificates are not issued for an infinite time period but are
bound to a validity window. An expiration date shall help to reduce the risk of com-
promise of the private key (precaution against cryptanalysis). A certificate becomes
invalid or insecure in the following situations:

• The expiration date of the certificate has been reached.

• A change in the owner’s relationship to the trusted third party has occured or the
owner’s access rights have changed. For instance, this happens when the owner
leaves or changes his role within an organization. If the distinguished name of
a user in an X.509 based PKI changes (or the email address in PGP), a new
certificate has to be created.

10.2 Basics of PKI 227

• The user looses his private key. In this case he must be provided with a new key
pair and a new certificate. Alternatively, if the application supports key recovery,
the user may be provided with the recovered key. In order to enable key reco-
very the private keys of all users must be stored in a confidential location. The
procedure of storing copies of private keys is also referredto as key escrow. As
mentioned before, key escrow only makes sense for decryption keys.

• The private key has been compromised. Typical reasons for key compromise
are:

• an attacker got access to the password securing the private key.

• an attacker got access to the private key itself, e.g. by cryptanalysis.

Certificate revocation is the mechanism under which an issuer can revoke the asso-
ciation (key-name) before the end of its documented lifetime. Therevocation state
indicates the validity or cancellation of its association.The "freshness" of the revo-
cation information is essential for the security of the application. It is up to the
operator of the PKI to define the meaning of freshness. The following issues have
to be considered [Daniel00]:

• All verifiers (users of the PKI) must be able to correctly determine the revocation
state of a certificate within well-known time bounds.

• The costs associated with the management, retrieval, and verification of certifi-
cates should increase at a rate slower than increases in the size of the serviced
community.

• Any revocation service must be able to support guarantees consistent with exis-
ting security policies and requirements.

A frequently employed means for revocation is to list the revoked certificate in a
certificate revocation list (CRL). The CRL identifies the revoked certificates by their
serial number and is concatenated with a time stamp which indicates its freshness.
The list is signed by the responsible revocation authority,which is normally the
certificate authority that issued the certificate, to guarantee integrity. The CRL can
be published over the same distribution channels as the certificates. This can either
occur in push or pull mode. In push mode, the notification of certificate revocation
(here the CRL) is automatically sent to all users of the PKI. In pull mode, the verifier
of a certificate has to check if the certificate is still valid,by requesting the CRL
from the responsible revocation authority. The advantage of CRLs is simplicity,
the disadvantage the high communication costs. An option toreduce the size of
the CRLs ist to publish only new entries. A CRL that only contains new entries is
called delta-CRL. The users of the PKI have to cache all revocation information and
update it according to the issued delta-CRLs.

Often, a compromise between security and scalability has tobe found. The more
frequently revocation information has to be published (e.g. in form of a CRL), the
higher the communication costs become. In some high-security applications the
verifiers are obliged to contact an online revalidation service before relying on a
certificate. The revalidation service’s answer to a requestis a statement that the
certificate is either valid or invalid. It must be noted, thatin such a system the power

228 10 Public Key Infrastructure

of certificates is considerably reduced. A certificate does not suffice by itself to
provide authentication information. Every certificate in the system is stale by default
and must be refreshed by online revalidation.

Although popular in commercial PKIs due to their simplicity, CRLs have been cri-
ticized in the research community. Rivest [Rivest98] made three propositions which
should help to improve on conventional revocation mechanisms.

Proposition 10.2-1: Recency requirements must be set by the acceptor, not by
the certificate issuer (CA).

The acceptor of the certificate is the one who is taking the risk. Hence, he should
decide what a satisfactory recency requirement is.

Corollar 10.2-1: Periodically-issued CRLs are wrong, because they are incon-
sistent with Proposition 1.

CRLs are issued by the CA which also dictates the update interval. The acceptor of
the certificate must accept the provided recency evidence.

Proposition 10.2-2: The signer can (and should) supply all evidence the accep-
tor needs, including recency information.

Instead of having theacceptorquery the CA for CRLs, thesigneris asked to obtain
any necessary evidence, and present it with his signature. One advantage of this
approach is, that it allows the acceptor, which often is a server, to be implemented in
a stateless manner. For example, the server may reply: "Sorry, please make sure that
all of your evidence is at most one week old", and then forget about the request. The
server does not have to store state information about that request, it simply rejects
it and expects the user to come back later with appropriate evidence. A stateless
server design is less vulnerable to denial-of-service attacks.

Proposition 10.2-3: The simplest form of "recency evidence" is just a (more-)
recently issued certificate.

This proposition leads to a considerable organisational overhead if certificates have
to be periodically reissued. In practice, the more efficientsolution would be to
implement a revalidation service. Revalidation has the advantage, that it can be
automated, e.g in form of a software agent. A certification service, on the other
hand, in most cases cannot be automated.

Certificate Policy and Certificate Practice Statement

A certificate policy is a set of rules that define the applicability of a certificate to
a community/organisation with certain security requirements. The certificate policy
of an organisation leads to a certificate practice statement(CPS). The CPS expli-
citely states a CA’s policies concerning the issuance, maintenance and revocation
of certificates. Furthermore, it may contain information about legal aspects and lia-
bilities towards entities relying on the certificates. The CPS can be seen as a ver-
bose version of the certificate policy. As much as possible, acertification practice
statement should indicate any of the widely recognized standards to which the CA’s

10.2 Basics of PKI 229

practices conform. The level of details makes a CPS proprietary and thus it normally
only applies to a single organization. A certificate policy,on the other hand, app-
lies more broadly than a CPS. If a particular certificate policy is widely recognized
and imitated, it has great potential as the basis of automated certificate acceptance
in many systems. Interconnection of PKIs is thus carried outon basis of certificate
policies, and not on certificate practice statements. A CA with a single CPS may
support multiple certificate policies used for different applications and purposes.
Also, multiple different CAs, with non-identical certification practice statements,
may support the same certificate policy.

10.2.2 Certification Structures

A more general certification path than that presented in Fig.10.2-2 can consist of
several TTPs and certificates as shown in Fig. 10.2-5. The chain at the top of the
graphic is based on direct trust. Alice can only authenticate Bob if she authenticates
the first TTP and directly trustseachTTP in the chain. The trust vectors originating
from Alice and ending in a TTP are also called trust anchors. In the example at the
bottom of Fig. 10.2-5 Alice only sets up one trust anchor to the nearest TTP and the
trust propagates from each TTP to its successor. Which of thetwo trust models can
be applied depends on the application including the relatedsecurity policies and the
participants.

A B

Auth

Trust

Cert Cert Cert Cert

Trust
Trust Trust

A B

Auth
Trust

Cert Cert Cert Cert
Trust Trust Trust

Fig. 10.2-5: A certificate chain relying on direct trust (top) and indirect trust (bottom).

The certificate path shown in Fig. 10.2-5 consists of all certificatesTTP{E} of the
path.TTP{E} is certificate issued by a TTP for entityE, which can either be a
user or another TTP. The certificate path to Bob may look as follows:

TTP1{TTP2}, TTP2{TTP3}, · · · , TTPn−1{TTPn}, TTPn{Bob}.

The trust model at the bottom of Fig. 10.2-5 is typical for CA-based PKIs. In these
PKIs trust is often a form of system trust which is transitive. The web of trust, on the
other hand, is based on entity trust which is produced by social relationships. This
form of trust is not transitive and the trust model at the top of Fig. 10.2-5 applies.

230 10 Public Key Infrastructure

In the following, important certification structures are described.

Single-CA

In the model shown in Fig. 10.2-6 one single-CA is responsible for certifying all
end entities (EE). The arrows represent certificates. The geographical distribution
of the participants must be locally constrained if the certificate policy requires phy-
sical attendance for certification. It is obvious that the CAwill become a bottlen-
eck because the task of authenticating users cannot be automated beyond a certain
degree. Obviously, this model is only feasible for small applications with a limited
number of participants.

CA

EE

EE

EE

EE

Fig. 10.2-6: Single-CA.

10.2 Basics of PKI 231

Single-CA plus Registration Authorities

This model still consists of a single-CA but allows for a greater number of partici-
pants who can also be geographically distributed (see Fig. 10.2-7). There are multi-
ple registration authorities (RA) which are trusted by the CA to verify the mapping
between a name and a key. Hence, the CA delegates the task of user registration
and authentication to the RAs and performs the cryptographical tasks itself (e.g.
key generation, signing). This model is more convenient forthe users because they
do not have to travel to the CA’s location for registration. Each RA has a key pair
associated with it. The CA knows the RAs’ public keys which ituses to authenticate
messages sent by the RAs. If the CA receives a valid signed request from an RA, it
creates a certificate.

EEEEEEEE EEEEEEEE EE

CA

RA RA RA

Certification

Delegation of Identification ,
Registration

Identification, Registration

Fig. 10.2-7: Single-CA plus registration authorities (RA).

Oligarchy of CAs

Instead of being configured with the public key of a single-CA, everything is con-
figured with public keys from multiple CAs. For example, there can be dozens
of organisations from which one can obtain a certificate. This model is currently
implemented in web browsers (open PKI). The advantage of this over the single-CA
model is that competition among CAs should prevent abusive pricing for obtaining
certificates. The disadvantage of this model is that it is less secure than the single-
CA model. In the single-CA model security depends only on thesingle-CA’s key.
When there are multiple CAs the security depends on all keys.Compromise of any
of the dozens of keys is as serious as compromise of the singlekey in the single-CA
model.

232 10 Public Key Infrastructure

Subordinated hierarchy

In this model there are multiple CAs arranged in a tree-like hierarchy (see Fig. 10.2-
8). The CA at the top of the hierarchy, which is referred to asroot CA, certifies all
other subordinated CAs. Each CA certifies one or several CAs at the following level
of the hierarchy. Hence, the root CA delegates the duty of certification to other CAs.
The subordinated CAs are normally strictly limited in termsof the name subtree
they can certify. Hence, this hierarchical model resemblesthe structure of large
corporations with a root authority at the top level and subordinated departments at
the lower levels. In the model displayed in Fig. 10.2-8 the user (EE) does not need
to trust the CA closest to her, but she must trust the root CA, hence the root CA is
the user’s trust anchor. This trust transitively propagates over all subordinated CAs.
If the private key of the root CA is compromised, all certificates in the hierarchy
become invalid. In practice, the number of CAs in the chain isrestricted (often
to 3) because trust quickly degrades as it is propagated across a long chain. The
advantage of this model is that the workload of certificationis distributed across the
hierarchy. Each CA only certifies entities which are somehowrelated to it (e.g. are
working in a related department of a large corporation).

CA

EEEEEE

CA CA

CA CA

EEEEEE EEEEEE

Fig. 10.2-8: Hierarchy of CAs.

10.2 Basics of PKI 233

Cross-certified Mesh

A cross-certified mesh envolves when PKIs belonging to different security domains
want to cooperate. A security domain is defined as a system under the control of a
single authority which the entities therein trust. Each security domain has its own
security and privacy policy defined either implicitly or explicitly by its authority. To
enable communication between two domains the root CAs cross-certify each other
(see Fig. 10.2-9). Nevertheless, also subordinated CAs cancross-certify each other.
This is often done to reduce the length of a high-usage certification path (short-cut).
It must be noted, that cross-certificates are not necessarily bidirectional.

The problems connected with cross-certification are:

• Cross-certification can only be carried out between domains, which agreed on a
common certificate policy. In practice, this is a big problem, because certificate
policies of different organisations are not compatible by default. Fig. 10.2-10
shows two incompatible certificate policies.

EE EE

Security Domain

CA

EE

EE

Security Domain

CA
CA

CA EE

CA EE

CA EE

Security Domain

CA

CA

EE

CA

EEEE

Short-cut

Security Domain

Fig. 10.2-9: Cross-certified mesh.

234 10 Public Key Infrastructure

Certificate Policiy A

Key length 2048
bit

Revocation: CRL

Certificate Policiy B

Key length 1024 bit

Revocation:
Revalidation

Acceptance
probable

Acceptance
not probable

?

?

?

?

Fig. 10.2-10: Comparison of two incompatible certificate policies.

• In this model there is in general more than one certification path between two
entities. In practice, there are no mechanisms which can handle more than one
certification path.

• The cross-certification is often transparent to the users (EE) of the PKI. The
chain along which trust is transitively propagated can become quite long. It is
not obvious, how secure these chains really are.

Bridge CA

Cross-certification does not scale well to larger numbers ofCAs. The organisational
overhead of linking security domains by cross-certification grows asn2, wheren is
the number of domains to be fully connected. The bridge CA model can help to
reduce the costs and problems of linking independent security domains. Fig. 10.2-
11 shows a bridge CA that cross-certifies with each security domain. It must be
noted that the bridge CA is not a root CA but a federal neutral institution. It acts
as a peer rather than a superior to the root CAs in the different security domains.
A bridge CA is thus able to connect diverse existing PKIs likecorporate PKIs,
banking PKIs, and government PKIs. Nevertheless, a uniformcertificate policy is
still needed. In practice a bridge CA provides the certificate policy to which all
connecting PKIs must conform. This model appears to be the prime candidate to
transform today’s PKI island solutions into a national PKI network. If bridge CAs
in different continents and countries cross-certify, thismodel may even extend to a
global open PKI.

10.2 Basics of PKI 235

EE EE

Security Domain

CA

EE

EE

Security Domain

CA
CA

CA EE

CA EE

CA EE

Security Domain

CA

CA

EE

CA

EEEE

Short-cut

Security Domain

Bridge
CA

Fig. 10.2-11: Bridge CA.

Egalitarian structure

In the egalitarian model, as shown in Fig. 10.2-12, all entities are both, certificate
authority and end entity. Each entity decides which other entities it wants to trust
with regard to the certification of other entities. This model was made popular by
Phil Zimmerman and his email encryption programmePretty Good Privacy (PGP)
which coined the expression Web of Trust. It must be noted that the egalitarian
model is totally distributed. There is no central institution that must be relied upon.
Hence, every participant can freely set his trust anchors onevery other participant,
who will than act as an introducer for other entities to him. This results in a certifi-
cation graph with multiple parallel paths of arbitrary length. The model can thus be
compared with the cross-certified mesh model, but the structure of the graphs and
the semantics of the nodes and edges is slightly different. The structure of the graph
often resembles social relationships between the entities, e.g. friendship, work rela-
tion, family relation, etc.

Note that Fig. 10.2-12 only shows certificates issued by the users of the Web of
Trust. The actual trust anchors are not displayed in this graphic. While the certifica-
tion graph is unique for all participants (ideal case), the trust graph which contains
the trust relations is specific (subjective) for every user.For an example of a com-
bined certification and trust graph see Fig. 10.3-1 in which Alice’s subjective trust
graph is superposed on the certification graph.

236 10 Public Key Infrastructure

�����
���
���	��

��� 	��
��
��

Fig. 10.2-12: An example for an egalitarian certification structure: TheWeb of Trust.

10.2.3 Attribute Certificates

Identity certificates like X.509 certificates only solve onepart of the problems in
public-key applications: They bind a person to a public key and thus help to authen-
ticate an entity. They give no information about which action the certified entity
is allowed to perform. The mapping of entities to rights is completely left to the
application itself.

Example 10.2-1:
Let us consider an application that employs strong authentication to grant access
to a computer system (see Fig. 10.2-13). All users of the system are provided
with a smart card containing a X.509 identity certificate. The X.509 certificate
was issued by a CA belonging to the organization who owns the computer net-
work (closed PKI). When a user wants to get access to the computer system she
inserts the smart card into a card reader and enters her password to proove that
she is the rightful owner of the private key which is also stored on the smart card.
Each computer in the network is configured with the public keyof the CA. The
authentication can now be performed as a challenge-response based on digital
signatures (see [Kaderali00b], Section 8.4.2)41. After the authentication process
the computer system knows the name of the user, but it does notknow if the
user is allowed to access the system. Hence, the system must look-up the name
of the user in an access control list (ACL). The ACL is held in adirectory server
(light-weight database). The directory server and the ACL are administered by
the system administrator, who is the responsible person foraccess control. If the
user name is listed in the ACL the system grants access to the user.

10.2 Basics of PKI 237

Access Control List

Alice
Bob
Carol
...

Network

Authentic
ation

Alice

Is Alice in ACL?

Yes!

System Administrator

X.509
Certificate :

Alice has
public key:

K_Alice

Smartcard

Directory

Computer

$

Certification Authority

Fig. 10.2-13: Example for strong authentication with certificates.

In the example above, Alice presents a piece of evidence - an identity certificate - to
the computer system. This is referred to as push model. This model conforms with
the rule, that the signer should supply all evidence the acceptor needs, including
recency information (see Section 10.2.1). Nevertheless, sometimes it is more con-
venient to request the certificate from a corresponding network service (e.g. a direc-
tory server (pull model)). Alice does not present any evidence that she is allowed
to access the network. Hence, the access right is pulled by the accessed computer
from the directory.

This example shows, that the PKI alone (in this case a single-CA) does not suffice to
make decisions about access rights. There has to be a second mechanism, a directory
server holding the ACL, to successfully grant access requests. The maintenance of
such a directory server leads to organizational overhead, and also represents a criti-
cal point of failure. There is always the chance that the directory server fails, which
would prohibit any user from working with the system. To eliminate this risk, red-
undancy mechanisms have to be installed which further add tothe complexity of the
system. Furthermore it must be noted, that every access request leads to messages
sent over the network from the accessed computer to the directory server and back.
For an attacker, the directory server is a valuable target. If the attacker is able to get
access to the directory he is able to add and remove arbitraryusers.

The integrity of the access information can be achieved witha digital signature. One
approach is, to include the access authorization inside theX.509 identity certificate
(in the extensions fields). Nevertheless, this is often not aviable method, because
the certificate authority is seldom the authority responsible for granting the appro-
priate rights. This can be seen in our example where we have a CA responsible for
issueing identity certificates and a system administrator who grants access rights.
These are obviously different entities. Furthermore, the dynamics of the two types

41 The private key must never leave the smart card. The signature is computed on the smart card
itself.

238 10 Public Key Infrastructure

of certificates may be different. Identity certificates often have a validity period of
several years. The access right on the other hand may only be valid for a much shor-
ter time period, e.g. a day or a week. If the identity certificate has to be reissued
or revoked in synchronization with the authorization information, this may have a
severe impact on the performance of the access control system.

Recognizing that identity certificates are not the ideal place to put authorization
information, an alternative approach is to place the authorization information in an
extra attribute certificate. This attribute certificate is astructure consisting of a data
part which holds the attribute information and the subject (name of an entity) to
which the attributes are bound, and a signature part containing a signature over the
data part carried out by an attribute authority (AA).

In our example, the access control system can be simplified byintroducing attribute
certificates carrying the authorization information besides the identity certificates.
These attribute certificates can either be stored in the directory server or, like the
identity certificate, on the user’s smart card. Fig. 10.2-14shows how attribute cer-
tificates can help to reduce the complexity of the access control system. It can be
seen that the directory server was removed. Instead of maintaining a list with autho-
rized users, each user gets an attribute certificate signed by the system administrator
(AA), which binds the right to access the computer system to the person holding
the certificate. The integrity of the certificate is maintained by the system adminis-
trator’s signature. The system administrator himself is certified by the CA. Each
computer on the network is configured with this certificate and the CA’s public key.

When Alice wants to access the network, she presents two items of evidence: the
identity certificate which states that Alice is bound to the key stored on the smart
card, and the attribute certificate which states that Alice is granted access to the
network. After the authentication process the accessed computer does not query a
directory server, but processes the attribute certificate.If the signature checks out
ok, Alice is granted access to the network.

Network
Authentication

Alice

System Administrator

Computer

$

Certification Authority

X.509
Certificate:

Alice has
public key:

K_Alice

Attribute
Certificate:
 Alice may
access the

network

X.509 Certificate:
SysAdmin has

public key:
K_SysAd

Smartcard

Fig. 10.2-14: Access control with attribute certificates.

10.2 Basics of PKI 239

The distribution of authorization information is just one of many possible uses for
attribute certificates. Basically, an attribute certificate can be used to bind any kind
of information to an entity. A proposal for the standardization of attribute certificates
was made by the ANSI X9 committee. ITU-T included this proposal in X.509v3
[IT97b].

10.2.4 Authorization and Delegation Certificates

Besides the two types of certificates already presented there is a third important kind
of certificate - the authorization certificate. The main application for such certifica-
tes is authorization in distributed environments, like theInternet, where no central
trusted authorities exist. An important new mechanism provided by authorization
certificates is the possibility to delegate certified rightsto other entities.

An authorization certificate is a digitally signed piece of information that assigns
a subject, usually represented in the form of a public key, one or more permissi-
ons, which allows the subject to perform specified actions onone or more specified
objects in a target system. Authorization certificates are also referred to assigned
capabilities. Fig. 10.2-15 shows a typical authorization certificate.

Key2 may access service S

during the period T1-T2

Signed: Key1

subject

authorization

issuer

validity period

Fig. 10.2-15: An authorization certificate.

A delegation certificate is an authorization certificate, that allows the subject to
delegate the assigned permissions further. A delegation certificate has the following
meaning:

SKey1(during the validity periodT1 − T2, if I have any of the rightsR I give the
rights also toKey2).

SKey1(...) denotes a signed message that includes both the signature and the original
message. The key that signed the certificate (Key1) is the issuer and the key to
whom the rights are given (Key2) is the subject of the certificate, and the rights
R given by the certificate are the authorization. With the delegation certificate, the
issuer delegates the rights to the subject. The certificate becomes invalid outside the
validity periodT1− T2. The validity period can be exploited to regulate the amount
of trust the issuer places into the subject. By specifying extremely short validity
periods the issuer can force the subject to frequently make online connections to
the issuer. In practice, authorization and delegation certificates are often treated as
synonyms.

240 10 Public Key Infrastructure

An important difference to attribute certificates is, that delegation certificates are
key-oriented. Subjects in delegation certificates are not identified by a name, but by
their public key. The chance that two persons have the same public key (e.g. 512 bit
RSA keys) is so low that it can be neglected. Hence, a public key is truly a globally
unique identifier.

The use of the public key as identifier leads to a considerablesimplification: the
same authorization that requires the combination of an identity certificate and an
attribute certificate can be expressed in a single delegation certificate (see Fig. 10.2-
16). There is no need for a trusted CA and every key may delegate its rights to
any other key. Hence, delegation certificates allow egalitarian certification structure
comparable to the web of trust. In order to bound the delegation chain, an issuer can
specify whether he allows the granted rights to be delegated.

Bob has public key
Key2

Signed: CA

Bob may access
service S

Signed: service owner

Key2 may access
service S

Signed: service owner

Identity certificate

Attribute certificate

Delegation certificate

Fig. 10.2-16: Delegation certificates avoid trusted CAs.

If we use delegation certificates in our access control example, the system can be
further simplified. Fig. 10.2-17 shows the system and it can be observed, that the
CA was removed from the system. Instead, the system administrator directly binds
the access authorization to Alice’s public key. Alice only has to present one piece
of evidence to the accessed computer: the authorization certificate. Each computer
securely stores the reduced ACL, which only consists of the administrator’s public
key. When an authorization certificate is presented by a user, the accessed computer
employs the administrator’s public key to verify the accessauthorization.

10.2 Basics of PKI 241

Network
Authentication

Alice

Smartcard

Computer

AA : System Administrator

Authorization
Certificate:
Key2 may
access the

network

Fig. 10.2-17: The access control system employing authorization certificates.

Normally, the administrator would not allow Alice to further delegate this access
right. On the other hand, there can be situations where such adelegation could be
useful. If Alice wants to delegate the access right she does not have to reveal a pass-
word - thus compromising system security - but can create a delegation certificate
herself (see Fig. 10.2-18). According to the trust in the other entity, she can limit
the access rights and the validity period (T3− T4 < T1− T2, R3 ⊆ R2).

Administrator
holds key1

key2 has rights R2
during the period T1-T2

Signed: key1

Alice
holds key2

Bob
holds key3

key3 has rights R3
during the period T3-T4

Signed: key2

issues

delegates

Fig. 10.2-18: Delegation of access rightsT 3− T 4 < T 1− T 2, R3 ⊆ R2.

242 10 Public Key Infrastructure

10.3 Important PKI Standards

10.3.1 X.509

The X.509 version 1 certificate format (X.509v1) was first published in 1988 by the
ITU-T. It was first extended in 1993 to become X.509v2. As a result of attempting to
deploy certificates within the Internet, X.509v2 was revised to hold additional exten-
sion fields. The resulting X.509v3 format was officially released in 1996 [IT97b].
X.509 certificates are formatted according to the ASN.1 abstract syntax notation.
The details of ASN.1 are beyond the scope of this book.

X.509 Identity Certificates

An X.509 certificate has the following structure:

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,

signature BIT STRING }

The fieldtbsCertificateholds the data part, the fieldsignatureAlgorithm
identifies the chosen signature algorithm and the fieldsignature carries the
signature of the certificate.

The signature algorithm is identified by anObject Identifier, OID.

Algorithm Identifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

The fieldalgorithm specifies a combination of hash function and signature algo-
rithm. An application has to list supported signature algorithms, including the allo-
wed parameters. The fieldparameter holds the parameters of the signature algo-
rithm.

The fieldsignature carries the signature, which is created by employing the
identified algorithm in combination with the CA’s private (signature) key on the
data section (tbsCertificate).

The fieldtbsCertificate consists of a sequence of subfields, which make up
the data part of the certificate (ASN.1 syntax).

10.3 Important PKI Standards 243

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,
serial number CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,
validity Validity,

subject Name
subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL

extensions [3] EXPLICIT Extensions OPTIONAL }

{version} Designates the version: v1, v2, or v3.

{serial number} A unique number is used to identify the certificate, e.g. for use in
certificate revocation lists.

{signature} Used for identification of the employed signature algorithm. It must
not be confused with the field holding the actual signature. The structure and
content is identical to the fieldsignatureAlgorithm.

{issuer} This field holds the name of the issuer (CA). The name must be a distin-
guished name conforming to X.500-Syntax (see Table 10.2-1).

{validity} This field specifies the validity window and holds the subfields
notBefore andnotAfter.

{subject} Here the distinguished name of the subject is given.

{subjectPublicKeyInfo} This field specifies the subject’s public key (sub-
field subjectPublicKey) and the according algorithm (subfield
algorithm) that must be used with this key.

{issuerUniqueID} This field contains an optional bit string used to make the CA
name unambigious in the case that the same name was reassigned to different
enities through time.

{subjectUniqueID} Same as above for subject.

{extensions} X.509v3 certificates may contain extension fields that can hold arbi-
trary data. An application can theoretically define an unlimited number of
extension fields. For instance, the extension fields may holdauthorization
information. The drawbacks of placing authorization information in iden-
tity certificates have been illustrated in Section 10.2.3. An extension field
has three parts: extension type (extnId), extension value (extnValue),
and criticality indicator (critical). The extension type is a gobally unique
identifier that references the syntax and semantics of the extension value. The
extension value holds the actual value of an extension field.Finally, the criti-
cality indicator is a flag that instructs a certificate-usingapplication whether it

244 10 Public Key Infrastructure

is safe to ignore the extension field if it does not recognize the extension type.
X.509v3 defines several standard extension fields, typical examples are fields
that contain information about key usage (electronic signature, encryption,
etc.), certification path constraints, CRLs, and certificate policies. Besides the
standard extensions, applications may define private extensions for their own
use (e.g. email address, server URL, etc.).

X.509 Attribute Certificates

The ITU-T X.509 standard also defines an attribute certificate format. It has the
following structure:

AttributeCertificateInfo ::= SEQUENCE {

version Version DEFAULT v1,

subject CHOICE {
baseCertificateID [0] IssuerSpecial,

subjectName [1] GeneralNames },
issuer GeneralNames,

signature AlgorithmIdentifier,

serial number CertificateSerialNumber,
attrCertValidityPeriod AttCertValidityPeriod,

attributes SEQUENCE OF Attribute,
issuerUniqueID IMPLICIT UniqueIdentifier OPTIONAL

extensions EXPLICIT Extensions OPTIONAL }

{version} The version number differentiates between different versions of the attri-
bute certificate. Currently, the version number is v1.

{subject} This field conveys the identity of the certificate’s subject,referenced eit-
her by theserialNumber associated with the subject’s X.509 identity cer-
tificate or by thesubjectName.

{issuer} This is the name of the Attribute Authority (AA) who created the attribute
certificate.

{serialNumber} This number uniquely identifies the attribute certificate.

{signature} This field identifies the cryptographic algorithm used to digitally sign
the attribute certificate.

{attCertValidityPeriod} This field conveys the time period during which the attri-
bute certificate is considered valid.

{attributes} This field contains the actual attributes that are bound to the subject.

{issuerUniqueID} This field uniquely identifies the isuuer of the attribute certifi-
cate in those instances where the issuer name is not sufficient.

10.3 Important PKI Standards 245

{extensions} This field allows the addition of new fields to the attribute certificate.

The X.509v3 standard leaves a lot of room for applications toadjust the certifi-
cates to their requirements. Many of the standard and extension fields can take a
wide range of options. Nevertheless, this flexibility makesit extremely difficult to
produce independent implementations that are able to operate with one another. To
overcome this problem, templates for certificates and procedures are created, which
are referred to as profiles. A profile defines which extension fields must be supported
and what values the certificate fields might carry for a certain type of application.

10.3.2 PKIX

The IETF Internet X.509 Public Key Infrastructure (PKIX) Working Group formed
in 1995 to develop standards for an Internet PKI based on X.509 certificates. These
standards consist of X.509v3 and CRL profiles, as well as several protocols for PKI
services. The specifications are documented in a family of RFC documents. These
RFCs can be grouped in five areas:

Profiles This first area involves profiles of the X.509v3 certificate and the X.509v2
CRL standards for the Internet.

Operational protocols These protocols can be used by participants to retrieve cer-
tificates. Protocols defined so far use LDAP (Lightweight Directory Access
Protocol), HTTP, FTP, and X.500 for certificate distribution.

Management protocols This area covers management protocols, in which diffe-
rent entities in the system exchange information needed forproper manage-
ment of the PKI. For example, a management protocol can convey informa-
tion about a revocation request from a client to a CA. The registration infor-
mation from a registration authority (RA) to a CA is another application for a
management prototcol.

Policy outline This section deals with certificate policies and certificatepractice
statements, covering the areas of PKI security not directlyaddressed in the
rest of PKIX. RFC 2527 [Chokhani99] defines a certificate policy and certifi-
cate practices framework.

Time stamping and data certification PKIX provides time stamping via a Time
Stamping Protocol (TSP). Furthermore, the working group proposes a data
certification service to provide notary functionalities.

246 10 Public Key Infrastructure

10.3.3 SPKI

The Simple Public-Key Infrastructure (SPKI) working groupwas built by the IETF
to standardize a PKI based on authorization and delegation certificates as described
in Section 10.2.4. The SPKI team addresses the problem that the name of a key
holder which is conveyed by traditional identity certificates is rarely of security
interest. A user of a certificate has to know whether a given key holder has been
granted some specific authorization.

There are two types of certificates in SPKI:

1. The basic certificate is an authorization certificate which communicates a per-
mission from one principal to another principal.

2. The second type is a name certificate which maps a name in theissuer field
to either a key or a name in the subject field.

In this book, we will only describe the authorization certificate. An SPKI authoriza-
tion certificate is a 5-tuple and contains the following fields (similar to the certificate
displayed in Fig. 10.2-15):

<Issuer, Subject, Delegation, Authorization, Validity>

Issuer The cryptographic key issuing this certificate and grantingthe permission
or rights it communicates.

Subject The cryptographic key acquiring the permission or rights.

Delegation A flag noting whether the Subject is also acquiring the right to delegate
all or part of the permission it acquires through this certificate.

Authorization {<tag>} A field specifying the permission being communicated.

Validity A specification of the dates or online conditions under whichthe cer-
tificate is assumed to be valid. The dates have the formYYYY-MM-DD

HH:MM:SS.

The starting point of a SPKI certificate chain is always an ACLentry. An ACL entry
is like a certificate, except that it has no issuer and is not signed. It is protected in
the application by other means.

Example 10.3-1:
In the access control example shown in Fig. 10.2-17 the ACL only holds the
public key of the administrator and is securely stored in every computer that
can be accessed. The administrator delegates the right to access the computer
network to Alice, but does not allow her to further delegate this right.

The data format chosen for SPKI is called S-expression. Thisis a parenthesized
expression with the limitations that empty lists are not allowed and the first element

10.3 Important PKI Standards 247

in any S-expression must be a string, called the "type" of theexpression. Alice’s
SPKI certificate may look as follows:

(cert
(issuer

(public-key
(rsa-pkcs1-md5

(e #03#)
(n

|ANHCG85jXFGmicr3MGPj53FYYSY1aWAue6PKnpFErHhKMJa4HrK4WSKTO

YTTlapRznnELD2D7lWd3Q8PD0lyi1NJpNzMkxQVHrrAnIQoczeOZuiz/yY
VDzJ1DdiImixyb/Jyme3D0UiUXhd6VGAz0x0cgrKefKnmjy410Kro3uW1|)))

)
(subject

(public-key

(rsa-pkcs1-md5
(e #11#)

(n
|ALNdAXftavTBG2zHV7BEV59gntNlxtJYqfWIi2kTcFIg

IPSjKlHleyi9s5dDcQbVNMzjRjF+z8TrICEn9Msy0vXB0

0WYRtw/7aH2WAZx+x8erOWR+yn1CTRLS/68IWB6Wc1x8h
iPycMbiICAbSYjHC/ghq2mwCZO7VQXJENzYr45|)))

)
(tag (access acme.org/alice/* (read write))

(not-before "1998-03-01_12:42:17")
(not-after "2012-01-01_00:00:00")

)

{KDQ6Y2VydCg2Omlzc3Vlcig0Omhhc2gzOm1kNTE2OlLfZteG8j83WwjWVnQ
4zUIpKSg3OnN1YmplY3QoMTE6b2JqZWN0LWhhc2goNDpoYXNoMzptZDUxNjq

zMpKVIr5I3MiwcffCMCxNMTI6cnVuZW1hY3MuZXhlKSkpKDM6dGFnMTA6dml
ydXMtZnJlZSkp}

Issuer and subject are identified by their public keys. The public keys consist of an
identifier (including hash function) and the public-key parameterse andn. PKCS1
[Kohnfelder78] is a document published by RSA which describes how RSA is
employed for encryption and digital signatures. The publicexponente is encoded
in hexadecimal notation, the modulusn is encoded in base64 notation42. The aut-
horization to access the computer network with read/write permissions in her home
directory is given within thetag field. The certificate is digitally signed by the
administrator (base64 encoded). If the administrator would allow Alice to delegate
her access right the certificate would change to

...

(propagate)
(tag (access acme.org/alice/* (read write))

...
\

42 65 character subset of ASCII, each character represents 6bits.

248 10 Public Key Infrastructure

10.3.4 OpenPGP

Pretty Good Privacy (PGP) is an email encryption programme written by Phil Zim-
merman in 1991 at MIT. Zimmerman wanted to create a solution that could be easily
used over the Internet. He released the programme as freeware and also published
the source code. PGP soon became a great success and currently is the only wor-
king PKI solution for the global Internet. PGP does not rely on "official" certifi-
cation authorities, but allows any user to certify other users. This model became
publicly known asWeb of Trust(see Fig. 10.2-12). Due to the immense success the
PGP message and certificate format were published as Internet standards in RFC
2440 [Callas98] under the name OpenPGP. It must be noted thatOpenPGP not only
supports the Web of Trust certification model but also the hierarchical certification
structures based on CAs. Hence, OpenPGP is not only used by private users for the
Internet but also by large corporations.

An OpenPGP certificate is a kind of meta certificate which may contain several
keys, user IDs and signatures. OpenPGP certificates are normally referred to as
"PGP Key", not "PGP certificate". The general format of an OpenPGP(v4) key looks
as follows:

Primary-Key
[Revocation Self Signature]

[Direct Key Self Signature...]
User ID [Signature ...]

[User ID [Signature ...] ...]

[[Subkey [Binding-Signature-Revocation]
Primary-Key-Binding-Signature] ...]

Entries in square brackets are optional and ellipses indicate repetition. An OpenPGP
key holds one primary key and may contain several subkeys. Ifthe key contains sub-
keys, the primary keymustbe a signing key. The subkeys may be keys of any type
(encryption keys, signing keys). The primary key may contain several user IDs,
which may carry several signatures. The Primary-key-name binding must include
a self-signature. This is the partUser ID [Signature] without brackets.
Hence, a PGP key at least consists of a primary key, a user ID and a self-signature
carried out by the primary key. Futhermore, there are some optional fields:

{Revocation Self Signature} A PGP key carrying this signature is revoked. The
signature is calculated directly on the key being revoked. Arevoked key is
not to be used. Only revocation signatures by the key being revoked, or by an
authorized revocation key, should be considered valid revocation signatures.

{Direct Key Self Signature} This signature is calculated directly on a key. Such a
signature may contain information about the key that non-self certifiers want
to make about the key itself (e.g. authorized revocation key), rather than the
binding between a key and a name.

10.3 Important PKI Standards 249

{Signature} There are four types of signatures which declare the amount of cer-
tainty in the authentication of the public key to be signed:

1. Generic certification of a User ID and Public Key packet. The issuer of
this certification does not make any particular assertion asto how well
the certifier has checked that the owner of the key is in fact the person
described by the User ID.

2. Persona certification of a User ID and Public Key. The issuer of this
certification has not done any verification of the claim that the owner of
this key is the User ID specified.

3. Casual certification of a User ID and Public Key. The issuerof this cer-
tification has done some casual verification of the claim of identity.

4. Positive certification of a User ID and Public Key. The issuer of this
certification has done substantial verification of the claimof identity.

{Binding-Signature-Revocation} The signature is calculated directly on the sub-
key being revoked. A revoked subkey is not to be used. Only revocation signa-
tures by the primary signature key that is bound to this subkey, or by an aut-
horized revocation key, should be considered valid revocation signatures.

{Primary-Key-Binding-Signature} This signature is a statement by the primary
signing key and indicates that it owns the subkey. This signature is calculated
directly on the subkey itself, not on any User ID.

Every key holder signs the binding of primary key and user ID himself, which is
referred to as self-certificate.

Example: Bob’s PGP key:

Primary Key: DSA (Signature)

User ID: bob<bob@acme.org>

signed by: primary key (self-certificate)
signed by: Alice

signed by: VerySane CA
User ID: bob<bob@acme.com>

signed by: primary key (self-certificate)

signed by: Carol
Subkey: RSA (Encryption & Signature)

signed by: primary key

In this example the primary key is only used to certify other users. The RSA subkey
is used for email encryption, data integrity and data originauthentication.

The PGP keys can be distributed to other users either by personal exchange or by
uploading the key to a directory server. Other users can download the keys from
users they want to communicate with. Key known to the user arestored in keyrings.
Public keys are stored in the public keyring, private keys are stored in the secret

250 10 Public Key Infrastructure

keyring. The secret keyring is protected by a password (alsopassphrase or mantra)
and should be stored in a safe place (e.g. on a floppy disk). PGPsoftware normally
includes a front-end to display the keys available in the user’s keyring.

If a user wants another user to act as an introducer, he must assign a trust value to
this user’s key (he thus sets a trust anchor). PGP supports the following trust levels:

• untrustworthy

• don’t know

• marginal

• full.

If the user is fully trusted, he can act as an introducer. If the user is marginally
trusted, another signature from a (marginally) trusted user is needed before this
user may act as an introducer. PGP supports the direct trust model as displayed at
the top of Fig. 10.2-5.

Example:
Fig. 10.3-1 shows an example for PGP’s Web of Trust. Alice authenticates and
certifies Carol and Don who both certify Jane. Although Alicefully trusts Jane
she has not authenticated herself and she has to rely on the authentication carried
out by Carol and Don. Since Alice only marginally trusts Carol and Don, there
have to be two signatures on Jane’s key before Alice is willing to accept the
key as valid. After Jane is authenticated Alice can use her asintroducer for Bob.
Since Alice fully trusts Jane a single signature on Bob’s keyfrom Jane suffices
to authenticate him.

Alice Bob

Carol

Don

Jane

marginal

marginal
full

Fig. 10.3-1: Example for PGP’s Web of Trust: Alice indirectly authenticates Bob.

251

Assignments

Assignments for Chapter "Introduction"

Assignment 1: 15 P.

a) In which categories can encryption systems be divided? 2 P.

b) Recall Example 1.4-1. Define an encryption functionEk3 and a decryption 3 P.
functionDk3 which are not the identity functions.

c) Recall Example 1.4-1. Encrypt the message sequencem = m1, m3, m2 under 3 P.
the keyk2.

d) Explain the following two attacks: 4 P.

• Chosen-ciphertext attack

• Chosen-plaintext attack.

e) Recall Example 1.4-2 withk = 7. Encrypt the message sequencem = 7, 5, 1. 3 P.

Assignment 2: Suppose there are two personsA andB using an asymmetric-key 4 P.
encryption system. Both have generated a matched pair of private and public keys:
(kd,A, ke,A) for A and(kd,B, ke,B) for B. After the key generation processA andB

exchange their public keys:ke,A from A to B andke,B from B to A. Suppose entity
A wants to send a messagem, encrypted as ciphertextc, to B.

a) How canA generate the ciphertextc from the messagem? 1 P.

b) How canB decrypt the ciphertextc to receive the messagem? 1 P.

c) B isn’t able to decrypt the ciphertextc. What could have happened? 2 P.

Assignment 3: Install the Crypto-Calculator on your PC or use the online version 6 P.
of the Crypto-Calculator. You can find the links on the book home page. Download
the manual for the Crypto-Calculator.

a) Compute the function23456789 mod 377 using the functionmod.exp. ? P.

b) What cryptographic encryption and decryption functionsare implemented in 2 P.
the Crypto-Calculator. What types of inputs and outputs areavailable?

c) Encrypt the message 193243434 with the key 1599999 for allthree encryption 2 P.
functions. Perform the reverse operation as well and write the result in a table.

252 Assignments

Assignment 4: As mentioned in the course, Cryptography is the science of the12 P.
methods of encryption and decryption. One simple example for an encryption algo-
rithm is theCaesar encryption algorithm invented by Caesar. There are many
slightly different variants of the algorithm. We will use the following variant for
this assignment:

As alphabet we use only upper case letters (A-Z). The characters of the alphabet
in a given plaintext are encrypted by a cyclic shift of each character depending on a
givenkey. The key is a choosen character from the alphabet and the position of this
character in the alphabet determines by how many positions each character must be
shifted, e.g. for the key "B" a cyclic shift of two characterstakes place (A → C,
B → D, ..., Z → B). Characters (especially blanks) which are not part of the
alphabet are left untouched by the encryption algorithm.

Example:
Plaintext: CRYPTOGRAPHY and CRYPTOANALYSIS

Encryption key: B

Encrypted text: ETARVQITCRJA and ETARVQCPCNAUKU

a) Encrypt the plaintext "CRYPTOGRAPHY AND CRYPTOANALYSIS" with5 P.
the given algorithm and the key "E".

b) A special case of the Caesar encryption algorithm is the socalled ROT134 P.
encryption algorithm . ROT13 uses the key "M" for encryption which shifts
each character by 13 places. What is special about the ROT13 encryption?

c) Why should "Z" not be used as encryption key?3 P.

Assignment 5: The following text is encrypted with the variant of the Cesar encryp-12 P.
tion algorithm given in Assignment 1.

LQ WKHLU DSSOLFDWLRQ FUBSWRORJLFDO PHWKRGV DUH QRW
ORQJHU DOLJQHG WR WKH DFTXLVLWLRQ RI SULYDFB RQOB. WKH
UDQJH RI DSSOLFDWLRQV WRGDB FRQWDLQV DOVR OLPLWHG
DFFHVV IRU HADPSOH WR SDB-WY, HOHFWURQLF VLJQDWXUH
VFKHPHV WR HQVXUH DXWKHQWLFLWB RU DOVR WR EXLOG
VBVWHPV IRU HOHFWURQLF SDBPHQWV.

Determine the used encryption key and the plaintext.

Solution hints: Instead of trial-and-error you can use a cryptoanalytic approach. Calculate
a frequency distribution for the characters of the encrypted text and compare it with the
frequency distribution of the English language.

In various English texts of 1000 characters, the alphabet occurs with about the following
relative frequencies:

253

A B C D E F G H I J K L M

73 9 30 44 130 28 16 35 74 2 3 35 25

N O P Q R S T U V W X Y Z

78 74 27 3 77 63 93 27 13 16 5 19 1

Assignments for Chapter "Mathematical Background"

Assignment 6: Prove that(Z∗
p ,×p) is a group. (×p is the multiplication modulop, 5 P.

p is prime).

Assignment 7: Compute the following expressions: 6 P.

a)17−1 mod 101 1.5 P.

b) 28−1 mod 75 1.5 P.

c) 21/2 mod 28 1.5 P.

d) 701/357 mod 1234. 1.5 P.

Assignment 8: In the following the setZ∗
14 will be dealt with in greater detail. 5 P.

a) Find the elements of the setZ∗
14. 1 P.

b) Compute the order of the elements ofZ∗
14. 3 P.

c) Find the generators ofZ∗
14. 1 P.

Assignment 9: Determinex from the following system of simultaneous congru-8 P.
ences:

x ≡ 12 mod 25

x ≡ 9 mod 26

x ≡ 23 mod 27.

Assignment 10: Let p(x) = x5 + x2 + 1 ∈ GF(2) be an irreducible polynomial. 8 P.

a) Construct GF(25) over the polynomialp(x). The elements of GF(25) should 2 P.
be represented as polynomials in GF(2).

254 Assignments

b) Compute(x4 + x2 + x + 1) · (x2 + 1) in GF(25).2 P.

c) Find the inverse of (x2 + 1) in GF(25).1 P.

d) Prove thatp(x)is a primitive polynomial.3 P.

Assignment 11: Determine whether the number 1729 is prime or not using the fol-4 P.
lowing tests:

a) Fermat’s test.2 P.

b) Miller-Rabin test.2 P.

Assignment 12: Use Pollard’s rho algorithm to factorize 221.3 P.

Assignment 13: Using the "baby step" "giant step" method, determinex from the4 P.
equation7x = 5 in Z∗

17.

Assignments for Chapter "Stream Ciphers"

Assignment 14: We consider an LFSR with the feedback polynomial20 P.

c(x) = x5 + x2 + 1 ∈ GF(2)[x]

and an initial state

s0 = (s0, s1, s2, s3, s4)
T = (1, 0, 0, 0, 0)T ∈ GF(2)5.

Further, we consider a nonlinear filter generator (NLFG) with the feedback polyno-
mial c, an initial state

s0 = (s0, s1, s2, s3, s4)
T = (1, 0, 0, 0, 0)T ∈ GF(2)5

of the LFSR, the filter functionf : GF(2)3 → GF(2), given in algebraic normal
form (ANF) as

f(x1, x2, x3) = x1x2 + x3,

and the tapping sequence

Γ = (γ1, γ2, γ3) = (0, 2, 3).

The operations off in the ANF are addition and multiplication modulo 2.

255

a) Which functions and procedures are available in the Crypto-Interpreter to 4 P.
handle LFSRs? Describe the functionality, the input and output types!

b) Build a table with the current state 5 P.

st = (st, st+1, . . . , st+4)
T ∈ GF(2)5

of the LFSR at timet, 0 ≤ t ≤ 10.

c) What is the period of the output sequences = s0, s1, . . . of the LFSR? 2 P.

d) Is the feedback polynomialc primitive? Give a reason for your answer. 2 P.

e) Compute the output of the filter functionf for all possible input values. 2 P.

f) Determine the output sequencez = z0, z1, . . ., of the nonlinear filter generator 5 P.
for 0 ≤ t ≤ 10.

Assignment 15: We consider the Boolean functionf : GF(2)3 → GF(2)2, 20 P.

f(x1, x2, x3) = x1x2 + x3,

from assignment 1. Now the inputsst ∈ GF(2), t ≥ 0, for f are from a true random
source, i.e. thest are balanced and statistically independent for anyt ≥ 0. The
outputzt is given by

zt = f(st, st+2, st+3)

for t ≥ 0.

a) Give an exact mathematical description of " thest are balanced and statisti-2 P.
cally independent for anyt ≥ 0" !

b) Which inputs are needed to produce the output elements(zt, zt+1)? 2 P.

c) Compute a truth table for the output(zt, zt+1) for all possible input values. 8 P.
Arrange the inputst according to their occurence in time.

d) Which inputs lead to the output(zt, zt+1) = (0, 0)? 4 P.

e) What is the value of the conditional probability 4 P.

P (st+3 = 0|zt = 0 ∧ zt+1 = 1)?

256 Assignments

Assignments for Chapter "Block Ciphers"

Assignment 16: Do some exercises with the Java-Applet on the modes of operation6 P.
on the book home page and write down some results (plain-ciphertext pairs, IVs,
key) for each algorithm and mode.

a) Choose some texts, encrypt them with DES and IDEA in ECB, CBC, OFB4 P.
and CFB mode.

b) Insert some transmission error and observe how this erroraffects the decryp-2 P.
tion in each mode.

Assignment 17: We consider in this exercise the DES algorithm.11 P.

a) What is the bit length of the keyk, the plaintextm and the ciphertextc for the3 P.
DES algorithm?

b) Which functions can be found in the Crypto-Interpreter for the DES Algo-2 P.
rithm? Describe the functionality, the input and output types!

c) Encrypt the message sequencem0 = 456, m1 = 312 andm2 = 456 with DES3 P.
in the ECB mode under the keyk = 4534. Write down the encryption and
decryption process and the ciphertext sequencec0, c1 andc2.

d) Encrypt the message sequencem0 = 456, m1 = 312 andm2 = 456 with DES3 P.
in CBC mode under the keyk = 4534 and initial valueIV = 3241. Write
down the encryption and decryption process and the ciphertext sequencec0, c1

andc2.

Assignment 18: In this exercise we consider the IDEA key schedule algorithm.5 P.
Suppose that the cipher key isk = 00010002000300040005000600070008

in hexadecimal. Compute the six subkeysk
(j)
1 , k(j)

2 , k(j)
3 , k(j)

4 , k(j)
5 , k(j)

6 , k(j)
7 , andk

(j)
8

for each roundj, 1 ≤ j ≤ 8, and the four keys for the output operation.

Assignment 19: Sketch a picture (or block-diagram) which describes roughly the7 P.
encryption algorithm in AES! What are the most important steps?
(As example, see how the IDEA algorithm is sketched in Fig. 4.4-1 and Fig. 4.4-2).

257

Assignment 20: 5 P.

a) Prove the following statement: When an attacker can factorize the modulusn 2 P.
of the RSA-scheme, then he can compute the secret keykd,A of the userA.

b) Show how the receiver of an RSA-encrypted message can speed up the decryp- 3 P.
tion operation using the Chinese Reminder theorem!

Assignment 21: Can the pair(e = 1123, n = 117739) be an RSA encryption key? 3 P.
If so, then compute the decryption key!
For the computations use the functions of the Crypto-Calculator (isprime,
gcd, factor, rcp and other).

Assignments for Chapter "Public-Key Encryption"

Assignment 22: Can we use the groupZ∗
23 and the elementg = 9 in it as public 2 P.

elements of ElGamal encryption scheme? Explain why!
If you require some computation use the functions from the Crypto-Calculator (e.g.
mod_exp).

Assignment 23: 5 P.

a) Compute all points on the elliptic curveE11(7, 6). 2.5 P.

b) On the curveE11(7, 6) compute the pointQ = 3P if the pointP is P (5, 1)! 2.5 P.
Explain all computational steps and do not use the Java Applet! Because in
the book we have not dealt with the algorithms for finding a square root of
element inZn, we square all elements ofZ11 in order to take the square root.
You can use the following table for finding the required square roots:

y 0 1 2 3 4 5 6 7 8 9 10

y2 in Z11 0 1 4 9 5 3 3 5 9 4 1

Assignment 24: For exchanging confidential messages Alice and Bob use the5 P.
ElGamal encryption scheme with elliptic curves. As public elements of the sys-
tem they use the curveE17(7, 8) and the pointG(2, 8) which is a generator of the
group (E17(7, 8), +).
Alice knows that Bob’s public key isKb = (12, 16). She wants to send him the mes-
sage ”Christmas” which is encoded to the pointM(13, 1) (using some algorithm).
Suppose that Alice uses the random parameterk = 3 for masking the message.

258 Assignments

For the computational operations in the elliptic curve group please use the Java-
Applet on the course homepage!

a) Which ciphertextC does Alice send?1.5 P.

b) Can you guess Bob’s private key?2 P.

c) Show how Bob decrypts the message?1.5 P.

Assignments for Chapter "Digital Signatures"

Assignment 25: What are the properties of an electronically signed document? The6 P.
explanation of the properties is also required.

Assignment 26: Compute the RSA signature (without hash function) ofm =4 P.
11111 usingn = 28829 and the smallest possible exponent.

Assignment 27: RSA signatures: To send the signed messagem = (11001011)2 to10 P.
Bob, Alice does the following: To create a matched pair of private and public keys,
she takes two primes,p = 13 andq = 19, to compute her public keye = 25. Solve
the following tasks:

a) Compute Alice’s private keyd.2 P.

b) Create the digital signature for the messagem without applying a hash func-2 P.
tion to the message.

c) Alice has sent the signed messagem to Bob. How can Bob verify Alice’s3 P.
signature?

d) Messagem and signatures have not been encrypted by Alice before trans-3 P.
mission, enabling an attacker to alter two bits of the message. Bob receives
m′ = (11010011)2. How can he decide whether the message has been altered
or not since it was signed by Alice?

Assignments for Chapter "Hash Functions and Authentication Codes"

Assignment 28: Explain why it is necessary for a hash function to be like thethree9 P.
properties shown below. Which kind of attacks can we avoid with these properties?

259

a) Weakly collision free 3 P.

b) Strongly collision free 3 P.

c) One-way function. 3 P.

Assignment 29: Explain why it is recommended that the minimal size of a hash2 P.
value should be 128 bits!

Assignment 30: 4 P.

a) Explain how hash functions are generally constructed! 2 P.

b) How can hash functions be classified with respect to the design of the compres- 2 P.
sion function? Explain briefly what is the main characteristic of each class!

Assignment 31: 4 P.

a) Explain how MACs based on block ciphers work! 2 P.

b) Explain how can we construct a MAC from a hash function! 2 P.

Assignment 32: Use the online Crypto-Calculator to compute the followinghash 3 P.
values and comment the results:

a) Hash of ”Die Pruefung werde ich bestehen” with MD5 0.5 P.

b) Hash of ”die pruefung werde ich bestehen” with MD5 0.5 P.

c) Hash of ”Die Pruefung werde ich bestehen” with SHA 0.5 P.

d) Hash of ”die pruefung werde ich bestehen” with SHA 0.5 P.

e) Hash of ”Die Pruefung werde ich bestehen” with squaring modulo 0.5 P.
10552043297

f) Hash of ”die pruefung werde ich bestehen” with squaring modulo 0.5 P.
10552043297

260 Assignments

Assignments for Chapter "Entity Authentication"

Assignment 33: Illustrate the functionality of the Feige-Fiat-Shamir identification6 P.
protocol by means of an example considering theselection of system parameters,
theselection of per-entity secrets, and theprotocol actions.

Assignment 34: Illustrate the functionality of the GQ identification protocol by6 P.
means of an example considering theselection of system parameters, theselection
of per-entity secrets, and theprotocol actions.

Assignments for Chapter "Key Management Techniques"

Assignment 35: Give a short description of the following procedures: storing,6 P.
updating, and destroying of keys.

Assignment 36: The Diffie-Hellman key exchange protocol can be extended to10 P.
work with three or more persons. Write down the steps which must be done for
the DH key exchange with three persons.

Assignments for Chapter "Public Key Infrastructure"

Assignment 37: Examine the certificate you have received from the FernUni-6 P.
versität in Hagen. In the case you don´t have a certificate, take one from
https://ca.fernuni-hagen.de/ and summarize your X.509 certificate attributes.

Assignment 38: Use your favorite web browser and look at the web site4 P.
https://meine.deutsche-bank.de. Why does your bowser trust the certificate issued
by this webserver?

261

Assignment 39: You have opened (browsed) the web page https://ca.fernuni- 5 P.
hagen.de/ and your browser displays a warning about an unknown certificate. The
following details are shown:

Certificate:
Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)
Signature Algorithm: md5WithRSAEncryption

Issuer: C=DE, ST=Nordrhein-Westfalen, L=Hagen,
O=FernUniversitaet in Hagen,

OU=Zentrum fuer Medien und IT ,

CN=Certification Authority (CA) 2005
/emailAddress=caadmin@fernuni-hagen.de

Validity
Not Before: Oct 4 12:28:01 2005 GMT

Not After : Oct 4 12:28:01 2007 GMT

Subject: C=DE, ST=Nordrhein-Westfalen,
O=FernUniversitaet in Hagen,

OU=Zentrum fuer Medien und IT,
CN=ca.fernuni-hagen.de

/emailAddress=caadmin@fernuni-hagen.de

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)
Modulus (1024 bit):

00:a4:3a:68:64:f2:94:1f:85:97:13:1b:6d:0e:c7:
95:f4:9d:46:6c:cc:9b:5c:98:2a:97:07:34:5b:9b:

ae:c3:b9:f2:51:e8:46:35:05:5d:e8:ff:7c:de:0f:

51:64:0d:e5:db:21:52:ab:bb:d2:66:18:d9:17:0f:
21:66:ba:4c:bb:65:47:b1:8f:5d:6e:1f:bc:94:eb:

e9:5a:e7:df:b1:68:fa:7b:11:2f:5a:da:12:da:00:
40:9d:3c:51:91:af:34:d6:73:89:77:83:0d:6b:58:

1b:34:04:8a:4c:9f:62:2b:66:8b:d3:1c:a4:a4:92:

29:1d:7b:6e:39:74:3d:e4:d5
Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
3a:c6:9e:73:d6:db:0a:27:44:9f:57:c0:3b:8b:25:fd:2c:28:

db:ce:20:b1:fe:e2:8a:64:ad:62:86:c0:65:e4:a4:cf:9e:42:

91:50:be:46:14:ae:9a:64:1c:7c:1d:2a:bb:06:f1:96:35:94:
e6:f1:84:c7:6e:3e:f8:9c:93:53:a6:a6:44:2b:00:06:9e:6f:

10:cc:5a:e8:4d:f4:c3:7b:d0:66:92:b6:72:76:c1:f2:d3:b5:
f7:11:c4:ef:c6:a3:05:bc:10:39:2c:3a:5a:8e:e5:2c:87:48:

d6:a2:3e:22:92:fd:61:40:fb:f9:44:64:35:c9:63:41:74:d2:
a1:9e

Your browser computes the sha1-Fingerprint:68 d5 8c 0e c9 8d 74 e7

31 99 c4 78 74 0c 65 af b9 44 55 03

Can you trust this certificate?

262 Assignments

Assignment 40:14 P.

a) Why should an OpenPGP key carry a self-certificate?2 P.

b) Alice and Bob are friends. Alice wants to send Bob an encrypted and signed12 P.
e-mail using PGP. She does not know Bob’s public key. Give a short statement
about the following methods of authentication explaining how secure they are.

1. Alice asks Bob to send her his public key in an e-mail.

2. Alice receives Bob’s public key in an e-mail. She phones Bob and asks
him to dictate the hash value (fingerprint) of his public key.

3. A PGP public key server is a giant public key ring containing the public
keys of many PGP users. Alice downloads Bob’s public key froma public
key server. The key is signed by a CA which Alice does not know.

4. Bob has an authentic copy of Alice’s public key. Bob sends his public key
in an encrypted e-mail to Alice.

5. In any e-mail conversation with Alice so far (e.g. the last10 e-mails), Bob
has included a fingerprint of his public key. Now, he sends an e-mail to
Alice including his public key.

6. Bob mails a diskette with his public key to Alice (traditional mail).

Assignment 41:16 P.

a) Create an SPKI certificate which conveys the following authorization to Alice:14 P.

"Alice may use the support of the company BigBucks during 01.05.2001
- 31.05.2001. She may delegate this authorization to her colleagues."

Use the Crypto-Calculator to create the digital signature.The certificate is
issued and signed by BigBucksSupport. Alice’s public key is(128 bit RSA):

n: 133742360663487486655573698906059112007

e: 30103164899134424358636143543737677

BigBucksSupport holds the following key pair (128 bit RSA):

n: 199939325098129215714149624045672866973

e: 42682163418151075735531010069604871163

d: 162281496330336818581120049457375032759

Solution hints: Procedure:

1. Use MD5 as hash algorithm.

2. You may freely make up a tag you think is suitable.

263

3. Use decimal notation for all keys and the signature.

4. The certificate has the following structure:

(cert
(issuer

(public-key
(rsa-md5

(e #...#)
(n #...#)

...

)
.....

)
{signature in decimal notation}

5. For the actual signing operation it is usefull to format the certificate into a single
line, because the Crypto-Calculator only can handle singleline strings:

cert(issuer(public-key(rsa-md5(e #...#) ...) ...) ...)
{signature}

These two lines must be present in your solution.

6. If you write a PROCESS (which is advisable), you should also include the code
in your solution. Otherwise, you should include a listing with the commands for
the Crypto-Calculator.

b) How does the certificate change, when DSA keys are employedinstead of 2 P.
RSA keys?

264 Assignments

265

Solutions for Assignments

Solution for Assignment 1:

a) Encryption systems can be subdivided into the following two categories:
symmetric-key (secret-key) and asymmetric-key (public-key) encryption. The
methods can be further divided into block ciphers (operating on blocks of fixed
length) and stream ciphers (operating on symbols).

b) Let, for example, the following bijection be assigned to keyk3

Ek3(m1) = c3, Ek3(m2) = c2 andEk3(m3) = c1.

The decryption functionD for keyk3 is:

Dk3(c1) = m3, Dk3(c2) = m2 andDk3(c3) = m1.

c) The ciphertext sequencec for the message sequencem = m1, m3, m2 is:
c = c1, c2, c3.

d) The explanation of the two attacking types:

• Chosen-ciphertext attack: The attacker tries to deduce thedecryption key by
pairs of plaintexts and ciphertexts, which (ciphertexts) are chosen by him.

• Known-plaintext attack: The attacker has a quantity of chosen plaintext and cor-
responding ciphertext and tries to determine the secret keyk or decrypt further
ciphertexts.

e) The ciphertext of the message sequencem = 7, 5, 1 with k = 7 is c = 4, 2, 8.

Solution for Assignment 2:

a) The encryption of the messagem is done byc = Eke,B
(m).

b) The decryption is done bym′ = Dkd,B
(c).

c) A possible error is: During the exchange of the public keys, an attackerC has
intercepted the transmission fromB to A and has inserted a self generated public
key ke,C. A has used this public key to encrypt the messagem. This attack can be
detected if the keys are certified.

266 Solutions for Assignments

Solution for Assignment 3:

a) 239

b) The following three cryptographic encryption functionsare implemented in the
Crypto-Calculator:

• encrypt_des

• encrypt_idea

• encrypt_rc5.

For decryption purposes the following three decryption functions can be used:

• decrypt_des

• decrypt_idea

• decrypt_rc5.

All these functions have Integer as input as well as output.

c) The result of the encryption and decryption is illustrated in the table below:

Message Key Function Result

193243434 1599999 encrypt_des 17269227889117512911

193243434 1599999 encrypt_idea 15143491676147334603

193243434 1599999 encrypt_rc5 14237518539867853697

17269227889117512911 1599999 decrypt_des 193243434

15143491676147334603 1599999 decrypt_idea 193243434

14237518539867853697 1599999 decrypt_rc5 193243434

Solution for Assignment 4:

a) HWDUYTLWFUMD FSI HWDUYTFSFQDXNX

b) A ROT13-encrypted text can be decrypted by a second run of the ROT13 algo-
rithm.

c) Due to the cyclic shift operation the encrypted text is identical to the plaintext.

Solution for Assignment 5:

In the encrypted text of 242 characters, alphabet occurs with the following frequen-
cies:

Solutions for Assignments 267

A B C D E F G H I J K L M

1 8 0 20 1 15 5 24 4 5 6 21 0

N O P Q R S T U V W X Y Z

0 14 6 17 24 9 1 13 16 25 5 2 0

From the solution hints we know that the character "E" occursmost frequently in
the English language. The characters which occurs most frequently in the encrypted
text are "W" (25), "H" (24) and "R" (24). First we assume that "W" in the encrypted
text corresponds to "E" in the plaintext which results in thedecryption key "R" and
the plaintext:

TY ESPTC LAAWTNLETZY NCJAEZWZRTNLW XPESZOD LCP YZE
WZYRPC LWTRYPO EZ ESP LNBFTDTETZY ZQ ACTGLNJ ZYWJ. ESP
CLYRP ZQ LAAWTNLETZYD EZOLJ NZYELTYD LWDZ WTXTEPO
LNNPDD QZC PILXAWP EZ ALJ-EG, PWPNECZYTN DTRYLEFCP
DNSPXPD EZ PYDFCP LFESPYETNTEJ ZC LWDZ EZ MFTWO
DJDEPXD QZC PWPNECZYTN ALJXPYED.

Obviously this text makes no sense, so we try "H", which results in the decryption
key "C" and the plaintext:

IN THEIR APPLICATION CRYPTOLOGICAL METHODS ARE NOT
LONGER ALIGNED TO THE ACQUISITION OF PRIVACY ONLY. THE
RANGE OF APPLICATIONS TODAY CONTAINS ALSO LIMITED
ACCESS FOR EXAMPLE TO PAY-TV, ELECTRONIC SIGNATURE
SCHEMES TO ENSURE AUTHENTICITY OR ALSO TO BUILD
SYSTEMS FOR ELECTRONIC PAYMENTS.

After only two attempts the Caesar encrypted text was decrypted.

Solution for Assignment 6:

Let Z∗
p = {1, 2, 3, . . . , p− 1}.

• The multiplication modulo×p is a binary operation.

For alla, b ∈ Z∗
p

a×p b = (a · b) mod p.

a · b > 0, thena · b can be written as (see Theorem 2.3-1):

a · b = qp + r, with 0 ≤ r < p. (1)

(a · b) cannot be a multiple ofp. That isr 6= 0. This can be proven as follows:

Suppose thatr = 0, then equation (1) can be written as:

(a · b) mod p = qp mod p

≡ 0 mod p.

268 Solutions for Assignments

That isa · b = 0. This implies thata = 0 or b = 0. Sincea, b ∈ Z∗
p, a resp.b is

not equal 0, thusr 6= 0. This is in contradiction to our supposition, namely that
r = 0.

Thus, for0 < r < p, we can write:

(a · b) mod p ≡ (qp + r) mod p

= qp + r + kp (with k ∈ Z)

= r + (q + k)p

≡ r mod p

= r ∈ Z∗
p.

Thus,a×p b ∈ Z∗
p.

• ×p is associative.

For alla, b, c ∈ Z∗
p

(a×p b)×p c = (((a · b) mod p) · c) mod p

= (((a · b) · c) mod p)

= (a · (b · c) mod p)

= (a · ((b · c) mod p)) mod p

= a×p ((b · c) mod p))

= a×p (b×p c).

• 1 is an identity element of(Z∗
p ,×p), since for alla ∈ Z∗

p

a×p 1 = (a · 1) mod p

= a mod p

= a, and

1×p a = (1 · a) mod p

= a mod p

= a.

That is, for alla ∈ Z∗
p, 1×p a = a×p 1 = 1.

• Each elementa of (Z∗
p ,×p) has an inversea−1, since for everya ∈ Z∗

p

gcd(a, p) = 1.

It follows that(Z∗
p ,×p) is a group.

Solution for Assignment 7:

a) We use the Extended Euclidean algorithm to findx andy so thatx andy are
solution to the equation

ax + by = gcd(a, b).

Throughout this solution we use the following notation:

Solutions for Assignments 269

Let r0 = a, r1 = b, r2 = r0 mod r1 and

q1 = ⌊r0

r1
⌋.

If r2 6= 0, then:

r3 = r1 mod r2 and

q2 = ⌊r1

r2
⌋.

We continue with this notation untilri = 0:

ri+1 = ri−1 mod ri andqi = ⌊ ri−1

ri
⌋, for 1 ≤ i ≤ n.

We start withx0 = 1, y0 = 0, x1 = 0, y1 = 1 and computexi+1 andyi+1 in every
further iteration as:

xi+1 = qixi + xi−1,

yi+1 = qiyi + yi−1.

For 1 ≤ i ≤ n, let n be defined such thatrn+1 = 0. Then, the integersx andy (the
solutions of the equation) can be computed as:

x = (−1)nxn

y = (−1)n+1yn.

17−1 mod 101:

We want to find an elementy so that17y ≡ 1 mod 101.

17y ≡ 1 mod 101 means that there exists an integerk so that

17y = 1 + 101k.

We write

7y − 101k = 1.

We putx = −k and write

101x + 17y = 1.

The previous equation has a solution sincegcd(101, 17) = 1. Using the notation,
introduced above, we obtain the following table

i 0 1 2 3 4
ri 101 17 16 1 0
qi 5 1 16
xi 1 0 1 1
yi 0 1 5 6

270 Solutions for Assignments

From the table we getn = 3, sincer4 = 0. Then we have

x = (−1)3x3 and

y = (−1)3+1y3.

Regarding the table, we havex3 = 1 andy3 = 6. Sox = −1 andy = 6. Thus, the
inverse of 17 modulo 101 isy = 6.

We verify that

gcd(101, 17) = 101 · (−1) + 17 · 6
= 1

and

17 · 6 ≡ 1 mod 101.

b) 28−1 mod 75:

We proceed in the same manner as in the previous paragraph. Sincegcd(28, 75) =

1, the inverse of 28 modulo 75 is an elementy so that

75x + 28y = 1.

i 0 1 2 3 4 5
ri 75 28 19 9 1 0
qi 2 1 2 9
xi 1 0 1 1 3
yi 0 1 2 3 8

After using the Extended Euclidean, we can derive from the table above thatn = 4,
sincer5 = 0. Then we get

x = (−1)4x4 and

y = (−1)4+1y4.

Regarding the table, we havex4 = 3 andy4 = 8. Sox = 3 andy = −8.

Note that−8 ≡ 67 mod 75.

Thus, the inverse of 28 modulo 75 isy = 67.

We verify that

gcd(28, 75) = 75 · 3 + 28 · (−8)

= 1

and

28 · 67 ≡ 1 mod 75.

Solutions for Assignments 271

c) 21/2 mod 28:

21/2 mod 28 = (21 · 2−1) mod 28, where2−1 is the inverse of 357 modulo 28.

2−1 modulo 28 does not exist, sincegcd(2, 28) = 2 6= 1. Hence21/2 mod 28 does
not exist.

d) 701/357 mod 1234:

701/357 mod 1234 = (701 ·357−1) mod 1234, where357−1 is the inverse of 357
modulo 1234.

First we determine357−1 modulo 1234. Sincegcd(1234, 357) = 1, the inverse of
357 modulo 1234 is an elementy such that

1234x + 357y = 1.

After using the Extended Euclidean, we get the following table:

i 0 1 2 3 4 5 6 7
ri 1234 357 163 31 8 7 1 0
qi 3 2 5 3 1 7
xi 1 0 1 2 11 35 46
yi 0 1 3 7 38 121 159

From the table we obtainn = 6, sincer7 = 0. Then we get:

x = (−1)6x6 and

y = (−1)6+1y6.

Regarding the table, we havex6 = 46 andy6 = 159. Sox = 46 andy = −159.

Note that−159 ≡ 1075 mod 1234.

Thus, the inverse of 357 modulo 1234 isy = 1075. We verify that

gcd(357, 1234) = 375 · (−159) + 1234 · 46

= 1

and

357 · 1075 ≡ 1 mod 1234.

Now we get

701/357 mod 1234 = (701 · 357−1) mod 1234 = 701 · 1075 mod 1234

= 753575 mod 1234

= 835.

272 Solutions for Assignments

Solution for Assignment 8:

a)

Z∗
14 = {a ∈ Z14 | gcd(a, 14) = 1}

= {1, 3, 5, 9, 11, 13}.

b) The order of an elementg of Z∗
14 is the least positive integerδ such thatgδ = 1.

The order of the elements ofZ∗
14 are summarized in the table below:

i 0 1 2 3 4 5 6
1i mod 14 1
3i mod 14 1 3 9 13 11 5 1
5i mod 14 1 5 11 13 9 3 1
9i mod 14 1 9 11 1
11i mod 14 1 11 9 1
13i mod 14 1 13 1

From the table we obtain the following result:

The order of 1 is 1, the order of 3 is 6, the order of 5 is 6, the order of 9 is 3, the
order of 11 is 3, and the order of 13 is 2.

c) The elements 3 and 5 generate all elements ofZ∗
14. That is there are generators

of Z∗
14. Note that the number of generators ofZ∗

14 is

ϕ(ϕ(Z∗
14)) = ϕ(6)

= 2.

Solution for Assignment 9:

We will solve the following equations

x ≡ 12 mod 25

x ≡ 9 mod 26

x ≡ 23 mod 27.

We use

m1 = 25, a1 = 12

m2 = 26, a2 = 9

m3 = 27, a3 = 23.

Sincegcd(mi, mj) = 1 for each1 ≤ i 6= j ≤ 3, we can use the Chinese remainder
algorithm to findx.

m = m1 ·m2 ·m3

= 25 · 26 · 27

= 17550.

Solutions for Assignments 273

M1 =
m

m1
= 702

M2 =
m

m2
= 675

M3 =
m

m3

= 650.

Now we computeyi with the use of the Extended Euclidean algorithm from the
congruenceyiMi ≡ 1 mod mi for i = 1, 2, 3.

y1 · 702 ≡ 1 mod 25⇒ y1 = 13

y2 · 675 ≡ 1 mod 26⇒ y2 = 25

y3 · 650 ≡ 1 mod 27⇒ y3 = 14.

The solution is

x ≡ (
n

∑

i=1

aiyiMi) mod m

x ≡ (aiyiMi + a2y2M2 + a3y3M3) mod m

≡ (12 · 13 · 702 + 9 · 25 · 675 + 23 · 14 · 650) mod 17550

x = 14387.

We verify that

14387 ≡ 12 mod 25

14387 ≡ 23 mod 27

14387 ≡ 9 mod 26.

Solution for Assignment 10:

a) GF(25) contains the polynomialsa4x
4 + a3x

3 + a2x
2 + a1x + a0, with ai ∈

GF(2) = {0, 1} for i = 1, 2, 3, 4. Arithmetic in GF(25) is performed modulo the
irreducible polynomialp(x) = x5 + x2 + 1.

b) We will compute(x4 +x2 +x+1) · (x2 +1) in GF(25). To compute the product
(x4 + x2 + x + 1) and(x2 + 1) in GF(25), we multiply the two polynomials, divide
the result byp(x) = x5 + x2 + 1 and then we get the remainder of this division as
result. That is

(x4 + x2 + x + 1) · (x2 + 1) =x6 + x3 + x + 1

x6 + x3 + x + 1

x5 + x2 + 1
=x +

1

x5 + x2 + 1
.

Thus,(x4 + x2 + x + 1) · (x2 + 1) ≡ 1 mod p(x).

c) We deduce from b) thatx4 + x2 + x + 1 is an inverse ofx2 + 1 in GF(25).

274 Solutions for Assignments

d) p(x) is a primitive polynomial, sincex is a generator of GF(25)∗. To prove that,
note that all elements of (GF (25))∗ can be obtained as powers ofx modulop(x).
This is shown in the next table, where the notationa4a3a2a1a0 substitutes that of
the polynomiala4x

4 + a3x
3 + a2x

2 + a1x + a0, with ai ∈ GF(2) = {0, 1} for i=1,
2, 3, 4.

Solutions for Assignments 275

i xi mod x4 + x + 1

(a4a3a2a1a0)

0 00001
1 00010
2 00100
3 01000
4 10000
5 00101
6 01010
7 10100
8 01101
9 11010
10 10001
11 00111
12 01110
13 11100
14 11101
15 11111
16 11011
17 10011
18 00011
19 00110
20 01100
21 11000
22 10101
23 01111
24 11110
25 11001
26 10111
27 01011
28 10110
29 01001
30 10010
31 00001
...

...

Solution for Assignment 11:

a) We can determine whether the number 1729 is a prime or not using the following
tests:

Fermat’s test:

Recall Theorem 2.6-3

276 Solutions for Assignments

With Fermat’s theorem, we can only decide if the number 1729 is composite. That
is, for a > 1 if gcd(a, 1729) = 1 anda1729−1 6≡ 1 mod 1729 then 1729 is compo-
site.

Fora = 2, gcd(2, 1729) = 1 and21728 ≡ 1 mod 1729 = 1.

Fora = 3, gcd(3, 1729) = 1 and31728 ≡ 1 mod 1729 = 1.

Fora = 4, gcd(4, 1729) = 1 and41728 ≡ 1 mod 1729 = 1.

Fora = 5, gcd(5, 1729) = 1 and51728 ≡ 1 mod 1729 = 1.

Fora = 6, gcd(6, 1729) = 1 and61728 ≡ 1 mod 1729 = 1.

Fora = 7, gcd(7, 1729) = 1 and71728 ≡ 742 mod 1729 6= 1.

1729 is pseudoprime to the basesa = 2, 3, 4, 5, 6. Only with the use of base 7, we
can see that 1729 is composite.

b) Miller-Rabin test:

Recall Theorem 2.6-4 and all notations utilized in the Miller-Rabin test.

s = max{r ∈ N : 2r divides1729− 1} = 6 andd = (1729−1)
26 = 27.

Fora = 2 we have

227 ≡ 645 mod 1729

6≡ 1 mod 1729.

We can deduct that 1729 is not prime by using Miller-Rabin test.

Solution for Assignment 12:

We want to factorize 221 with Pollard’s rho algorithm. By choosingf(x) = x2 + 1

andx0 = 1 we get:

x0 = 1

x1 ≡ 12 + 1 mod 221

= 2

x2 ≡ x2
1 + 1 mod 221

= 22 + 1

= 5

x3 ≡ x2
2 + 1 mod 221

= 52 + 1

= 26

x4 ≡ x2
2 + 1 mod 221

= 262 + 1 mod 221

= 14

gcd(x1 − x0, 221) = gcd(2− 1, 221) = 1.

gcd(x2 − x1, 221) = gcd(x2 − x0, 221) = 1.

gcd(x3 − x2, 221) = gcd(x3 − x1, 221) = gcd(x3 − x0, 221) = 1.

gcd(x4 − x0, 221) = gcd(14− 1, 221) = 13 > 1.

Solutions for Assignments 277

Since13 < 221, gcd(14− 1, 221) is a divisor of 221.

We verify that221 = 13 · 17.

Solution for Assignment 13:

We want to solve the DL problem:

7x = 5

in the groupZ∗
17. The order of the group isn = 17 − 1 = 16. We determine

m = ⌈
√

16⌉ = 4.

The baby step is

B = {(5 · 7−r, r); 0 ≤ r < 4}.

For r = 0 we obtain the pair(5.0).

Forr = 1 the first component of the pair is5 ·7−1 mod 2017. That is, we first have
to determine the inverse of 7 inZ∗

17. We get7−1 mod 17 = 5. Therefore,

5 · 7−1 mod 17 ≡ 5 · 5 mod 17 ≡ 8.

For r = 2 we get

5 · 7−2 mod 17 ≡ 5 · 49−1 mod 17

≡ 5 · 8 mod 17

≡ 6.

For r = 3 we get

5 · 7−3 mod 17 ≡ 5 · 343−1 mod 17

≡ 5 · 6 mod 17

≡ 13.

Thus,

B = {(5.0), (8, 1), (6, 2), (13, 3)}.

The computation of the elements(74)q mod 17 for q = 1, 2, . . . results in
4, 16, 13. The calculation is stopped whenq0 = 3, because the first component
in the pair(13, 3) of the baby step set contains 13. We getr0 = 3 and subsequently

x = q0m + r0

= (3 · 4) + 3

= 15.

Thus,715 = 5 mod 17

278 Solutions for Assignments

.

Solution for Assignment 14:

a) The Crypto-Interpreter has four functions to handle LFSRs:

• lfsr_init, functionality: Initialisation of an LFSR with feedback polynomial
c and an initial states0. The LFSR, the polynomialc, the initial states0 are
represented as integer values. Input type for LFSR,c and s0: INTEGER, no
output, it is a procedure.

CALL lfsr_init(LFSR,c,s);

• lfsr_state, functionality: Return the current state of the LFSR, inputtype
for LFSR:INTEGER, output type for the state:INTEGER.

TASK s:= lfsr_state(LFSR);

• lfsr_run, functionality: Return the current output of the LFSR and goto the
next state, input type for LFSR:INTEGER, output type:INTEGER.

TASK out:= lfsr_run(LFSR);

• lfsr_exit, functionality: Release the memory of the LFSR, input type for
LFSR:INTEGER, no output, it is a procedure.

CALL lfsr_exit(LFSR);

In the case ofc(x) = x5 + x2 + 1 the feedback polynomial is represented by the
integer32+4+1 = 37. The initial state(1, 0, 0, 0, 0) is represented as integer value
1.

b) Table of the current statest = (st, st+1, . . . , st+4)
T of the LFSR for0 ≤ t ≤ 10:

t st st+1 st+2 st+3 st+4

0 1 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 1 0 0
4 0 1 0 0 1
5 1 0 0 1 0
6 0 0 1 0 1
7 0 1 0 1 1
8 1 0 1 1 0
9 0 1 1 0 0
10 1 1 0 0 1

c) The period of the output sequence of the LFSR can be determined in different
ways, i.e.:

• Determine the exponent of the polynomialc.

Solutions for Assignments 279

• Determine the primitivity of the polynomialc.

• Compute the output sequencest of the LFSR for0 ≤ t ≤ 2 · (25 − 1).

The period of the sequences is 31.

d) The feedback polynomial is primitive, because the exponent is31 or because the
period of the output sequences is 31.

e) The output values of the filter functionf : GF(2)3 → GF(2), f(x1, x2, x3) =

x1x2 + x3, are:

x1 x2 x3 f(x1, x2, x3)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

This table is called the truth table off .

f) The output sequencez of the nonlinear filter generator is given by

zt = f(st+γ1 , st+γ2 , st+γ3) = f(st, st+2, st+3)

for t ≥ 0. The values forzt, 0 ≤ t ≤ 10, are illustrated in the following table:

t st st+2 st+3 zt

0 1 0 0 0
1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 0 0 0
5 1 0 1 1
6 0 1 0 0
7 0 0 1 1
8 1 1 1 0
9 0 1 0 0
10 1 0 0 0

280 Solutions for Assignments

Solution for Assignment 15:

a) The sequence elementsst, t ≥ 0, are called balanced and statistically indepen-
dent, if the following two conditions hold for anyt ≥ 0:

a.P (st = 0) = P (st = 1) = 0.5 and

b. P (st|s0, s1, . . . , st−1) = P (st).

b) The following inputs are needed to produce the output(zt, zt+1):

st, st+1, st+2, st+3, st+4.

st, st+2, st+3 for zt andst+1, st+3, st+4 for zt+1.

Solutions for Assignments 281

c) The truth table for the output(zt, zt+1) is given by:

st st+1 st+2 st+3 st+4 zt zt+1

0 0 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 1 1 1 1
0 0 1 0 0 0 0
0 0 1 0 1 0 1
0 0 1 1 0 1 0
0 0 1 1 1 1 1
0 1 0 0 0 0 0
0 1 0 0 1 0 1
0 1 0 1 0 1 1
0 1 0 1 1 1 0
0 1 1 0 0 0 0
0 1 1 0 1 0 1
0 1 1 1 0 1 1
0 1 1 1 1 1 0
1 0 0 0 0 0 0
1 0 0 0 1 0 1
1 0 0 1 0 1 0
1 0 0 1 1 1 1
1 0 1 0 0 1 0
1 0 1 0 1 1 1
1 0 1 1 0 0 0
1 0 1 1 1 0 1
1 1 0 0 0 0 0
1 1 0 0 1 0 1
1 1 0 1 0 1 1
1 1 0 1 1 1 0
1 1 1 0 0 1 0
1 1 1 0 1 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0

282 Solutions for Assignments

d) The following inputs give the output(zt, zt+1) = (0, 0):

st st+1 st+2 st+3 st+4 zt zt+1

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
1 1 1 1 1 0 0

e) In the table above, there are6 of 8 inputs, for whichst+3 = 0 is true. So,
P (st+3 = 0|zt = 0 ∧ zt+1 = 0) = 6

8
= 3

4
.

Solution for Assignment 16:

a) To demonstrate how the different modes of operation work,we have chosen the
following for both DES and IDEA:

• Plaintext: This is a demonstration!

• Sender Key: ECBmode

• Receiver Key: any.

The result of the different modes of operation is illustrated in Tab. 1 for DES and in
Tab. 2 for IDEA.

Tab. 1: Result of the different modes of operation for DES.

Modes of
operation

Plaintext (Hex) Ciphertext (Hex) IV

ECB 5468697320697320

612064656D6F6E73

74726174696F6E21

0834A10727EBD6E0

B339868E98798B1F

DC86FBDA94C8D3C9

CBC 5468697320697320

612064656D6F6E73

74726174696F6E21

3355DCB3D98ED7CD

3B04384353514BA5

98530AB50DEE337D

1234567890ABCDEF

CFB (r=1) 5468697320697320

612064656D6F6E73

74726174696F6E21

7B10748A7F68B4F9

A866E837760A2F45

500DE5B69BFBE833

1234567890ABCDEF

OFB (r=1) 5468697320697320

612064656D6F6E73

74726174696F6E21

7BFBF53E9323FF3B

D2262E7AD465BDF7

70DC27ECDE030517

1234567890ABCDEF

Solutions for Assignments 283

Tab. 2: Result of the different modes of operation for IDEA.

Mode of
operation

Plaintext (Hex) Ciphertext (Hex) IV

ECB 5468697320697320

612064656D6F6E73

74726174696F6E21

CE9D0C619B0DC618

7BF6E17024CF763D

E74F9D79E4D3E5FD

CBC 5468697320697320

612064656D6F6E73

74726174696F6E21

FAF60580695B9CC0

D12B388305034786

94DB4A592F048030

1234567890ABCDEF

CFB (r=1) 5468697320697320

612064656D6F6E73

74726174696F6E21

0B2BAD27DFCE71B4

A94F05275B2870BE

CE41D972D10B2D36

1234567890ABCDEF

OFB (r=1) 5468697320697320

612064656D6F6E73

74726174696F6E21

OB7CAFC108394D35

6AF2509006A387D0

AC79CF7777547BA9

1234567890ABCDEF

b) In the ECB mode, one or more bit errors in a single ciphertext block affect the
decryption of that block only.

In the CBC mode: a bit error inct affects the decryption ofct andct+1, whereas the
recovered plaintextm′

t+1 has bit errors precisely wherect did. Whenct+1 andct+2

have been transmitted without errors, thenct+2 is decrypted correctly.

In the CFB mode: changing one bit inct affects the decryption of the next⌈n/r⌉
ciphertext blocks. Proper decryption ofct requires the preceding⌈n/r⌉ blocks to be
transmitted correctly.

In the OFB mode: a bit error in the ciphertextct exclusively affects the correspon-
ding bit in the plaintextmt.

Solution for Assignment 17:

a) The effective key size is56 bit, the plaintext and ciphertext lengths are64 bit.

b) In the Crypto-Interpreter the following functions for the DES algorithm are
available:

• encrypt_des, functionality:c = Ek(m), input type form andk: INTEGER,
output type forc: INTEGER:

TASK c=encrypt_des(m,k);

• decrypt_des, functionality:m = Dk(c), input type forc andk: INTEGER,
output type form: INTEGER:

TASK m=decrypt_des(c,k);

284 Solutions for Assignments

c) In ECB mode the encryption is done according to the following steps:

c0 = Ek(m0),

c1 = Ek(m1) and

c2 = Ek(m2).

The ciphertexts are:

c0 = 17648341485071271004,

c1 = 17721168555847677831 and

c2 = 17648341485071271004.

In ECB mode the decryption is done according to the followingsteps:

m0 = Dk(c0),

m1 = Dk(c1) and

m2 = Dk(c2).

In Listing 1 a Crypto-Interpreter program with corresponding output in Listing 2
shows the above process.

Listing 1: Crypto-Interpreter program for the ECB encryption

PROCESS des_ecb;
DCL m0,m1,m2,k,c0,c1,c2,m0_,m1_,m2_ integer;

START; TASK
k := 4534;

TASK m0 := 456;

TASK m1 := 312;
TASK m2 := 456;

TASK c0 := encrypt_des(m0,k);
TASK c1 := encrypt_des(m1,k);

TASK c2 := encrypt_des(m2,k);

CALL writeln(’Encrypt with ecb mode’);
CALL writeln(’key k: ’,k);

CALL writeln(’plaintext m0: ’,m0);
CALL writeln(’plaintext m1: ’,m1);

CALL writeln(’plaintext m2: ’,m2);

CALL writeln(’ciphertext c0: ’,c0);
CALL writeln(’ciphertext c1: ’,c1);

CALL writeln(’ciphertext c2: ’,c2);

TASK m0_ := decrypt_des(c0,k);
TASK m1_ := decrypt_des(c1,k);

TASK m2_ := decrypt_des(c2,k);

CALL writeln(’Decrypt with ecb mode’);
CALL writeln(’key k: ’,k);

CALL writeln(’ciphertext c0: ’,c0);
CALL writeln(’ciphertext c1: ’,c1);

CALL writeln(’ciphertext c2: ’,c2);

CALL writeln(’plaintext m0_: ’,m0_);
CALL writeln(’plaintext m1_: ’,m1_);

Solutions for Assignments 285

CALL writeln(’plaintext m2_: ’,m2_);

STOP;
ENDPROCESS;

Listing 2: Output of the Crypto-Interpreter for the ECB encryption

Encrypt with ecb mode

key k: 4534
plaintext m0:456

plaintext m1: 312
plaintext m2: 456

ciphertext c0: 17648341485071271004

ciphertext c1: 17721168555847677831
ciphertext c2: 17648341485071271004

Decrypt with ecb mode
key k: 4534

ciphertext c0: 17648341485071271004

ciphertext c1: 17721168555847677831
ciphertext c2: 17648341485071271004

plaintext m0_: 456
plaintext m1_: 312

plaintext m2_: 456
Prozess beendet.

d) In CBC mode the encryption is done according to the following steps:

c0 = Ek(m0 + IV),

c1 = Ek(m1 + c0) and

c2 = Ek(m2 + c1).

The ciphertexts are:

c0 = 12426018224378480581,

c1 = 9512378987908079632 and

c2 = 10433574674834059951.

In CBC mode the decryption is done according the following steps:

m0 = IV + Dk(m0),

m1 = c0 + Dk(m1 + c0) and

m2 = c1 + Dk(m2 + c1).

In Listing 3 a Crypto-Interpreter program with corresponding output in Listing 4
shows the above process.

286 Solutions for Assignments

Listing 3: Crypto-Interpreter program for the CBC encryption

PROCESS des_cbc;
DCL i0,i1,i2,o0,o1,o2,m0,m1,m2,m0_,m1_,m2_,k,iv,c0,c1,c2 integer;

START;

TASK k := 4534;
TASK iv := 3241;

TASK m0 := 456; TASK m1 := 312;
TASK m2 := 456;

TASK i0 := iv xor m0;

TASK c0 := encrypt_des(i0,k);
TASK i1 := c0 xor m1;

TASK c1 := encrypt_des(i1,k);
TASK i2 := c1 xor m2;

TASK c2 := encrypt_des(i2,k);

CALL writeln(’Encrypt with cbc mode:’);
CALL writeln(’key k: ’,k);

CALL writeln(’initial value: ’,iv);
CALL writeln(’plaintext m0: ’,m0);

CALL writeln(’plaintext m1: ’,m1);

CALL writeln(’plaintext m2: ’,m2);
CALL writeln(’input i0: ’,i0);

CALL writeln(’input i1: ’,i1);
CALL writeln(’input i2: ’,i2);

CALL writeln(’ciphertext c0: ’,c0);
CALL writeln(’ciphertext c1: ’,c1);

CALL writeln(’ciphertext c2: ’,c2);

TASK o0 := decrypt_des(c0,k);

TASK m0_ := o0 xor iv; TASK o1 := decrypt_des(c1,k);
TASK m1_ := o1 xor c0; TASK o2 := decrypt_des(c2,k);

TASK m2_ := o2 xor c1; CALL writeln(’Decrypt with cbc mode:’);

CALL writeln(’key k: ’,k);
CALL writeln(’initial value: ’,iv);

CALL writeln(’ciphertext c0: ’,c0);
CALL writeln(’ciphertext c1: ’,c1);

CALL writeln(’ciphertext c2: ’,c2);

CALL writeln(’output o0: ’,o0);
CALL writeln(’output o1: ’,o1);

CALL writeln(’output o2: ’,o2);
CALL writeln(’plaintext m0_: ’,m0_);

CALL writeln(’plaintext m1_: ’,m1_);
CALL writeln(’plaintext m2_: ’,m2_);

STOP;

ENDPROCESS;

Listing 4: Output od the Crypto-Interpreter program for the CBC encryption

Encrypt with cbc mode:

key k: 4534
initial value: 3241

plaintext m0: 456

plaintext m1: 312
plaintext m2: 456

Solutions for Assignments 287

input i0: 3425

input i1: 12426018224378480381
input i2: 9512378987908080088

ciphertext c0: 12426018224378480581

ciphertext c1: 9512378987908079632
ciphertext c2: 10433574674834059951

Decrypt with cbc mode:
key k: 4534

initial value: 3241
ciphertext c0: 12426018224378480581

ciphertext c1: 9512378987908079632

ciphertext c2: 10433574674834059951
output o0: 3425 output o1: 12426018224378480381

output o2: 9512378987908080088
plaintext m0_: 456

plaintext m1_: 312

plaintext m2_: 456
Prozess beendet.

Solution for Assignment 18:

An example for the derivation of subkeys from the IDEA key schedule is shown in
the table below.

Round j k(j)
1 k(j)

2 k(j)
3 k(j)

4 k(j)
5 k(j)

6

1 0001 0002 0003 0004 0005 0006

2 0007 0008 0400 0600 0800 0a00

3 0c00 0e00 1000 0200 0010 0014

4 0018 001c 0020 0004 0008 000c

5 2800 3000 3800 4000 0800 1000

6 1800 2000 0070 0080 0010 0020

7 0030 0040 0050 0060 0000 2000

8 4000 6000 8000 a000 c000 e001

9 0080 00c0 0100 0140 - -

Solution for Assignment 19:

We will briefly describe the encryption process in AES (see Fig. 1, see also [Fer03]).
Hereby we will only describe a single round of AES because other rounds are simi-
lar.

288 Solutions for Assignments

Mix Mix Mix Mix

S S SS S S SS SS S SS SS S

Plaintext byte Key byte

SubBytes

ShiftRows

MixColumns

Fig. 1: A single round of AES.

In AES, each round consists of four steps:

• SubBytes,

• ShiftRows,

• MixColumns,

• AddRoundKey.

In the first step (SubBytes) the plaintext comes in as 16 bytesat the very top. The
first operation is to XOR the plaintext with 16 bytes (128 bits) of round key. Each of
the 16 bytes is then used as an index into an S-box table that maps 8-bit inputs into
8-bit outputs. The S-boxes are all identical. In the second step (ShiftRows) the bytes
are then rearranged in a specific order that looks a bit complicated but has a simple
structure. Finally, the bytes are mixed into groups of four (MixColumns). The last
step of the encryption process is AddRoundKey, a simple bitwise XOR operation
of round key and a state to output the new state.

Solution for Assignment 20:

a)Statement:When an attacker can factorize the modulusn of the RSA-scheme,
then he can compute the secret keyKd,A of the userA.

Proof: The RSA modulusn is publicly known. Suppose that an attacker can facto-
rizen, i.e. he can compute the primesp andq from n. He also knows that the secret
key kd,A = d has been computed from the equationd · e ≡ 1 mod ϕ(n). Because
he knowsp andq, he can computeϕ(n) = (p− 1)(q − 1). In the equation

d · e ≡ 1 mod (p− 1)(q − 1)

all variables exceptd are known. So, he can get the secret keyd = kd,A by solving
this congruency (e.g. with the Extended Euclidean algorithm).

b) Speeding up the decryption operation of RSA using the Chinese Reminder theo-
rem:
Suppose that Alice has the public keyke,A = (e, n) and the private keykd,A = d.

Solutions for Assignments 289

When Bob sends a confidential messagem to Alice, he computes the ciphertext
c = me mod n. To decrypt, Alice computes:m = cd mod n.
Because Alice knowsp andq (factorization ofn), she can use the Chinese Reminder
theorem to speed up this exponentiation. She uses her private keyd to compute the
valuesmp andmq as:

mp = cd mod p

mq = cd mod q.

Then she can set up the following system of equations:

m = mp mod p

m = mq mod q.

The original plaintextm can be found from this simultaneous congruency using the
Chinese Reminder theorem (see Chapter 2, Mathematical Background). With the
Extended Euclidean algorithm she computes two numbersyp andyq which satisfy
the equation

ypp + yqq = 1.

Usingyp andyq the messagem can be computed as:

m = (mpyqq + mqypp) mod n.

Note that the expressionsypp mod n andyqq mod n are not dependent on the mes-
sagem to be decrypted and can be precomputed.

We now show that decryption using the Chinese Reminder theorem is faster. We
assume that the modulusn has the bit lengthk and its factors,p andq, have the
bit lengthsk/2. Multiplication of two numbers modulon needs timeCk2 (C is a
constant). If we denote withl the number of ones in the binary representation of
d, the computation ofm = cd mod n (”classical encryption”) has computational
cost ofC(k + l)k2. The computational cost formp andmq is 2(k + l)Ck2/4 =

C(k + l)k2/2. After that we apply the Chinese Reminder theorem and we havetwo
more modular exponentiations. If we ignore the cost for computation of the Chinese
Reminder (we can ignore it becaused is very long and the time for computing the
Chinese Reminder is negligible compared to the time for exponentiation), we see
that in this way we achieve an acceleration of the decryptionoperation of a factor
of two. So, decryption with the Chinese Reminder theorem is twice as fast as the
”classical” encryption. This is very important since the decryption operation is very
often performed on a smart card which has limited storage capacity and processing
power and is very slow.

290 Solutions for Assignments

Example 1:
Suppose n= 253 (p = 11 andq = 23), e = 3, d = 147, andc = 119. We can
reconstruct the messagem ”classicaly” (m = cd mod n = 119147 mod 253 =

26) or using the Chinese Reminder Theorem:

mp = cd mod p = 119147 mod 11 = 4

mq = cd mod q = 119147 mod 23 = 3

yp = −2

yq = 1

m = (mpyqq + mqypp) mod n = (4 · 23− 3 · 2 · 11) mod 253 = 26.

Solution for Assignment 21:

We have the pair(e = 1123, n = 117739). The modulusn should be product of
two primes. We use the functionfactor(117739); from the Crypto-Calculator
to find one possible factor ofn. This deliversp = 281 as a first factor ofn. We find
the second factor:q = n/p = 419. In order to check whetherp andq are prime, we
use the functionis_prime(281); resp.is_prime(419); because419 and
281 are prime, this condition is fulfilled.

The exponente should satisfy1 < e < ϕ(n) andgcd(e, ϕ(n)) = 1. In this case,
ϕ(n) = ϕ(419 · 281) = (419− 1)(281− 1) = 418 · 280 = 117040. Fore = 1123

we have1 < 1123 < 117040 andgcd(1123, 117040) = 1. So, the requirements are
fulfilled and the pair(1123, 117739) can be an RSA encryption key (public key).

Computing of the decryption keyd:
The decryption keyd should satisfy1 < d < ϕ(n) and d · e ≡ 1 mod ϕ(n).
Becausegcd(e, ϕ(n)) = 1, such a numberd exists . The decryption exponentd can
be computed from the equationd · 1123 ≡ 1 mod 117040. This can be done with
the Extended Euclidean algorithm, which has also been used to implement thercp
function of the Crypto-Calculator. The output isd =rcp(1123, 117040) = 92027.
So, the corresponding private key of the public key(e = 1123, n = 117739) is
d = 92027.

Solution for Assignment 22:

The question is, if the elementg = 9 from Z∗
23 can be used as a public element

of ElGamal encryption scheme. Suitable numbers g which can be used as public
elements in encryption schemes based on the discrete logarithm problem are those
which are generators (prime elements) of the group in which we operate. Only in
this case, the existence of the discrete logarithm of each elementa of the group
is guaranteed. So, we should verify whether the elementg = 9 is a generator of

Solutions for Assignments 291

the groupZ∗
23, i.e. if the powers ofg generate all elements of the groupZ∗

23 =

{1, 2, 3, ..., 22}
91 = 9

92 = 12

93 = 16

94 = 6

95 = 8

96 = 3

97 = 4

98 = 13

99 = 2

910 = 18

911 = 1

−−−−−−−−−
912 = 9

913 = 12

.......

We can see that from the power912 all elements are repeated. The powers of9 gene-
rate the set{9, 12, 16, 6, 8, 3, 4, 13, 2, 18, 1}, i.e. a subgroup of order11 is generated
and not the whole groupZ∗

23 of order 22. So, the elementg = 9 should not be used
as a public element of the ElGamal encryption scheme.

Solution for Assignment 23:

a) Computation of all points on the curveE11(7, 6) : y2 = x3 + 7x + 6.

We should find all pairs(x, y) which satisfy the equationy2 = x3 + 7x + 6 in Z11.
So, for eachx in Z11 we calculatex3 + 7x + 6 and then try to find the square root.
This process is shown in the following table:

x x3 + 7x + 6 sqrt in Z11 exists? y = sqrt(x3 + 7x + 6)

0 6 no -

1 3 yes y = 5, y = 6

2 6 no -

3 10 no -

4 10 no -

5 1 yes y = 1, y = 10

6 0 yes y = 0

7 2 no -

8 2 no -

9 6 no -

10 9 yes y = 3, y = 8

292 Solutions for Assignments

Because in the book we have not dealt with the algorithms for finding a square root
of element inZn, in order to find the required square roots (last column of thetable
above), we squared all elements ofZ11 and took the square roots from the following
table:

y 0 1 2 3 4 5 6 7 8 9 10

y2 in Z11 0 1 4 9 5 3 3 5 9 4 1

So, the curveE11(7, 6) has 7 points and they are: (1,5), (1,6), (5,1), (5,10), (6,0),
(10,3), and (10,8).

b) The pointP (5, 1) ∈ E11(7, 6) is given. We should compute the pointQ = 3P .

We can do this both asQ = 3P = 2P + P (one doubling and one addition) or
asQ = 3P = P + P + P (two additions). Independent of whether we chose the
first or the second way, we have to perform two point operations in an elliptic curve
group. But note that if we had to compute for exampleQ = 9P , the first way of
computation isQ = 9P = 2·(2·(2·P))+P (three doublings and one addition = four
operations) and the second way isQ = 9P = P +P +P +P +P +P +P +P +P

(nine additions). So, the first way is in general much faster.That’s why we chose
this way in our computing.

So, we first double the pointP (xp, yp) and then add it to the result. IfR = 2P , the
doubling formula is:

xr = s2 − 2xp

yr = s(xp − xr)− yp

where s = (3x2
p + a)(2yp)

−1 in Z11.

So, we have:

s = (3x2
p + a)(2yp)

−1 mod 11 = (3 · 52 + 7)(2 · 1)−1 mod 11

= (75 + 7) · 2−1 mod 11 = 82 · 6 mod 11 = 492 mod 11

= 8.

xr = s2 − 2xp mod 11 = 82 − 2 · 5 mod 11

= 64− 10 mod 11 = 54 mod 11

= 10.

yr = s(xp − xr)− yp mod 11 = 8 (5− 10)− 1 mod 11 = 8 (−5)− 1 mod 11

= 8(−5 + 11)− 1 mod 11 = 8 · 6− 1 mod 11 = 47 mod 11

= 3.

Thus, we getR = 2P = (10, 3). We now computeQ = 3P = 2P + P = R + P ,
i.e. we have to add the pointsP (xp, yp) = (5, 1) andR(xr, yr) = (10, 3). We do
this according to the following equations:

xq = s2 − xp − xr

yq = s(xp − xq)− yp

where s = (yr − yp)(xr − xp)
−1 in Z11.

Solutions for Assignments 293

So, we have:

s = (yr − yp)(xr − xp)
−1 mod 11 = (3− 1)(10− 5)−1 mod 11

= 2 · 5−1 mod 11 = 2 · 9 mod 11 = 18 mod 11

= 7.

xq = s2 − xp − xr mod 11 = 72 − 5− 10 mod 11

= 49− 15 mod 11 = 34 mod 11

= 1.

yq = s(xp − xq)− yp mod 11 = 7 (5− 1)− 1 mod 11

= 7 · 4− 1 mod 11 = 27 mod 11

= 5.

The result is3P = Q(xq, yq) = (1, 5).

Solution for Assignment 24:

a) The public elements of the system are the curveE17(7, 8) and the generator
G(2, 8). Alice wants to send an encrypted message to Bob.

To encrypt the message ”Christmas” =M(13, 1), Alice uses Bob’s public keyKb =

(12, 16) and the random integerk = 3.
She computes the values
C1 = kG = 3 · (2, 8) = (13, 1) and
C2 = M + kKb = (13, 1) + 3 · (12, 16) = (13, 1) + (1, 13) = (4, 7).

The ciphertext is the pairC(C1, C2). So, the ciphertext Alice sends to Bob isC =

(13, 1, 4, 7).

b) Bob decrypts the received ciphertextC with his private key. His private key is
some random integerb he has chosen and then he has computed his public key as
Kb = bG. Since we know his public key and the generatorG, we can try to compute
his private key, i.e. we can try to solve the equation(12, 16) = b · (2, 8) in the curve
E17(7, 8) by finding the discrete logarithm ofKb(12, 16) to the baseG(2, 8). Since
all parameters in this example are artificially small (and thus insecure), we can try
to find the discrete logarithm by testing all possible values2G, 3G, 4G, ..., bG and
see which of these values matches toKb(12, 16).
Using the Java-Applet we get2G = (2, 8), 3G = (13, 1), 4G = (1, 13),,16G =

(12, 16), i.e. b = 16. Thus, Bob’s private key isb = 16. In real systems these
parameters are of the magnitude of2150 − 2300 and it would be impossible to get
the discrete logarithm by testing all possible values or by employing some other
algorithms for finding the discrete logarithms.

294 Solutions for Assignments

c) Bob receives the ciphertextC(C1, C2) = (13, 1, 4, 7) and uses his private key
b = 16 to decrypt the message. He gets the plaintext messageM by computing
C2 − bC1, i.e.

M = C2 − bC1 = (4, 7)− 16 · (13, 1) = (4, 7)− (1, 13)

= (4, 7) + (−(1, 13)) = (4, 7) + (1,−13) = (4, 7) + (1,−13 + 17)

= (4, 7) + (1, 4)

= (13, 1).

This is the original messageM that Alice sent to Bob.

Solution for Assignment 25:

The properties of an electronically signed document are data integrity, authentica-
tion and non-repudiation.

• Data integrity: The assurance that the data received was exactly the data sent.

• Authentication: The guarantee that the individual sendingthe message really is
the one he or she claims to be.

• Non-repudiation: Prevents a user from denying having signed a message after
having done so.

Solution for Assignment 26:

n = 127 · 127, e = 5 andd = 22781. The resulting signature iss = 7003.

Solution for Assignment 27:

a) Computation of Alice’s private keyd:

p = 13

q = 19

n = p · q = 247

ρ(n) = (p− 1)(q − 1) = 12 · 18 = 216

e = 25.

Public key:

(e, n) = (25, 247).

Alice’s private keyd:

de ≡ 1 mod ρ(n)

d · 25 ≡ 1 mod 216

d = 121.

Solutions for Assignments 295

b) Creation of the digital signature of messagem:

m = (11001011)2 = 203

s = md mod n = 203121 mod 247 = 34.

c) Alice has sent the messagem = 203 = 11001011 and the signatures = 34 to
Bob. To verify Alice’s signature, Bob does the following: Inorder to authenticate
the signature he uses Alice’s public key(e, n) = (25, 247) to computese mod n and
compares the result withm. If se mod n = m he has successfully authenticated the
signature.

se mod n = 3425 mod 247 = 203 = m.

Since no one but Alice possesses her private key, the signature is authentic and the
message has not been altered since Alice signed it and no error occurred during
transmission.

d) Bob receives the altered messagem′ = (11010011)2 = 211 and the signature
s = 34. He uses Alice’s public key to verify the signature:

se mod n = 3425 mod 24 = 203 6= 211.

Sincese mod n 6= m′ Bob knows that the message has been altered since Alice
signed it.

Solution for Assignment 28:

a) This property means that for a given messagem it is computationally infeasible
to find a messagem′ such thatH(m′) = H(m) for m′ 6= m. If this property is
not fulfilled, an attacker can intercept a valid message-signature pair (m, sig) on
the communication chanal and change it to (m′, sig). BecauseH(m′) = H(m), sig
would be a valid signature form′, i.e. a forgery.

b) This property means that foranymessagem it is computationally infeasible to
find a messagem′ such thatH(m′) = H(m) for m′ 6= m. If this property is not
fulfilled, an attacker can first find any two messagesm′ 6= m such thatH(m′) =

H(m). Then he givesm to Alice and persuades her to sign the message digest
H(m), obtainingsig. This signature would also be valid for the messagem′ and the
attacker can use the pair (m′, sig) as a valid forgery.

c) This property means that when hash a valueh is given, it is computationally
infeasible to compute the origin messagem, i.e. given messagem the hash value
h = H(m) is easy to compute, but given hashh, the messagem = H−1(h) can
not be computed. Using hash functions with the one-way property, it is impossible

296 Solutions for Assignments

to forge signatures on random hash valuesh. If it would be possible to invert the
hash function, an attacker could compute signaturesig on a random hash valueh
and then find a messagem such thath = H(m). Then the pair (m, sig) would be a
valid forgery.

Solution for Assignment 29:

If P (n, k) denotes the probability that we have at least one duplicate in k items,
where each item is able to take one ofn equally likely values between1 andn

(general birthday paradox), then this can be computed as:

P (n, k) = 1− n!

(n− k)! nk
.

Using some transformations, we can get the simplified relation for this probability:

P (n, k) > 1− e−
k(k−1)

2n .

From this relation we can deduce the value ofk for a given probability. To achieve
the probability of0.5 (50%), we should takek ≈ √n values.

We can use this result in order to determinea ”secure” length of hash values, i.e. to
determine an appropriate length which minimizes the probability of collision (i.e.
that two messagesm andm′ with variable length have the same hash value). The
result of the equation above implies that hashing just over

√
n random values yields

a collision with the probability of0.5. If we have a hash function with anm-bit
output (i.e.2m possible outputs), then with hashing

k =
√

2m = 2
m
2

random inputs, the probability of getting a duplicate hash values is0.5. Thus, the
length of the outputm must be large enough, so that the computing of2

m
2 hash

values in order to find a collision would be computationally infeasible. The 128-bit
hash value guarantees enough security, because computing of 2

128
2 = 264 > 1019

values for finding a collision is infeasible with respect to the computational power
available today.

Solution for Assignment 30:

a) Hash functions are usually computed by a sequence of similar compression
steps (iterations) through which a given messagem is processed block-wise to a
hash valueh(m). An input messagem of arbitrary finite length is divided into
fixed-lengthn-bit blocksmi. Before the iterations begin, a preprocessing initiali-
sation step is carried out. This typically involves appending extra bits (padding)
as necessary to attain an overall bit length which is a multiple of the block length
n, and often includes for security reasons a block indicatingthe bit length of the
unpadded input. Then the loop for processing the blocksmi begins. Each blockmi

serves as an input to an internal fixed-size compression function, which computes

Solutions for Assignments 297

a new intermedia result of bit lengthk (k is fixed), as a function of the previous
k-bit intermediate result and the input blockmi. After all message blocksmi are
processed, some optional output transformation is possible, before the hash value is
given as output of the algorithm.

b) Regarding the design of the compression function, the preprocessing and the out-
put transformation, we distinguish between four categories of iterated hash functi-
ons:

1. Hash functions based on symmetric block ciphers. Hash functions based on
symmetric block ciphers make it possible to use cryptographic techniques
which are already implemented and they use the know-how which already
exists for designing block ciphers. The idea is that if the block algorithm is
secure, then the one-way hash function will also be secure. The block cipher is
iteratively used as an internal compression function. The general scheme is as
follows:

h0 = IV, where IV is a random initial value

hi = EA(B)⊕ C(for all blocks i)

h = hb

whereA, B andC can be eithermi, hi−1, (mi ⊕ hi−1), or a constant.

2. Hash functions based on modular arithmetic. The basic idea is to construct
an iterated hash function usingmod n arithmetic as basis of the compression
function. Motivating factors are the re-use of existing software or hardware for
modular arithmetic and scalability to match required security levels. A signi-
ficant disadvantage however is that the computation of such functions is very
slow. A well known and wide spread example is the ”squaring modulon” func-
tion.

3. Dedicated hash functions. Dedicated or customized hash functions are ones
which are specially designed for the explicit purpose of hashing, with opti-
mized performance in mind, and without being constrained tore-use existing
system components such as block ciphers or modular arithmetic. Dedicated
hash functions have become more and more important in recentyears. Those
who have received the greatest attention in practice are based on the MD4 hash
function.

4. Provable secure hash functions. These are designed usingsome of the hard sol-
vable number theoretic problems as kernel of the compression function. A chal-
lenge in this approach is that all possible attacks lead to the ability to solve the
referenced problem, which is considered infeasible, givencurrent knowledge
and an opponent with bounded resources. (A cryptographic method is said to
be provably secure if it can be shown that breaking the methodis essentially as
difficult as solving a well-known problem, such as integer factorisation or the
computation of discrete logarithms). A well known example is the Chaum-van

298 Solutions for Assignments

Heijst-Pfitzmann (CHP) hash function, whose security is based on the discrete
logarithm problem.

Solution for Assignment 31:

a) The most commonly used MAC algorithms based on block cipher make use of
the CBC-mode. Input of the algorithm (see Fig. 7.6-1) is the messagem and the
secret MAC-keyK. The messagem is first padded if necessary (preprocessing),
and then devided intob blocksm1, ..., mb, each of sizel which is the processing
size of the block cipher. IfEK denotes encryption using the algorithmE with the
keyK, then the blockHb (which is the MAC value) is computed as follows:

H1 = EK(m1)

Hi = EK(Hi−1 ⊕mi)for 2 ≤ i ≤ b

H = Hb.

b) A common approach is to construct a MAC from a hash algorithm by simply
including the secret key as part of the hash input. There are several constructions:

1. Secret prefix method. In this method, the MAC of the messagem is MAC =

H(K||m), i.e. the keyK is appended at the beginning of the message, and then
the hash value is computed (security concerns arise!).

2. Secret suffix method. In this method, the MAC of the messagem is MAC =

H(m||K), i.e. the keyK is appended at the end of the message, and then the
hash value is computed (security concerns arise!).

3. Constructing MAC using the keyK as initial valueIV of some iterated hash
function (security concerns arise!).

4. Envelope method with padding. In this method, the keyK is appended at both
the start and the end of the hash computation:MAC = H(K||p||m||K). Here
p is a string used to padK to the length of one block. For example, ifH is
MD5 andK is 128 bits,p is a 384-bit string.

5. Hash-based MAC: In this method, the MAC of the messagem is MAC =

H(K||p1||H(K||p2||m)), where p1 and p2 are distinct strings of sufficient
length to padK out to the full block for the compression function.

Solution for Assignment 32:

a) hash md5(’Die Pruefung werde ich bestehen’) =
108539661692143697175881964544052334954

Solutions for Assignments 299

b) hash md5(’die Pruefung werde ich bestehen’) =
25896495293300118850580937767747107515

c) hash sha1(’Die Pruefung werde ich bestehen’) =
950425923872302811263129281384413934060031762536

d) hash sha1(’die pruefung werde ich bestehen’) =
1085618788325030014418505284979425327850646786652

e) hash squaremod(’Die Pruefung werde ich bestehen’,10552043297) =
6967079270

f) hash squaremod(’die pruefung werde ich bestehen’,10552043297) =
6967079270

Solution for Assignment 33:

One possible example of the Feige-Fiat-Shamir identification protocol:

1. Selection of system parameters. After selecting two secret primesp = 683 and
q = 811, the trusted third partyT publishesn = pq = 553913. Furthermore,
k = 3 andt = 1 are selected.

2. Selection of per-entity secrets. EntityA does the following:

a.A selects 3 random integerss1 = 157, s2 = 43215, ands3 = 4646. The
three random bits areb1 = 1, b2 = 0, andb3 = 1.

b. A computesv1 = 441845, v2 = 338402, andv3 = 124423.

c. A’s public key is (441845; 338402; 124423; 553913).A’s private key is
(157; 43215; 4646).

3. Protocol actions:

a.A chooses a random integerr = 1279 and a random bitb = 1. A then
computesx = 25898 and sends it toB.

b. B sends the 3-bit vector (0; 0; 1) toA.

c. A computes the responsey = r · s3 mod n = 403104 and sends it toB.

d. B computesz = y2 · v3 mod n = 25898 and acceptsA’s identity since
z = ±x andz 6= 0.

Solution for Assignment 34:

One possible example of the GQ identification protocol:

1. Selection of system parameters.

a. The trusted third partyT selects random primesp = 569 andq = 739

yieldingn = pq = 420491.

300 Solutions for Assignments

b. T computesφ = (p− 1)(q − 1) = 419184 and selects a public exponent
v = 54955. T then computess = v−1 mod φ = 233875.

c. The system parameters(v, n) = (54955, 420491) are made available for
all users.

2. Selection of per-entity secrets. EntityA does the following:

a. Provided thatA’s redundant identityJA = 34579.

b. T gives the secretsa = (JA)−s mod n = 403154 to A.

3. Protocol actions:

a.Aselects a random integerr = 65446, i.e. the commitment,1 ≤ r ≤ n−1,
and computes the witnessx = rv mod n = 89525.

b. A sends the pair of integers(IA, x) = (IA, 89525) to B.

c. B selects the challengee = 38980, 1 ≤ e ≤ v, and sends it toA.

d. A computes the responsey = r · sAe mod n = 83551 and sends it toB.

e.B computesz = JAe · yv mod n = 89525 and acceptsA’s proof since
z = x andz 6= 0.

Solution for Assignment 35:

• Storage of keying material refers to a key storage facility which provides secure
storage of keys for future use, e.g. confidentiality and integrity for secret keying
material, or integrity for public keys. Secret keys must be protected by physical
security (e.g. by storing it within a cryptographic device)or enciphered by keys
that have physical security. For all keying material, unauthorized modification
must be detectable by suitable authentication mechanisms.

• Assuming an encrypted data link where users want to change keys daily, the
effort to distribute a new key every day is laborious. An easier solution is to
generate a new key from the old key, and this process is calledkey updating.
This can be done using a one-way function. Two entities sharing the same key
and both operating on it using the same one-way function, they will get the same
result. This result can be used to create a new key, but it is obvious that the new
key is only as secure as the old one. If an adversary get accessto the old key.

• Key destruction refers to procedures by which parties are assured of the secure
destruction of keys that are no longer needed. Destroying keys eliminating all
records of this key, such that no information remaining after the deletion provi-
des any usable information about the destroyed key. A key maybe destroyed
by overwriting it with a new key or by zeroizing it. Keying material stored
on magnetic media should either be zeroized or the media itself should be
destroyed.

Solution for Assignment 36:

Diffie-Hellman key exchange with three parties is as follows:

Solutions for Assignments 301

1. A chooses a large random integerx and sends
X = gx mod n to B.

2. B chooses a large random integery and sends
Y = gy mod n to C.

3. C chooses a large random integerz and sends
Z = gz mod n. to A.

4. A sends to B
Z ′ = Zx mod n.

5. B sends to C
X ′ = Xy mod n.

6. C sends to A
Y ′ = Y z mod n.

7. A computes
k = Y ′x mod n.

8. B computes
k = Z ′y mod n.

9. C computes
k = X ′z mod n.

The secret keyk is equal togxyz mod n and no one else listening in on communi-
cations can compute that value.

Solution for Assignment 37:

Certificate:

Data:
Version: 3 (0x2)

Serial Number: 3846 (0xf06)

Signature Algorithm: md5WithRSAEncryption
Issuer: C=DE, ST=NRW, L=Hagen, O=FernUni in Hagen, OU=URZ,

CN=Certification Authority (CA)
/emailAddress=caadmin@fernuni-hagen.de

Validity
Not Before: Dec 9 10:02:27 2003 GMT

Not After : Dec 8 10:02:27 2005 GMT

Subject: C=DE, O=FernUni Hagen, OU=Mitarbeiter,
CN=Thorsten Kisner -- kisner

/emailAddress=thorsten.kisner@fernuni-hagen.de
Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)
Modulus (1024 bit):

00:b7:45:b0:2e:7c:20:fb:06:09:ab:41:17:d5:8c:
65:c4:d2:c2:53:81:55:fe:f4:1c:9b:c9:5e:dd:cc:

bc:54:ba:b7:4d:2e:6a:08:20:fa:46:e8:7d:c6:f7:

f1:1e:01:4b:47:82:4c:fd:45:1f:d8:c4:8a:fc:dc:

302 Solutions for Assignments

7d:68:9c:49:05:c3:cf:3f:73:72:2e:87:60:70:63:

1c:55:86:3b:f9:89:05:a0:b0:2f:cf:ad:c7:d8:16:
e3:0b:68:02:45:23:86:15:03:c8:f7:2d:e8:21:4c:

f3:91:b0:b9:ec:32:30:0a:9d:42:2f:a5:37:59:92:

ca:93:55:b5:a5:dc:f8:74:2b
Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Basic Constraints:critical

CA:FALSE
Netscape Cert Type:

SSL Client, S/MIME

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment,

Data Encipherment, Key Agreement
X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection,

TLS Web Client Authentication
Netscape Comment:

Issued by: FernUni-Hagen, Certification Authority (CA)
X509v3 Subject Key Identifier:

EC:2A:44:EA:A8:33:9D:44:3C:41:06:E6:EF:F2:60:6B:25:20:C1:8D

X509v3 Authority Key Identifier:
keyid:D2:CE:51:43:8B:C8:1B:1C:AA:BC:2D:B0:C1:2F:D2:F8:5C:3B:45:54

DirName:/C=DE/ST=NRW/L=Hagen/O=FernUni in Hagen
/OU=URZ/CN=Certification Authority (CA)

/emailAddress=caadmin@fernuni-hagen.de

serial:00

Netscape CA Revocation Url:
https://ca.fernuni-hagen.de/certserver/certs/ca-crl2003.pem

Netscape Base Url:
https://ca.fernuni-hagen.de/certserver

Netscape CA Policy Url:

https://ca.fernuni-hagen.de/certserver/help/policy.pdf
X509v3 CRL Distribution Points:

URI:https://ca.fernuni-hagen.de/certserver/certs/crl2003.crl

Signature Algorithm: md5WithRSAEncryption

91:eb:9a:07:32:54:be:58:63:59:39:ab:50:d3:75:e4:3b:ba:
90:0e:71:2d:a8:e1:9b:c9:61:3a:5f:70:c6:e7:48:79:64:b3:

6a:8b:3f:ce:f4:ac:4a:de:56:2b:98:b1:cb:58:03:0c:66:56:
88:28:41:49:ca:5a:24:a0:6f:d0:f8:32:4a:73:0f:0a:7a:83:

50:7b:d4:3b:31:bb:09:3a:b0:7c:84:b5:5f:62:d5:93:ae:8d:

67:43:c1:ba:cc:b5:fe:1c:6b:80:e6:dd:0b:ad:b6:70:64:97:
d7:0f:e3:b1:a7:81:41:fa:cd:44:af:1d:22:9f:98:fc:59:15:

13:18:d6:70:e3:f8:41:e9:da:42:3a:7d:79:c0:0f:14:34:7a:
41:ba:d9:b9:f8:03:03:55:62:16:cc:8a:d6:54:12:ec:47:e8:

5c:03:f0:3e:bb:c3:93:5e:a5:7b:f9:f2:df:bd:12:5b:e2:e0:
46:90:c1:c2:78:76:79:a5:ce:52:c4:d0:35:24:e3:e1:c3:59:

9d:d3:95:b0:32:05:d6:63:aa:41:7d:71:8b:e0:dc:7d:a2:c9:

32:bf:e9:d3:4b:ff:9b:bb:94:6b:8c:ac:c0:f6:b6:c5:30:31:
39:d8:89:a9:d4:56:8b:92:7b:11:48:56:fb:dd:30:01:00:b6:

15:f8:d4:7a

Solutions for Assignments 303

Solution for Assignment 38:

The certificate is signed byVeriSign, Inc. The browser explicitly trusts all certifica-
tes signed by this TTP.

Solution for Assignment 39:

No, the correct fingerprint isd2 a8 f0 24 9e 2f 5a 62 db 5d 9c 14

3e b4 a7 d4 3f 77 1f 32

Solution for Assignment 40:

a) An OpenPGP key should carry a self-certificate to guarantee the integrity of the
key-User ID binding. If the binding was not signed, an attacker could replace the
user ID (including the e-mail address). This can be regardedas a kind of denial-of-
service attack.

b) 1. This method is very insecure. E-mails can easily be intercepted and altered.
This method makes man-in-the-middle attacks very easy.

2. If Alice and Bob know each other this method is very secure.Alice can authen-
ticate Bob by his voice. The hash value of the public key is forall practical
purposes unique.

3. Since Alice does not know the CA she cannot trust it. She even does not know
if the binding of public key to user ID is correct. Anybody cangenerate a key
pair and bind an arbitrary user ID to it. Alice has two problems: firstly, she

304 Solutions for Assignments

cannot authenticate the CA and secondly she does not know andtrust the CA.
Consequently, Alice should not rely on the certificate from the alleged CA.

4. This method is as insecure as the unencrypted e-mail case above. Alice’s public
key is public (as the name suggests). Anybody can use this keyto send an
encrypted e-mail to Alice. Encrypting an e-mail with Alice’s public key does
not authenticate the sender.

5. This method is reasonably secure. Alice received Bob’s public key (again, for
all practical purposes the hash value of the key is unique) ina strong context.
She could authenticate the public key via this context. If a different person than
Bob had sent the e-mails, Alice normally should have noticed. Nevertheless,
whether Alice is willing to depend on this evidence depends on her own perso-
nal security policy.

6. This method is rather secure. Again, the public key is submitted in a strong
context. The context is a letter with Bob’s handwriting on itand an attached
floppy disk. It is much harder to intercept and exchange traditional mails than
it is to modify e-mails.

Solution for Assignment 41:

a) The certificate may look as follows (without signature):

(cert

(issuer
(public-key

(rsa-md5
(e #42682163418151075735531010069604871163#)

(n #199939325098129215714149624045672866973#))))

(subject
(public-key

(rsa-md5
(e #30103164899134424358636143543737677#)

(n #133742360663487486655573698906059112007#))))
(propagate)

(tag (support BigBucks)

(not-before "2001-05-01_00:00:00")
(not-after "2001-06-01_00:00:00")

The signed certificate is contained in the solution as a separate file.

b) DSA public keys have four parameters:(p, q, g, y). The DSA signature con-
sists of two parts,r ands. Furthermore, the algortihm identifier changes, e.g. into
(public-key(dsa-sha1(...))).

References 305

References

References for Chapter Introduction

[Buchmann99a] Johannes Buchmann.Einführung in die Kryptographie.Springer
Verlag, 1999.

[Diffie76a] W. Diffie and Martin E. Hellman.New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644-654, November
1976.

[Ibraham92] A. Ibraham.Al-Kindi: The origins of cryptology: The Arab contribu-
tions.Cryptologia, vol. 16, no. 2 (April 1992) pp. 97-126.

[Kahn67a] David Kahn.The Codebreakers.Macmillan Publishing Company,
New York, 1967.

[Menezes96a] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone.
Handbook of Applied Cryptography.CRC Press, 1996.

[Rivest78a] R. L. Rivest, A. Shamir and L. Adleman.A method for obtaining
digital signatures and public-key cryptosystems.Communication of the
ACM, 21(2):120-126, February 1978.

[Schneier96a] Bruce Schneier.Applied Cryptography: protocols, algorithms, and
source code in C.John Wiley and Sons, 1996.

[Schneier04] Bruce Schneier.Secrets and Lies - Digital Security in a Networked
World.Wiley Publishing, Inc., Indianapolis, 2004.

[Shannon49a] Claude Shannon.Communication Theory of Secrecy Systems.Bell
Systems Technical Journal, 28:656-715, 1949.

[Shannon49b] W. Weaver, C. Shannon.The Mathematical Theory of Communi-
cation.University of Illinois Press, 1949.

[Stinson95b] Douglas R. Stinson.Cryptography: Theory and Practice.CRC
Press, 1995.

References for Chapter Mathematical Background

[Buchmann99] Johannes Buchmann.Einführung in die Kryptographie.Springer
Verlag, 1999.

[Cormen89] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest.
Introduction to algorithms.MIT Press, 1989.

306 References

[Herstein86] I. N. Herstein.Abstract Algebra.Macmillan Publishing Company,
1986.

[Jackson87] T. H. Jackson.From Number Theory to secret Codes.IP Publishing
Ltd., 1987.

[Koblitz94] Neal Koblitz.A Course in Number Theory and Cryptography.Sprin-
ger Verlag, 1994.

[Koblitz98] Neal Koblitz. Algebraic Aspects of Cryptography.Springer Verlag,
1998.

[Lidl94] Rudolf Lidl, and Harald Niederreiter.Introduction to finite fields and
their applications.Cambridge University Press, 1994.

[Menezes96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[Schneier96] Bruce Schneier.Applied Cryptography: protocols, algorithms, and
source code in C.John Wiley and Sons, 1996.

References for Chapter Stream Ciphers

[Blum84] Manuel Blum and Silvio Micali.How to generate cryptographically
strong sequences of pseudo-random bits.SIAM Journal on Computing,
13(4):850-864, November 1984.

[Fumy94] Walter Fumy and Hans Peter Rieß.Kryptographie: Entwurf, Einsatz
und Analyse symmetrischer Kryptoverfahren. Oldenbourg Verlag, 1994.

[Kaukonen99] Kalle Kaukonen and Rodney Thayer.A stream cipher encryp-
tion algorithm arcfour.Technical report, SSH Communications Secu-
rity, July 1999. Internet Draft, http://ftp.ietf.org/internet-drafts/draft-
kaukonencipher- arcfour-03.txt.

[Knudsen98] Lars. R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, and
Sven Verdollaege.Analysis methods for (alleged) rc4,pp. 327–341.
Springer Verlag, 1998.

[Lidl94] Rudolf Lidl and Harald Niederreiter.Introduction to finite fields and their
applications.Cambridge University Press, 1994.

[Massey69] James L. Massey.Shift register synthesis and BCH decoding.IEEE
Transactions on Information Theory, 15(1):122–127, January 1969.

[Mister98] S. Mister and Stafford E. Tavares.Cryptanalysis of rc4-like ciphers.
pp. 136–148. Springer Verlag, 1998.

[Rivest92] Ronald L. Rivest.The rc4 encryption algorithm.Technical report, RSA
Data Security, Inc., 1992, not published.

307

[Rueppel86] Rainer A. Rueppel.Analysis and Design of Stream Ciphers.
Springer-Verlag, 1986.

[Stinson95] Douglas R. Stinson.Cryptography: Theory and Practice.CRC Press,
1995.

[Yao82] Andrew C. Yao.Theory and applications of trapdoor functions.In Proc.
of the 23th Annu. IEEE Symp. on Foundations of Computer Science, pp.
80–91, 1982.

References for Chapter Block Ciphers

[Biham93] Eli Biham and Adi Shamir.Differential Cryptanalysis of the Data
Encryption Standard.Springer Verlag, 1993.

[Biham93a] Eli Biham.New types of cryptanalytic attacks using related keys.
Advances in Cryptology, Proceedings Eurocrypt’93, LNCS 765, 1993.

[Daemen94] Joan Daemen, René Govaerts and Joos Vandewalle.Weak keys for
idea, pp. 224–231.

[Daemen97] Joan Daemen, Lars R. Knudsen and Vincent Rijmen.The Block
Cipher Square.Proceedings of Fast Software Encryption Workshop 1997,
1997.

[Daemen99] Joan Daemen and Vincent Rijmen.AES Proposal: Rijndael.Techni-
cal report, NIST, 1999.

[Fer03] Niels Ferguson and Bruce Schneier.Practical Cryptography.Wiley
Publishing, 2003.

[Fips81] FIPS.Des modes of operation.Technical report, Federal Processing
Standards Publications 46-1, U.S. Department of Commerce/N.I.S.T.
National Technical Information Service, Springfield Virginia, 1980. FIPS
81.

[Fips01] FIPS.Advanced encryption standard (aes).Technical report, Federal
Processing Standards Publications 197, U.S. Department ofCom-
merce/N.I.S.T. National Technical Information Service, Springfield
Virginia, 2001. FIPS 197.

[Fumy94] Walter Fumy and Hans Peter Rieß.Kryptographie: Entwurf, Einsatz
und Analyse symmetrischer Kryptoverfahren.Oldenbourg Verlag, 1994.

[Gordon82] J. A. Gordon and H. Retkin.Are big s-boxes best?pp. 257–262.
Springer Verlag, 1982.

[ISO91] ISO. Information processing - modes of operation for an n-bit block
cipher algorithm.Technical report, International Organization for Stan-
darization, 1991. ISO/IEC 10116.

308 References

[Jakobsen97] Thomas Jakobsen and Lars R. Knudsen.The Interpolation Attack
on Block Ciphers.Proceedings of Fast Software Encryption Workshop
1997, 1997.

[Kad97] Firoz Kaderali, Hagen Hagemann, Heino Hirsekorn, Heinz Müller and
Andreas Rieke.Kurs 02553 Technischer Datenschutz in Kommunikations-
netzen, FernUniversität in Hagen (Interaktiver CD-ROM-Kurs, inklusive
Interpreter für kryptologische Protokolle). Addison-Wesley, 1997.

[Knudsen95] Lars R. Knudsen.Truncated and higher order differentials.Fast
Software Encryption, LNCS 1008, B. Preneel, 1995.

[Lai91] Lai X. and J.L. Massey.A proposal for new block encryption standard.
Advances in Cryptology, Proceedings Eurocrypt’90, LNCS 437, 1991.

[Lai92] Lai X. On the Design and Security of Block Ciphers.ETH Series in Infor-
mation Processing, v.1, Konstanz: Hartung-Gorre Verlag, 1992.

[Matsui94] Mitsuru Matsui.The First Experimental Cryptanalysis of the Data
Encryption Standard.Advances in Cryptology - CRYPT0 94, LNCS 839,
1994.

[Menezes96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography.CRC Press, 1996.

Online Version available from: http://www.cacr.math.uwaterloo.ca/hac/

[Schneier96] Bruce Schneier.Applied Cryptography: protocols, algorithms, and
source code in C.John Wiley and Sons, 1996.

References for Chapter Public-Key Encryption

[Diffie76] W. Diffie and Martin E. Hellman.New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, November
1976.

[Elgamal85] Taher ElGamal.A public key cryptosystem and a signature scheme
based on discrete logarithms.pp. 10–18. Springer Verlag, 1985.

[Koblitz87] Neal Koblitz.Elliptic curve cryptosystems.Mathematics of Compu-
tation, 48(177):203–209, January 1987.

[Menezes93] Alfred Menezes.Elliptic Curve Public Key Cryptosystems.Kluwer
Academic Publishers, 1993.

[Menezes96] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone.
Handbook of Applied Cryptography.CRC Press, 1996.

[Miller85] Victor S. Miller. Use of elliptic curves in cryptography.pp. 417– 426.
Springer Verlag, 1986.

309

[Rivest78] R. L. Rivest, A. Shamir and L. Adleman.A method for obtaining
digital signatures and public-key cryptosystems.Communications of the
ACM, 21(2):120–126, February 1978.

References for Chapter Digital Signatures

[CRS83] David Chaum, Ronald L. Rivest and A.T. Sherman, editors.Advances in
Cryptology,CRYPTO’82. Springer Verlag, 1983.

[JM99] D.B. Johnson and A.J. Menezes, editors.Elliptic Curve DSA (ECDSA):
An Enhanced DSA,Technical Report CORR 99-34, Department of C&O,
University of Waterloo, 1999.

[MOV96] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone.Hand-
book of Applied Cryptography.CRC Press, 1996.

[Pfi96] B. Pfitzmann, editor.Digital Signature Schemes - General Framework
and Fail-Stop Signatures, LNCS 1100. Springer Verlag, 1996.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman.A method for obtaining digital
signatures and public-key cryptosystems.Communications of the ACM,
21(2):120–126, February 1978.

References for Chapter Hash Functions and Authenti-
cation Codes

[Chaum92] D. Chaum, E. van Heijst and B. Pfitzmann.Cryptographically strong
undeniable signatures, unconditionally secure for the signer. In Procee-
dings of CRYPTO’91, pp. 470– 484.

[Lai92] X. Lai and J. Massey.Hash functions based on block ciphers.In Rainer A.
Rueppel, editor, Proceedings of EUROCRYPT’ 92, pp. 55–70. Springer
Verlag, 1993.

[Matyas85] S.M. Matyas, C.H. Meyer, and J. Oseas.Generating strong one-way
functions with cryptographic algorithm.IBM Technical Disclosure Bulle-
tin, 27(10), 1989.

[Menezes96a] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography.CRC Press, 1996.

[Merkle90] R.C. Merkle.A fast software one-way hash function.Journal of Cryp-
tology, 3(1):43–58, 1990.

[Meyer88] C.H. Meyer and M. Schilling.Secure program load with manipulation
detection code.Proceedings of Securicom, pp. 111–130, 1988.

310 References

[NIST92] National Institute for Standards and Technology (NIST). Propo-
sed federal information processing standard for secure hash standard.
Federal Register, Jan. 1992.

[RACE92] Research and Development in Advanced Communication Technolo-
gies in Europe.Ripe integrity primitives.Final Report of RACE Integrity
Primitives Evaluation (R1040), June 1992.

[Rivest90] Ronald Rivest.The md4 message digest algorithm.In Proceedings of
CRYPTO’90, pp. 303–311.

[Rivest92] Ronald Rivest.The md5 message digest algorithm.RFC 1321, Apr.
1992.

[Schneier96a] Bruce Schneier.Applied Cryptography: protocols, algorithms, and
source code in C.John Wiley and Sons, 1996.

[Stallings99a] William Stallings.Cryptography and Network Security: Principles
and Practice.Prentice Hall, 1999.

[Stinson95b] Douglas R. Stinson.Cryptography: Theory and Practice.CRC
Press, 1995.

[Winternitz84] R.S. Winternitz.Producing one-way hash functions from des.In
David Chaum, editor, Proceedings of CRYPTO’83, pp. 203–207. Sprin-
ger Verlag, 1984.

[Zheng93] Y. Zheng, Pieprzyk J., and Seberry J.Haval – a one-way hashing algo-
rithm with variable length of output.In Jennifer Seberry and Yuliang
Zheng, editors, Proceedings of AUSCRYPT’92, pages 83–104.Springer
Verlag, 1993.

References for Chapter Entity Authentication

[Jain99a] Anil K. Jain, R. Bolle and Sharath Pankanti.Biometrics - Personal Iden-
tification in Networked Society.Kluwer Academic Publishers, 1999.

[Menezes96a] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone.
Handbook of Applied Cryptography.CRC Press, 1996.

[Monrose99a] F.N. Monrose, M.K. Reiter, and S. Wetzel.Password hardening
based on keystroke dynamics.pp. 73–82. ACM, 1999.

311

References for Chapter Key Management Techniques

[ISO96] ISO/IEC. Information technology - security techniques - key manage-
ment. Technical report, International Organization for Standarization,
ISO/IEC 11170, 1996.

References for Chapter Public Key Infrastructure

[Callas98] J. Callas, L. Donnerhacke, H. Finney and R. Thayer. OpenPGP Mes-
sage Format. Technical report, RFC (Request for Comments) 2440, Sta-
tus: Proposed Standard, IETF (Internet Engineering Task Force), 1998.
http://www.ietf.org/rfc/rfc2440.txt.

[Chokhani99] S. Chokhani and W. Ford.Internet x.509 public key infrastructure
certificate policy and certification practices framework.Technical report,
RFC (Request for Comments) 2527, Status: Informational, IETF (Internet
Engineering Task Force), 1999. http://www.ietf.org/rfc/rfc2527.txt.

[Daniel00] P. McDaniel and S. Jamin.Windowed certificate revocation.pp. 1406–
1414.

[IT97a] ITU-T. ITU-T Recommendation X.500.Technical report, ITU-T, 1997.

[IT97b] ITU-T. ITU-T Recommendation X.509.Technical report, ITU-T, 1997.

[Kaderali00b] Firoz Kaderali, Biljana Cubaleska, Bernhard Löhlein, Sonja
Schaup and Oliver Stutzke.Course - Foundations of Cryptology.Depart-
ment of Communication Systems, University of Hagen 2000.

[Kohnfelder76] L. Kohnfelder.Towards a practical public-key cryptosystem.
Technical report, MIT, 1978.

[Kohnfelder78] L. Kohnfelder.Towards a practical public-key cryptosystem.
Technical report, MIT, 1978.

[RFC2440] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP Mes-
sage Format.Technical report, RFC (Request for Comments) 2440, Sta-
tus: Proposed Standard, IETF (Internet Engineering Task Force), 1998.
http://www.ietf.org/rfc/rfc2440.txt.

[Rivest98] R. Rivest.Can we eliminate certificate revocation lists?Financial
Cryptography, pp. 178-183, 1998.

312 Index

Index

NP -complete 58

ω-notation 54

θ-notation 53

o-notation 54

state108

abelian (or commutative) group 22

Access control

Attribute Certificates, 238

Authorization Certificates, 241

adaptive chosen ciphertext 129

additive group 41

additive stream cipher 7

AddRoundKey() 109

Adi Shamir 125

AES 90, 106, 108

AES deciphering algorithm 118

AES key expansion 112

American National Institute of Stan-
dards and Technology (NIST)
13

Ascom-Tech 106

asymmetric 122

asymmetric systems 90

asymmetric-key encryption 4

asymptotic running time 49

Attacks

Biometrics, 203

Diffie-Hellman, 214

Password, 191

Attribute Certificates 236, 244

Access control, 238

authentication 122

Authentication

Certificate, 237

Entity, 189

Password-based, 190

Random numbers, 196

Unilateral, 195

Avalanche effect 91

Baby Step Giant Step Algorithm 66

Biham 100

bijective substitution 91

Biometrics 199

Bitwise XOR 101

Blind signature 158

block cipher 107

block ciphers 6, 90

Brute force attacks 130

Caesar Cipher 2

Carmichael number 60

CBC 128, 135

CBC Mode 95

Certificate Authority 229

Bridge CA, 234

Cross-certified Mesh, 233

Egalitarian structure, 235

Registration Authority, 231

Single-CA, 230

Subordinated hierarchy, 232

Certificate Policies 234

Certificate revocation list 227

Certificates

Authorization and Delegation, 239

CFB Mode 97

Challenge-response 193

Index 313

Public-key encryption, 194

Symmetric encryption, 193

Chinese remainder theorem 39

Cipher Block Chaining 95

Cipher Feedback Mode 97

cipher-only attack 48

ciphertext 3

Ciphertext-only attack 5

classical cryptography 2

collision resistant 12

collision-free 11

common modulus attack 130

complexity classco−NP 57

complexity classNP 56

complexity classP 56

complexity classes 56

Complexity Theory 48

continuous elliptic curves 137

correlation attacks 90

cryptanalysis 2

cryptanalytic attacks 125

cryptography 2

cryptology 2

cyberspace 1

Data Encryption Standard 3

Data Encryption Standard (DES) 98

Data security 1

Davis-Meyer Hash Function 174

decryption 92

decryption function 6

Dedicated Hash Functions 178

DES 3, 90, 128, 132

design criteria 91

Diffie 122

Diffie-Hellman 64, 143, 214

Diffie-Hellman algorithm 132

Diffie-Hellmann key exchange 3

Digital Signature Algorithm 153

Digital signatures 124

Digital Timestamp 151

discrete elliptic curves 140

discrete logarithm problem 131

discrete logarithms 131

Distinguished names 222

DL 66

DLP 147

DSS 125

EC cryptosystem 147

ECB 128, 135

ECB mode 94

ECC 122, 143

ECDLP 143, 147

ECPKC 136

Electronic Codebook Mode 94

ElGamal 122, 213

ElGamal cryptosystem 135

ElGamal EC cryptosystem 145

ElGamal encryption 64

ElGamal Signature Scheme 152

Elliptic Curve Digital Signature Algo-
rithm 155

Elliptic curves 136

encryption 92

encryption exponent 125

encryption rounds 92

encryption step 93

Error statistics

False Acceptance Rate (FAR), 202

314 Index

Error propagation 95

Error statistics

False Rejection Rate (FRR), 203

Euclidean algorithm 29

Euclidian algorithm 128

Euler phi functionϕ(n) 32

Euler’s theorem 59

exhaustive search attack 106

expansion routine 111

exponential time algorithms 55

Extended Euclidean algorithm 30

Fail-stop signature 157

False Acceptance Rate (FAR) 202

False Rejection Rate (FRR) 203

Federal Information Processing Stan-
dard (FIPS 180) 13

Federal Information Processing Stan-
dard (FIPS) 98

Feige-Fiat-Shamir 197

Feistel Cipher 6, 91–93, 98

Fermat’s test 59

field 26

finite fields over polynomials 42

FIPS 106

full diffusion 110

fundamental theorem of arithmetic 32

Galois fields 42

Gordon 91

greatest common divisor 28

group operation 137

Guillou-Quisquater 197

Hash functions 176

HAVAL, 183

MD4, 178

MD5, 178

RIPE-MD, 182

SHA, 181

Snerfu, 183

Hellman 122

homomorphic property 129

ICANN 224

IDEA 6, 90, 100, 101

IDEA key schedule algorithm 102

Identification protocol

Feige-Fiat-Shamir, 197

Guillou-Quisquater, 197

Schnorr, 198

Identity Certificates 220, 242

Improved Proposal Encryption Stan-
dard 100

initial round key addition 109

initialization vector 97

International Data Encryption Algo-
rithm (IDEA) 100

InvShiftRows() 118

InvSubBytes() 119

IPES 100

irreducible polynomial 44, 112

Katholieke University 107

Kerckhoff 5

key 4

Key

Distributing Public Keys, 209

Distribution, 208

Escrow, 216

Establishment, 206

Generation, 205, 225

Index 315

Recovery, 216

Secret Key, 210

Storing, Updating and Destroying,
217

Transport Mechanisms, 210

key distribution 122, 123

Key exchange 125

Key Transport

ElGamal, 213

Originator Signature, 213

Public Key Techniques, 213

TTP, 212

Unilateral Authentication, 211

Key-Exchange Algorithms 214

Diffie-Hellman, 214

ElGamal, 215

Encrypted Key Exchange, 215

Station-to-Station Protocol, 215

Known-Plaintext attack 6

Lai 100

Len Adleman 125

Mapping 18

Massey 100

Matyas-Meyer-Oseas Hash Function
175

McEliece cryptosystem 148

MD4 13

MD5 13

Menezes 146

Menezes-Vanstone EC cryptosystem
145

Merkle-Hellman knapsack cryptosys-
tem 148

Message authentication 161

Message authentication code 163, 184

message authentification codes
(MACs) 90

Miller-Rabin Test 61

MIT 125

MixColumns() 109

modern cryptography 3

modular arithmetic 33

modular exponentiations 126

multiplicative group 41

National Bureau of Standards (NBS)
98

National Institute of Standards and
Technology (NIST) 98

NIST 106

non-deterministic 135

number theory 26

oan Daemen 107

OFB Mode 96

One-time-pad 7

One-way Functions 11

Output Feedback Mode 96

Password

One-time passwords, 192

Salting, 192

Selection, 190

permutations 91

Personal security environment 225

PKI 220

OpenPGP, 248

PKIX, 245

SPKI, 246

X.509, 242

plaintext 3

316 Index

point of infinity 136

Policy 228

Pollard’s rho method 63

polynomial time 11

polynomial time algorithm 55

Pretty Good Privacy 235, 248

prime number 132

prime numbers 31

primitive element 41

private key 122

Proposal Encryption Standard (PES)
100

provably secure encryption scheme
148

public key 122

Public Key

Key Transport, 213

public-key cryptography 122

public-key cryptosystem 122

Public-key encryption

Challenge-response, 194

quadratic residue modulo n 40

Rabin’s cryptosystem 148

random integer 132

Random numbers

Authentication, 195

Registration Authority 231

Retkin 91

Rijndael algorithm 110

ring 25

Rivest-Shamir-Adleman 125

Ron Rivest 125

round transformation 113

Round Transformation 103

RSA 122, 125, 128

RSA 31

RSA processor 147

RSA Signatures 150

S-box 109, 113, 288

S-boxes 91

Schnorr 198

secret key 2, 122

Secure Hash Standard (SHS) 13

semigroup 22

Set 18

Shamir 100

ShiftRows() 109

Signature 149

Blind Signature, 158

Digital Signature Algorithm, 153

ElGamal Signature Scheme, 152

Elliptic Curve Digital Signature
Algorithm, 155

Fail-stop, 157

RSA Signatures, 150

Undeniable signatures, 158

state array 108

stream ciphers 6

SubBytes() 109

subexponential time algorithm 55

subkey 92

substitution ciphers 2

Symmetric encryption

Challenge-response, 193

symmetric systems 90

symmetric-key encryption 4

system

algebraic, 18

Index 317

Taher ElGamal 133

TCP/IP 1

theory of groups 22

Transport Mechanisms

Secret Key, 210

transposition ciphers 2

trapdoor one-way function 11

Trial division 62

Triple DES 6

Trust 221, 250

Trusted Third Party 208, 212, 221

Undeniable signature 158

United States 100

Vanstone 146

Vincent Rijmen 107

Web of Trust 236, 250

X.509 222, 242

zero point 136

Zero-knowledge 196

318 Index

